Marlin_Firmware/Marlin/src/module/temperature.h

880 lines
27 KiB
C
Raw Normal View History

/**
2016-03-24 13:01:20 -05:00
* Marlin 3D Printer Firmware
2020-02-03 08:00:57 -06:00
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
2016-03-24 13:01:20 -05:00
*
* Based on Sprinter and grbl.
2019-06-27 23:57:50 -05:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
2016-03-24 13:01:20 -05:00
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
2020-07-22 22:20:14 -05:00
* along with this program. If not, see <https://www.gnu.org/licenses/>.
2016-03-24 13:01:20 -05:00
*
*/
#pragma once
2016-03-24 13:01:20 -05:00
/**
2016-04-28 20:18:13 -05:00
* temperature.h - temperature controller
*/
2017-09-06 06:28:32 -05:00
#include "thermistor/thermistors.h"
2019-05-06 18:51:06 -05:00
#include "../inc/MarlinConfig.h"
2016-04-28 20:18:13 -05:00
#if ENABLED(AUTO_POWER_CONTROL)
2018-02-10 15:41:18 -06:00
#include "../feature/power.h"
#endif
2016-04-28 20:18:13 -05:00
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
2020-07-01 16:18:20 -05:00
#define HOTEND_INDEX TERN(HAS_MULTI_HOTEND, e, 0)
#define E_NAME TERN_(HAS_MULTI_HOTEND, e)
2018-05-27 17:56:21 -05:00
// Heater identifiers. Positive values are hotends. Negative values are other heaters.
typedef enum : int8_t {
INDEX_NONE = -5,
H_PROBE, H_REDUNDANT, H_CHAMBER, H_BED,
2020-01-26 03:20:11 -06:00
H_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7
2020-09-13 18:06:14 -05:00
} heater_id_t;
// PID storage
typedef struct { float Kp, Ki, Kd; } PID_t;
typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
2019-11-26 03:34:43 -06:00
typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
typedef
#if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
PIDCF_t
#elif ENABLED(PID_EXTRUSION_SCALING)
PIDC_t
#elif ENABLED(PID_FAN_SCALING)
PIDF_t
#else
2019-11-26 03:34:43 -06:00
PID_t
#endif
2019-11-26 03:34:43 -06:00
hotend_pid_t;
#if ENABLED(PID_EXTRUSION_SCALING)
typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
#endif
2020-07-01 16:18:20 -05:00
#define PID_PARAM(F,H) _PID_##F(TERN(PID_PARAMS_PER_HOTEND, H, 0))
#define _PID_Kp(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Kp, NAN)
#define _PID_Ki(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Ki, NAN)
#define _PID_Kd(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Kd, NAN)
#if ENABLED(PIDTEMP)
2020-07-01 16:18:20 -05:00
#define _PID_Kc(H) TERN(PID_EXTRUSION_SCALING, Temperature::temp_hotend[H].pid.Kc, 1)
#define _PID_Kf(H) TERN(PID_FAN_SCALING, Temperature::temp_hotend[H].pid.Kf, 0)
#else
#define _PID_Kc(H) 1
2020-07-01 16:18:20 -05:00
#define _PID_Kf(H) 0
#endif
/**
* States for ADC reading in the ISR
*/
2018-03-06 22:35:22 -06:00
enum ADCSensorState : char {
StartSampling,
2018-05-01 19:33:41 -05:00
#if HAS_TEMP_ADC_0
PrepareTemp_0, MeasureTemp_0,
#endif
#if HAS_TEMP_ADC_BED
PrepareTemp_BED, MeasureTemp_BED,
#endif
#if HAS_TEMP_ADC_CHAMBER
PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
#endif
#if HAS_TEMP_ADC_PROBE
PrepareTemp_PROBE, MeasureTemp_PROBE,
#endif
2018-05-01 19:33:41 -05:00
#if HAS_TEMP_ADC_1
PrepareTemp_1, MeasureTemp_1,
#endif
2018-05-01 19:33:41 -05:00
#if HAS_TEMP_ADC_2
PrepareTemp_2, MeasureTemp_2,
#endif
2018-05-01 19:33:41 -05:00
#if HAS_TEMP_ADC_3
PrepareTemp_3, MeasureTemp_3,
#endif
2018-05-01 19:33:41 -05:00
#if HAS_TEMP_ADC_4
PrepareTemp_4, MeasureTemp_4,
#endif
#if HAS_TEMP_ADC_5
PrepareTemp_5, MeasureTemp_5,
#endif
#if HAS_TEMP_ADC_6
PrepareTemp_6, MeasureTemp_6,
#endif
#if HAS_TEMP_ADC_7
PrepareTemp_7, MeasureTemp_7,
#endif
#if HAS_JOY_ADC_X
PrepareJoy_X, MeasureJoy_X,
#endif
#if HAS_JOY_ADC_Y
PrepareJoy_Y, MeasureJoy_Y,
#endif
#if HAS_JOY_ADC_Z
PrepareJoy_Z, MeasureJoy_Z,
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
Prepare_FILWIDTH, Measure_FILWIDTH,
#endif
2020-06-18 15:23:03 -05:00
#if ENABLED(POWER_MONITOR_CURRENT)
Prepare_POWER_MONITOR_CURRENT,
Measure_POWER_MONITOR_CURRENT,
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
Prepare_POWER_MONITOR_VOLTAGE,
Measure_POWER_MONITOR_VOLTAGE,
#endif
2018-11-18 20:39:49 -06:00
#if HAS_ADC_BUTTONS
Prepare_ADC_KEY, Measure_ADC_KEY,
2017-06-10 00:12:18 -05:00
#endif
SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
// Minimum number of Temperature::ISR loops between sensor readings.
// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
// get all oversampled sensor readings
#define MIN_ADC_ISR_LOOPS 10
#define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
2017-12-01 09:08:30 -06:00
#if HAS_PID_HEATING
#define PID_K2 (1-float(PID_K1))
#define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
2017-12-01 09:08:30 -06:00
// Apply the scale factors to the PID values
#define scalePID_i(i) ( float(i) * PID_dT )
#define unscalePID_i(i) ( float(i) / PID_dT )
#define scalePID_d(d) ( float(d) / PID_dT )
#define unscalePID_d(d) ( float(d) * PID_dT )
2017-12-01 09:08:30 -06:00
#endif
2020-04-22 16:35:03 -05:00
#if BOTH(HAS_LCD_MENU, G26_MESH_VALIDATION)
#define G26_CLICK_CAN_CANCEL 1
#endif
// A temperature sensor
typedef struct TempInfo {
uint16_t acc;
int16_t raw;
float celsius;
2019-09-05 19:44:55 -05:00
inline void reset() { acc = 0; }
inline void sample(const uint16_t s) { acc += s; }
inline void update() { raw = acc; }
} temp_info_t;
// A PWM heater with temperature sensor
typedef struct HeaterInfo : public TempInfo {
int16_t target;
uint8_t soft_pwm_amount;
} heater_info_t;
// A heater with PID stabilization
template<typename T>
struct PIDHeaterInfo : public HeaterInfo {
T pid; // Initialized by settings.load()
};
#if ENABLED(PIDTEMP)
typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
#else
typedef heater_info_t hotend_info_t;
#endif
#if HAS_HEATED_BED
#if ENABLED(PIDTEMPBED)
typedef struct PIDHeaterInfo<PID_t> bed_info_t;
#else
typedef heater_info_t bed_info_t;
#endif
#endif
#if HAS_TEMP_PROBE
typedef temp_info_t probe_info_t;
#endif
#if HAS_HEATED_CHAMBER
typedef heater_info_t chamber_info_t;
#elif HAS_TEMP_CHAMBER
typedef temp_info_t chamber_info_t;
#endif
// Heater watch handling
template <int INCREASE, int HYSTERESIS, millis_t PERIOD>
struct HeaterWatch {
uint16_t target;
millis_t next_ms;
inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
inline bool elapsed() { return elapsed(millis()); }
inline void restart(const int16_t curr, const int16_t tgt) {
if (tgt) {
const int16_t newtarget = curr + INCREASE;
if (newtarget < tgt - HYSTERESIS - 1) {
target = newtarget;
2020-04-03 19:49:45 -05:00
next_ms = millis() + SEC_TO_MS(PERIOD);
return;
}
}
next_ms = 0;
}
};
#if WATCH_HOTENDS
typedef struct HeaterWatch<WATCH_TEMP_INCREASE, TEMP_HYSTERESIS, WATCH_TEMP_PERIOD> hotend_watch_t;
#endif
#if WATCH_BED
typedef struct HeaterWatch<WATCH_BED_TEMP_INCREASE, TEMP_BED_HYSTERESIS, WATCH_BED_TEMP_PERIOD> bed_watch_t;
#endif
#if WATCH_CHAMBER
typedef struct HeaterWatch<WATCH_CHAMBER_TEMP_INCREASE, TEMP_CHAMBER_HYSTERESIS, WATCH_CHAMBER_TEMP_PERIOD> chamber_watch_t;
#endif
// Temperature sensor read value ranges
typedef struct { int16_t raw_min, raw_max; } raw_range_t;
typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
#define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
#define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
2019-05-06 18:51:06 -05:00
#if HAS_USER_THERMISTORS
enum CustomThermistorIndex : uint8_t {
2020-11-09 01:17:37 -06:00
#if HEATER_0_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_HOTEND_0,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_1_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_HOTEND_1,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_2_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_HOTEND_2,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_3_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_HOTEND_3,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_4_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_HOTEND_4,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_5_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_HOTEND_5,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_BED_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_BED,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_PROBE_USER_THERMISTOR
CTI_PROBE,
#endif
2020-11-09 01:17:37 -06:00
#if HEATER_CHAMBER_USER_THERMISTOR
2019-05-06 18:51:06 -05:00
CTI_CHAMBER,
#endif
USER_THERMISTORS
};
// User-defined thermistor
typedef struct {
bool pre_calc; // true if pre-calculations update needed
float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
sh_alpha,
series_res,
res_25, res_25_recip,
res_25_log,
beta, beta_recip;
} user_thermistor_t;
#endif
2016-04-28 20:18:13 -05:00
class Temperature {
2016-04-28 20:18:13 -05:00
public:
2020-04-19 23:56:55 -05:00
#if HAS_HOTEND
2020-04-22 16:35:03 -05:00
#define HOTEND_TEMPS (HOTENDS + ENABLED(TEMP_SENSOR_1_AS_REDUNDANT))
2019-09-10 02:20:49 -05:00
static hotend_info_t temp_hotend[HOTEND_TEMPS];
2020-06-24 20:14:58 -05:00
static const uint16_t heater_maxtemp[HOTENDS];
2019-09-10 02:20:49 -05:00
#endif
2020-04-22 16:35:03 -05:00
TERN_(HAS_HEATED_BED, static bed_info_t temp_bed);
TERN_(HAS_TEMP_PROBE, static probe_info_t temp_probe);
TERN_(HAS_TEMP_CHAMBER, static chamber_info_t temp_chamber);
2020-04-22 16:35:03 -05:00
TERN_(AUTO_POWER_E_FANS, static uint8_t autofan_speed[HOTENDS]);
TERN_(AUTO_POWER_CHAMBER_FAN, static uint8_t chamberfan_speed);
2016-04-28 20:18:13 -05:00
#if ENABLED(FAN_SOFT_PWM)
2017-04-20 14:04:26 -05:00
static uint8_t soft_pwm_amount_fan[FAN_COUNT],
soft_pwm_count_fan[FAN_COUNT];
#endif
2016-04-28 20:18:13 -05:00
#if ENABLED(PREVENT_COLD_EXTRUSION)
2016-07-06 10:28:09 -05:00
static bool allow_cold_extrude;
2017-06-10 18:29:17 -05:00
static int16_t extrude_min_temp;
FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp - (TEMP_WINDOW); }
2019-09-30 21:44:07 -05:00
FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) {
return tooCold(degHotend(HOTEND_INDEX));
}
2019-09-30 21:44:07 -05:00
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) {
return tooCold(degTargetHotend(HOTEND_INDEX));
}
2016-04-28 20:18:13 -05:00
#else
2019-09-30 21:44:07 -05:00
FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; }
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; }
2016-04-28 20:18:13 -05:00
#endif
2018-01-22 04:29:29 -06:00
FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
#if HEATER_IDLE_HANDLER
// Heater idle handling. Marlin creates one per hotend and one for the heated bed.
typedef struct {
millis_t timeout_ms;
bool timed_out;
inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
inline void reset() { timeout_ms = 0; timed_out = false; }
inline void expire() { start(0); }
} heater_idle_t;
// Indices and size for the heater_idle array
#define _ENUM_FOR_E(N) IDLE_INDEX_E##N,
enum IdleIndex : uint8_t {
REPEAT(HOTENDS, _ENUM_FOR_E)
#if ENABLED(HAS_HEATED_BED)
IDLE_INDEX_BED,
#endif
NR_HEATER_IDLE
};
#undef _ENUM_FOR_E
// Convert the given heater_id_t to idle array index
static inline IdleIndex idle_index_for_id(const int8_t heater_id) {
#if HAS_HEATED_BED
if (heater_id == H_BED) return IDLE_INDEX_BED;
#endif
return (IdleIndex)_MAX(heater_id, 0);
}
static heater_idle_t heater_idle[NR_HEATER_IDLE];
#endif
2016-04-28 20:18:13 -05:00
private:
2020-04-22 16:35:03 -05:00
TERN_(EARLY_WATCHDOG, static bool inited); // If temperature controller is running
2020-01-26 17:39:45 -06:00
static volatile bool raw_temps_ready;
2020-04-22 16:35:03 -05:00
TERN_(WATCH_HOTENDS, static hotend_watch_t watch_hotend[HOTENDS]);
2016-04-28 20:18:13 -05:00
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
2017-05-21 04:48:53 -05:00
static uint16_t redundant_temperature_raw;
2016-05-26 13:58:38 -05:00
static float redundant_temperature;
2016-04-28 20:18:13 -05:00
#endif
2019-02-27 04:38:56 -06:00
#if ENABLED(PID_EXTRUSION_SCALING)
static int32_t last_e_position, lpq[LPQ_MAX_LEN];
static lpq_ptr_t lpq_ptr;
2016-04-28 20:18:13 -05:00
#endif
2020-04-22 16:35:03 -05:00
TERN_(HAS_HOTEND, static temp_range_t temp_range[HOTENDS]);
2016-04-28 20:18:13 -05:00
#if HAS_HEATED_BED
2020-04-22 16:35:03 -05:00
TERN_(WATCH_BED, static bed_watch_t watch_bed);
2020-11-07 18:28:29 -06:00
IF_DISABLED(PIDTEMPBED, static millis_t next_bed_check_ms);
#ifdef BED_MINTEMP
static int16_t mintemp_raw_BED;
#endif
#ifdef BED_MAXTEMP
static int16_t maxtemp_raw_BED;
#endif
2016-07-08 21:28:37 -05:00
#endif
#if HAS_HEATED_CHAMBER
2020-04-22 16:35:03 -05:00
TERN_(WATCH_CHAMBER, static chamber_watch_t watch_chamber);
static millis_t next_chamber_check_ms;
#ifdef CHAMBER_MINTEMP
static int16_t mintemp_raw_CHAMBER;
#endif
#ifdef CHAMBER_MAXTEMP
static int16_t maxtemp_raw_CHAMBER;
#endif
2016-07-08 21:28:37 -05:00
#endif
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
static uint8_t consecutive_low_temperature_error[HOTENDS];
2016-04-28 20:18:13 -05:00
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
static millis_t preheat_end_time[HOTENDS];
2016-04-28 20:18:13 -05:00
#endif
2020-04-22 16:35:03 -05:00
TERN_(HAS_AUTO_FAN, static millis_t next_auto_fan_check_ms);
2016-04-28 20:18:13 -05:00
2020-04-22 16:35:03 -05:00
TERN_(PROBING_HEATERS_OFF, static bool paused);
2016-04-28 20:18:13 -05:00
public:
2018-11-18 20:39:49 -06:00
#if HAS_ADC_BUTTONS
2017-06-10 00:12:18 -05:00
static uint32_t current_ADCKey_raw;
static uint16_t ADCKey_count;
2017-06-10 00:12:18 -05:00
#endif
2016-04-28 20:18:13 -05:00
2020-04-22 16:35:03 -05:00
TERN_(PID_EXTRUSION_SCALING, static int16_t lpq_len);
2016-04-28 20:18:13 -05:00
/**
* Instance Methods
*/
void init();
2016-05-26 13:58:38 -05:00
/**
* Static (class) methods
*/
2019-05-06 18:51:06 -05:00
#if HAS_USER_THERMISTORS
static user_thermistor_t user_thermistor[USER_THERMISTORS];
static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
static void reset_user_thermistors();
static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
static bool set_pull_up_res(int8_t t_index, float value) {
//if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
if (!WITHIN(value, 1, 1000000)) return false;
user_thermistor[t_index].series_res = value;
return true;
}
static bool set_res25(int8_t t_index, float value) {
if (!WITHIN(value, 1, 10000000)) return false;
user_thermistor[t_index].res_25 = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
static bool set_beta(int8_t t_index, float value) {
if (!WITHIN(value, 1, 1000000)) return false;
user_thermistor[t_index].beta = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
static bool set_sh_coeff(int8_t t_index, float value) {
if (!WITHIN(value, -0.01f, 0.01f)) return false;
user_thermistor[t_index].sh_c_coeff = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
#endif
2020-04-19 23:56:55 -05:00
#if HAS_HOTEND
2019-09-10 02:20:49 -05:00
static float analog_to_celsius_hotend(const int raw, const uint8_t e);
#endif
#if HAS_HEATED_BED
static float analog_to_celsius_bed(const int raw);
#endif
#if HAS_TEMP_PROBE
static float analog_to_celsius_probe(const int raw);
#endif
#if HAS_TEMP_CHAMBER
static float analog_to_celsius_chamber(const int raw);
#endif
2016-05-26 13:58:38 -05:00
2020-04-27 04:41:18 -05:00
#if HAS_FAN
static uint8_t fan_speed[FAN_COUNT];
#define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
static void set_fan_speed(const uint8_t target, const uint16_t speed);
2020-07-14 19:30:48 -05:00
#if ENABLED(REPORT_FAN_CHANGE)
static void report_fan_speed(const uint8_t target);
#endif
2019-05-07 14:14:12 -05:00
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
static bool fans_paused;
2019-05-07 14:14:12 -05:00
static uint8_t saved_fan_speed[FAN_COUNT];
#endif
static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
2020-04-22 16:35:03 -05:00
TERN_(ADAPTIVE_FAN_SLOWING, static uint8_t fan_speed_scaler[FAN_COUNT]);
2019-06-28 21:24:31 -05:00
static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
UNUSED(target); // Potentially unused!
2020-07-14 19:30:48 -05:00
return (fs * uint16_t(TERN(ADAPTIVE_FAN_SLOWING, fan_speed_scaler[target], 128))) >> 7;
2019-06-28 13:58:40 -05:00
}
2019-06-28 21:24:31 -05:00
static inline uint8_t scaledFanSpeed(const uint8_t target) {
2019-06-28 13:58:40 -05:00
return scaledFanSpeed(target, fan_speed[target]);
}
#if ENABLED(EXTRA_FAN_SPEED)
static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
2019-01-19 18:47:29 -06:00
static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
void set_fans_paused(const bool p);
#endif
2020-04-27 04:41:18 -05:00
#endif // HAS_FAN
static inline void zero_fan_speeds() {
2020-04-27 04:41:18 -05:00
#if HAS_FAN
FANS_LOOP(i) set_fan_speed(i, 0);
#endif
}
2016-04-28 20:18:13 -05:00
/**
* Called from the Temperature ISR
*/
static void readings_ready();
static void tick();
2016-04-28 20:18:13 -05:00
/**
* Call periodically to manage heaters
*/
static void manage_heater() _O2; // Added _O2 to work around a compiler error
2016-04-28 20:18:13 -05:00
2016-07-08 21:28:37 -05:00
/**
* Preheating hotends
*/
#ifdef MILLISECONDS_PREHEAT_TIME
2019-09-30 21:44:07 -05:00
static bool is_preheating(const uint8_t E_NAME) {
2016-07-12 00:08:47 -05:00
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
}
2019-09-30 21:44:07 -05:00
static void start_preheat_time(const uint8_t E_NAME) {
2016-07-12 00:08:47 -05:00
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
}
2019-09-30 21:44:07 -05:00
static void reset_preheat_time(const uint8_t E_NAME) {
2016-07-12 00:08:47 -05:00
preheat_end_time[HOTEND_INDEX] = 0;
2016-07-08 21:28:37 -05:00
}
#else
#define is_preheating(n) (false)
#endif
2016-04-28 20:18:13 -05:00
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
2019-09-30 21:44:07 -05:00
FORCE_INLINE static float degHotend(const uint8_t E_NAME) {
2020-04-22 16:35:03 -05:00
return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].celsius);
2016-05-26 19:43:20 -05:00
}
2016-04-28 20:18:13 -05:00
#if ENABLED(SHOW_TEMP_ADC_VALUES)
2019-09-30 21:44:07 -05:00
FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) {
2020-04-22 16:35:03 -05:00
return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].raw);
}
2016-04-28 20:18:13 -05:00
#endif
2019-09-30 21:44:07 -05:00
FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) {
2020-04-22 16:35:03 -05:00
return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].target);
2016-05-26 19:43:20 -05:00
}
#if WATCH_HOTENDS
static void start_watching_hotend(const uint8_t e=0);
#else
2019-09-30 21:44:07 -05:00
static inline void start_watching_hotend(const uint8_t=0) {}
#endif
2020-04-19 23:56:55 -05:00
#if HAS_HOTEND
2016-04-28 20:18:13 -05:00
2019-09-30 21:44:07 -05:00
static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) {
2019-09-10 02:20:49 -05:00
const uint8_t ee = HOTEND_INDEX;
#ifdef MILLISECONDS_PREHEAT_TIME
if (celsius == 0)
reset_preheat_time(ee);
else if (temp_hotend[ee].target == 0)
start_preheat_time(ee);
#endif
TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on());
2020-04-27 04:48:11 -05:00
temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - HOTEND_OVERSHOOT);
2019-09-10 02:20:49 -05:00
start_watching_hotend(ee);
}
2019-09-30 21:44:07 -05:00
FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) {
2019-09-10 02:20:49 -05:00
return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
}
2019-09-30 21:44:07 -05:00
FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) {
2019-09-10 02:20:49 -05:00
return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
}
2019-09-10 02:20:49 -05:00
#if HAS_TEMP_HOTEND
static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel=false
#endif
);
#endif
FORCE_INLINE static bool still_heating(const uint8_t e) {
return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
}
2020-05-18 00:50:35 -05:00
FORCE_INLINE static bool degHotendNear(const uint8_t e, const float &temp) {
return ABS(degHotend(e) - temp) < (TEMP_HYSTERESIS);
}
#endif // HAS_HOTEND
#if HAS_HEATED_BED
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
#endif
FORCE_INLINE static float degBed() { return temp_bed.celsius; }
FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
#if WATCH_BED
static void start_watching_bed();
#else
static inline void start_watching_bed() {}
#endif
static void setTargetBed(const int16_t celsius) {
TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on());
temp_bed.target =
2020-07-14 19:30:48 -05:00
#ifdef BED_MAX_TARGET
2020-04-27 04:41:18 -05:00
_MIN(celsius, BED_MAX_TARGET)
#else
celsius
#endif
;
start_watching_bed();
}
2016-04-28 20:18:13 -05:00
2018-11-25 18:05:18 -06:00
static bool wait_for_bed(const bool no_wait_for_cooling=true
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel=false
#endif
);
static void wait_for_bed_heating();
2020-05-18 00:50:35 -05:00
FORCE_INLINE static bool degBedNear(const float &temp) {
return ABS(degBed() - temp) < (TEMP_BED_HYSTERESIS);
}
#endif // HAS_HEATED_BED
2016-04-28 20:18:13 -05:00
#if HAS_TEMP_PROBE
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE static int16_t rawProbeTemp() { return temp_probe.raw; }
#endif
FORCE_INLINE static float degProbe() { return temp_probe.celsius; }
FORCE_INLINE static bool isProbeBelowTemp(const float target_temp) { return temp_probe.celsius < target_temp; }
FORCE_INLINE static bool isProbeAboveTemp(const float target_temp) { return temp_probe.celsius > target_temp; }
static bool wait_for_probe(const float target_temp, bool no_wait_for_cooling=true);
#endif
#if WATCH_PROBE
static void start_watching_probe();
#else
static inline void start_watching_probe() {}
#endif
#if HAS_TEMP_CHAMBER
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
2016-05-26 19:43:20 -05:00
#endif
FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
#if HAS_HEATED_CHAMBER
FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
static bool wait_for_chamber(const bool no_wait_for_cooling=true);
#endif
#endif // HAS_TEMP_CHAMBER
#if WATCH_CHAMBER
static void start_watching_chamber();
#else
static inline void start_watching_chamber() {}
#endif
#if HAS_HEATED_CHAMBER
static void setTargetChamber(const int16_t celsius) {
temp_chamber.target =
#ifdef CHAMBER_MAXTEMP
_MIN(celsius, CHAMBER_MAXTEMP - 10)
#else
celsius
#endif
;
start_watching_chamber();
}
#endif // HAS_HEATED_CHAMBER
2016-04-28 20:18:13 -05:00
/**
* The software PWM power for a heater
*/
2020-09-13 18:06:14 -05:00
static int16_t getHeaterPower(const heater_id_t heater_id);
2016-04-28 20:18:13 -05:00
/**
* Switch off all heaters, set all target temperatures to 0
*/
2016-05-26 13:58:38 -05:00
static void disable_all_heaters();
2016-04-28 20:18:13 -05:00
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* Methods to check if heaters are enabled, indicating an active job
*/
2020-11-07 17:55:31 -06:00
static bool auto_job_over_threshold();
static void auto_job_check_timer(const bool can_start, const bool can_stop);
#endif
2016-04-28 20:18:13 -05:00
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
2020-09-13 18:06:14 -05:00
static void PID_autotune(const float &target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result=false);
2016-04-28 20:18:13 -05:00
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
static bool adaptive_fan_slowing;
#elif ENABLED(ADAPTIVE_FAN_SLOWING)
2019-04-04 03:06:19 -05:00
static constexpr bool adaptive_fan_slowing = true;
#endif
2017-12-01 09:08:30 -06:00
/**
* Update the temp manager when PID values change
*/
2017-11-10 00:48:00 -06:00
#if ENABLED(PIDTEMP)
FORCE_INLINE static void updatePID() {
2020-04-22 16:35:03 -05:00
TERN_(PID_EXTRUSION_SCALING, last_e_position = 0);
2017-11-10 00:48:00 -06:00
}
#endif
#endif
2016-04-28 20:18:13 -05:00
#if ENABLED(PROBING_HEATERS_OFF)
2017-05-08 14:09:37 -05:00
static void pause(const bool p);
FORCE_INLINE static bool is_paused() { return paused; }
#endif
#if HEATER_IDLE_HANDLER
static void reset_hotend_idle_timer(const uint8_t E_NAME) {
heater_idle[HOTEND_INDEX].reset();
start_watching_hotend(HOTEND_INDEX);
}
#if HAS_HEATED_BED
static void reset_bed_idle_timer() {
heater_idle[IDLE_INDEX_BED].reset();
start_watching_bed();
}
#endif
#endif // HEATER_IDLE_HANDLER
2018-03-07 01:53:50 -06:00
#if HAS_TEMP_SENSOR
static void print_heater_states(const uint8_t target_extruder
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
, const bool include_r=false
#endif
);
#if ENABLED(AUTO_REPORT_TEMPERATURES)
static uint8_t auto_report_temp_interval;
static millis_t next_temp_report_ms;
2019-09-16 20:31:08 -05:00
static void auto_report_temperatures();
2019-03-01 19:29:48 -06:00
static inline void set_auto_report_interval(uint8_t v) {
NOMORE(v, 60);
auto_report_temp_interval = v;
next_temp_report_ms = millis() + 1000UL * v;
}
#endif
#endif
2020-04-22 16:35:03 -05:00
TERN_(HAS_DISPLAY, static void set_heating_message(const uint8_t e));
2018-10-07 17:06:14 -05:00
#if HAS_LCD_MENU && HAS_TEMPERATURE
2020-04-27 04:35:20 -05:00
static void lcd_preheat(const int16_t e, const int8_t indh, const int8_t indb);
#endif
2016-04-28 20:18:13 -05:00
private:
2020-01-26 17:39:45 -06:00
static void update_raw_temperatures();
2016-05-26 13:58:38 -05:00
static void updateTemperaturesFromRawValues();
2016-04-28 20:18:13 -05:00
#define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
#if HAS_MAX6675
2020-07-14 19:30:48 -05:00
#define COUNT_6675 1 + BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
#if COUNT_6675 > 1
#define HAS_MULTI_6675 1
#define READ_MAX6675(N) read_max6675(N)
#else
#define READ_MAX6675(N) read_max6675()
#endif
2020-11-09 01:17:37 -06:00
static int read_max6675(TERN_(HAS_MULTI_6675, const uint8_t hindex=0));
2016-04-28 20:18:13 -05:00
#endif
2016-05-26 13:58:38 -05:00
static void checkExtruderAutoFans();
2016-04-28 20:18:13 -05:00
static float get_pid_output_hotend(const uint8_t e);
2016-04-28 20:18:13 -05:00
2020-04-22 16:35:03 -05:00
TERN_(PIDTEMPBED, static float get_pid_output_bed());
2016-04-28 20:18:13 -05:00
2020-04-22 16:35:03 -05:00
TERN_(HAS_HEATED_CHAMBER, static float get_pid_output_chamber());
2020-09-13 18:06:14 -05:00
static void _temp_error(const heater_id_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
static void min_temp_error(const heater_id_t e);
static void max_temp_error(const heater_id_t e);
2016-04-28 20:18:13 -05:00
#define HAS_THERMAL_PROTECTION ANY(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER, HAS_THERMALLY_PROTECTED_BED)
2019-07-14 08:56:29 -05:00
#if HAS_THERMAL_PROTECTION
2016-04-28 20:18:13 -05:00
// Indices and size for the tr_state_machine array. One for each protected heater.
#define _ENUM_FOR_E(N) RUNAWAY_IND_E##N,
enum RunawayIndex : uint8_t {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
REPEAT(HOTENDS, _ENUM_FOR_E)
#endif
#if ENABLED(HAS_THERMALLY_PROTECTED_BED)
RUNAWAY_IND_BED,
#endif
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
RUNAWAY_IND_CHAMBER,
#endif
NR_HEATER_RUNAWAY
};
#undef _ENUM_FOR_E
// Convert the given heater_id_t to runaway state array index
static inline RunawayIndex runaway_index_for_id(const int8_t heater_id) {
#if HAS_THERMALLY_PROTECTED_CHAMBER
if (heater_id == H_CHAMBER) return RUNAWAY_IND_CHAMBER;
#endif
#if HAS_THERMALLY_PROTECTED_BED
if (heater_id == H_BED) return RUNAWAY_IND_BED;
#endif
return (RunawayIndex)_MAX(heater_id, 0);
}
enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
2016-04-28 20:18:13 -05:00
typedef struct {
millis_t timer = 0;
TRState state = TRInactive;
float running_temp;
void run(const float &current, const float &target, const heater_id_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
} tr_state_machine_t;
2016-04-28 20:18:13 -05:00
static tr_state_machine_t tr_state_machine[NR_HEATER_RUNAWAY];
2019-07-14 08:56:29 -05:00
#endif // HAS_THERMAL_PROTECTION
2016-04-28 20:18:13 -05:00
};
extern Temperature thermalManager;