With these changes the output of `M503 S0` is all you need to restore
the EEPROM. Building on this it is straightforward to save and restore
the EEPROM state using the SD card or external GCode file.
- Added `M145` to set “heatup states” for the LCD menu
- Added `M420` to toggle Mesh Bed Leveling
- Added `M421` to set a single Mesh coordinate
- Extended `Config_PrintSettings` with added M codes
- Cleaned up some comments here and there
It wouldn't compile because of this line in temperature.cpp it turns out
it was just a stray ( that didn't line up with the previous lines so I
just made it in line with the rest and it compiled fine.
- Add comments documenting `thermal_runaway_protection`
- Add an enum for the thermal runaway states
- Add macros for temperature helper functions
- Fix a glitch with the z probe sled in homeaxis
cardreader.cpp needs temperature.h for autotempShutdown() when
AUTOTEMP is defined but warns about unused variables.
Unpublished variables by putting them in to temperature.cpp.
- Get rid of unused temp states in the ISR, resulting in more frequent
temperature reading with fewer sensors
- Shrink code slightly in min/max testing
- Add `Conditionals.h` with calculated configuration values
- Add `SanityCheck.h` with checks for configuration errors
- Remove equivalent code from all configurations
- Move error checks from some sources to `SanityCheck.h` also
- Fix initialization of count_direction in stepper.cpp
- Add BIT and TEST macros
- Add _APPLY_ macros to stepper.cpp to help with consolidation
- Consolidate code in stepper.cpp using macros
- Apply standards in stepper.cpp
- Use >= 0 instead of > -1 as a better semantic
- Replace DUAL_Y_CARRIAGE with Y_DUAL_STEPPER_DRIVERS
- Reduce calls to millis()
- General cleanup of manage_heaters
- General cleanup of pid autotune
- Formatting here & there
- Macros to clean up and shrink ISR code (reduced by ~364 lines)
Looks like INVERT_E3_DIR was missing in the configuration.h also as I
did a test compile with 4 extruders and Azteeg X3 Pro defined. So I also
added those lines too. Additional formatting to make the comments line
up better in that section.
Here were a few changes that I had to make/add lines for the 4th hotend.
A compiling problem in the Temperature.cpp and missing lines in
configuration.h and configuration_adv.h. I added these lines in all of
the example configs too.
* Adds config parameter `PID_PARAMS_PER_EXTRUDER` - allows single PID
parameters to be used where this would be preferable (e.g. dual
identical extruders)
* When disabled, will use `float Kp, Ki, Kd, Kc;` as before.
Preprocessor macros used to switch between.
* ultralcd.cpp defines extra menus for extra parameters only where
required
* M301 reports `e:xx` only if independent pid parameters enabled
* EEPROM structure still leaves space for 3 extruders worth, when undef
will save single parameter to all extruder positions, but only read the
first
* Switching off saves approx 330 B with no LCD enabled, 2634B with LCD
(RRD) enabled: this is significant.
* LCD modifications should be tested.
* Variables Kp, Ki, Kd, Kc now arrays of size EXTRUDERS
* M301 gains (optional, default=0) E parameter to define which
extruder's settings to modify. Tested, works with Repetier Host's EEPROM
config window, albeit only reads/updates settings for E0.
* All Kp, Ki, Kd, Kc parameters saved in EEPROM (version now v14), up to
3 extruders supported (same as Marlin in general)
Improvement to avoid reinitializing delay buffer with every print. Fixed
issues in buffer indexing and memory out of bounds due to floating point
imprecision. Simplified the code by avoiding conversion to standard
diameter and 1cu mm extrusion, which caused complications in determining
mm extruded.
This feature allows the printer to read the filament diameter
automatically and adjust the printer in real time. Added code to read
an analog voltage that represents a filament diameter measurement. This
measurement is delayed in a ring buffer to compensate for sensors that
are a distance away from the extruder. The measurement is used to
adjust the volumetric_multiplier for the extruder. Some additional g
codes (M404, M405, M406, M407) are used to set parameters and turn
on/off the control. g code M221 is updated. Pins for RAMPS1.4, RAMBO,
and Printrboard are identified for analog input. The configuration file
is updated with relevant user parameters.
This is a feature to protect your printer from burn up in flames if it
has a thermistor coming off place (this happened to a friend of mine
recently and motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature
than actual. The system will turn the heater on forever, burning up the
filament and anything
else around.
After the temperature reaches the target for the first time, this
feature will start measuring for how long the current temperature stays
below the target minus _HYSTERESIS (set_temperature -
THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to
be on the safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem
if your extruder heater takes 2 minutes to hit the target on heating.