2016-03-24 23:19:46 -07:00
/**
2016-03-24 18:01:20 +00:00
* Marlin 3 D Printer Firmware
2020-02-03 08:00:57 -06:00
* Copyright ( c ) 2020 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
2016-03-24 18:01:20 +00:00
*
* Based on Sprinter and grbl .
2019-06-27 23:57:50 -05:00
* Copyright ( c ) 2011 Camiel Gubbels / Erik van der Zalm
2016-03-24 18:01:20 +00:00
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
2020-07-23 05:20:14 +02:00
* along with this program . If not , see < https : //www.gnu.org/licenses/>.
2016-03-24 18:01:20 +00:00
*
*/
2018-11-04 02:25:55 -06:00
# pragma once
2016-03-24 18:01:20 +00:00
2016-03-24 23:19:46 -07:00
/**
2016-04-27 07:15:20 -07:00
* stepper . h - stepper motor driver : executes motion plans of planner . c using the stepper motors
2016-05-08 12:16:26 -07:00
* Derived from Grbl
2016-04-27 07:15:20 -07:00
*
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
2020-07-23 05:20:14 +02:00
* along with Grbl . If not , see < https : //www.gnu.org/licenses/>.
2016-04-27 07:15:20 -07:00
*/
2011-11-20 14:50:08 +01:00
2018-06-12 17:28:57 -05:00
# include "../inc/MarlinConfig.h"
2019-09-16 15:01:46 -05:00
# include "planner.h"
# include "stepper/indirection.h"
# ifdef __AVR__
# include "speed_lookuptable.h"
# endif
2018-06-12 17:28:57 -05:00
// Disable multiple steps per ISR
//#define DISABLE_MULTI_STEPPING
//
// Estimate the amount of time the Stepper ISR will take to execute
//
2019-12-21 16:36:25 -08:00
/**
* The method of calculating these cycle - constants is unclear .
* Most of them are no longer used directly for pulse timing , and exist
* only to estimate a maximum step rate based on the user ' s configuration .
* As 32 - bit processors continue to diverge , maintaining cycle counts
* will become increasingly difficult and error - prone .
*/
2018-06-12 17:28:57 -05:00
# ifdef CPU_32_BIT
2019-12-21 16:36:25 -08:00
/**
* Duration of START_TIMED_PULSE
2020-01-02 16:33:50 -06:00
*
2019-12-21 16:36:25 -08:00
* . . . as measured on an LPC1768 with a scope and converted to cycles .
* Not applicable to other 32 - bit processors , but as long as others
* take longer , pulses will be longer . For example the SKR Pro
* ( stm32f407zgt6 ) requires ~ 60 cyles .
*/
2019-12-19 00:38:48 -08:00
# define TIMER_READ_ADD_AND_STORE_CYCLES 34UL
2018-06-12 17:28:57 -05:00
// The base ISR takes 792 cycles
# define ISR_BASE_CYCLES 792UL
// Linear advance base time is 64 cycles
# if ENABLED(LIN_ADVANCE)
# define ISR_LA_BASE_CYCLES 64UL
# else
# define ISR_LA_BASE_CYCLES 0UL
# endif
// S curve interpolation adds 40 cycles
# if ENABLED(S_CURVE_ACCELERATION)
# define ISR_S_CURVE_CYCLES 40UL
# else
# define ISR_S_CURVE_CYCLES 0UL
# endif
// Stepper Loop base cycles
# define ISR_LOOP_BASE_CYCLES 4UL
2018-06-22 11:15:37 -03:00
// To start the step pulse, in the worst case takes
# define ISR_START_STEPPER_CYCLES 13UL
// And each stepper (start + stop pulse) takes in worst case
2018-06-12 17:28:57 -05:00
# define ISR_STEPPER_CYCLES 16UL
# else
2019-12-21 16:36:25 -08:00
// Cycles to perform actions in START_TIMED_PULSE
2019-12-19 00:38:48 -08:00
# define TIMER_READ_ADD_AND_STORE_CYCLES 13UL
2018-06-12 17:28:57 -05:00
// The base ISR takes 752 cycles
# define ISR_BASE_CYCLES 752UL
// Linear advance base time is 32 cycles
# if ENABLED(LIN_ADVANCE)
# define ISR_LA_BASE_CYCLES 32UL
# else
# define ISR_LA_BASE_CYCLES 0UL
# endif
// S curve interpolation adds 160 cycles
# if ENABLED(S_CURVE_ACCELERATION)
# define ISR_S_CURVE_CYCLES 160UL
# else
# define ISR_S_CURVE_CYCLES 0UL
# endif
// Stepper Loop base cycles
# define ISR_LOOP_BASE_CYCLES 32UL
2018-06-22 11:15:37 -03:00
// To start the step pulse, in the worst case takes
# define ISR_START_STEPPER_CYCLES 57UL
// And each stepper (start + stop pulse) takes in worst case
2018-06-12 17:28:57 -05:00
# define ISR_STEPPER_CYCLES 88UL
# endif
// Add time for each stepper
2019-05-30 16:33:40 -05:00
# if HAS_X_STEP
2018-06-22 11:15:37 -03:00
# define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-12 17:28:57 -05:00
# else
2018-06-22 11:15:37 -03:00
# define ISR_X_STEPPER_CYCLES 0UL
2018-06-12 17:28:57 -05:00
# endif
2019-05-30 16:33:40 -05:00
# if HAS_Y_STEP
2018-06-22 11:15:37 -03:00
# define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-12 17:28:57 -05:00
# else
2018-06-22 11:15:37 -03:00
# define ISR_START_Y_STEPPER_CYCLES 0UL
# define ISR_Y_STEPPER_CYCLES 0UL
2018-06-12 17:28:57 -05:00
# endif
2019-05-30 16:33:40 -05:00
# if HAS_Z_STEP
2018-06-22 11:15:37 -03:00
# define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-12 17:28:57 -05:00
# else
2018-06-22 11:15:37 -03:00
# define ISR_Z_STEPPER_CYCLES 0UL
2018-06-12 17:28:57 -05:00
# endif
// E is always interpolated, even for mixing extruders
2018-06-22 11:15:37 -03:00
# define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-12 17:28:57 -05:00
2019-05-30 17:05:06 -05:00
// If linear advance is disabled, the loop also handles them
# if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
2018-06-12 17:28:57 -05:00
# define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
# else
# define ISR_MIXING_STEPPER_CYCLES 0UL
# endif
// And the total minimum loop time, not including the base
# define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
2019-07-05 18:01:21 -05:00
# define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
2018-06-12 17:28:57 -05:00
# if MINIMUM_STEPPER_PULSE
2019-05-12 09:02:19 +09:00
# define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
# elif HAS_DRIVER(LV8729)
# define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
2018-06-12 17:28:57 -05:00
# else
2018-06-22 11:15:37 -03:00
# define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
2018-06-12 17:28:57 -05:00
# endif
2019-12-21 16:36:25 -08:00
// Calculate the minimum pulse times (high and low)
2019-12-19 00:38:48 -08:00
# if MINIMUM_STEPPER_PULSE && MAXIMUM_STEPPER_RATE
constexpr uint32_t _MIN_STEP_PERIOD_NS = 1000000000UL / MAXIMUM_STEPPER_RATE ;
constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE ;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MAX ( ( _MIN_STEP_PERIOD_NS - _MIN ( _MIN_STEP_PERIOD_NS , _MIN_PULSE_HIGH_NS ) ) , _MIN_PULSE_HIGH_NS ) ;
# elif MINIMUM_STEPPER_PULSE
// Assume 50% duty cycle
constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE ;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS ;
# elif MAXIMUM_STEPPER_RATE
// Assume 50% duty cycle
constexpr uint32_t _MIN_PULSE_HIGH_NS = 500000000UL / MAXIMUM_STEPPER_RATE ;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS ;
2019-05-12 09:02:19 +09:00
# else
2019-12-19 00:38:48 -08:00
# error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
2019-05-12 09:02:19 +09:00
# endif
2018-06-22 11:15:37 -03:00
2018-06-12 17:28:57 -05:00
// But the user could be enforcing a minimum time, so the loop time is
2019-07-05 18:01:21 -05:00
# define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
2018-06-12 17:28:57 -05:00
// If linear advance is enabled, then it is handled separately
# if ENABLED(LIN_ADVANCE)
// Estimate the minimum LA loop time
2018-10-16 10:38:57 +02:00
# if ENABLED(MIXING_EXTRUDER) // ToDo: ???
// HELP ME: What is what?
// Directions are set up for MIXING_STEPPERS - like before.
// Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
// These loops are a bit faster than advancing a bresenham counter.
// Always only one e-stepper is stepped.
2018-06-12 17:28:57 -05:00
# define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
# else
# define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
# endif
// And the real loop time
2019-07-05 18:01:21 -05:00
# define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
2018-06-12 17:28:57 -05:00
# else
# define ISR_LA_LOOP_CYCLES 0UL
# endif
// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
# define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
# define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
# define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
# define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
# define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
# define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
# define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
# define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
# define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
2020-07-19 19:53:29 -07:00
// The minimum step ISR rate used by ADAPTIVE_STEP_SMOOTHING to target 50% CPU usage
// This does not account for the possibility of multi-stepping.
// Perhaps DISABLE_MULTI_STEPPING should be required with ADAPTIVE_STEP_SMOOTHING.
# define MIN_STEP_ISR_FREQUENCY (MAX_STEP_ISR_FREQUENCY_1X / 2)
2018-06-12 17:28:57 -05:00
//
// Stepper class definition
//
2016-04-27 07:15:20 -07:00
class Stepper {
2011-11-20 14:50:08 +01:00
2016-04-27 07:15:20 -07:00
public :
2020-04-23 21:42:38 -05:00
# if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
2018-06-19 18:55:49 +02:00
static bool separate_multi_axis ;
2016-04-27 07:15:20 -07:00
# endif
2020-10-11 14:58:35 -05:00
# if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
# if HAS_MOTOR_CURRENT_PWM
# ifndef PWM_MOTOR_CURRENT
# define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
# endif
# define MOTOR_CURRENT_COUNT 3
# elif HAS_MOTOR_CURRENT_SPI
static constexpr uint32_t digipot_count [ ] = DIGIPOT_MOTOR_CURRENT ;
# define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
2017-06-02 23:38:07 -06:00
# endif
2019-03-03 02:29:02 +03:00
static bool initialized ;
2020-10-11 14:58:35 -05:00
static uint32_t motor_current_setting [ MOTOR_CURRENT_COUNT ] ; // Initialized by settings.load()
2017-06-02 23:38:07 -06:00
# endif
2020-09-21 09:55:02 +08:00
// Last-moved extruder, as set when the last movement was fetched from planner
# if HAS_MULTI_EXTRUDER
static uint8_t last_moved_extruder ;
# else
static constexpr uint8_t last_moved_extruder = 0 ;
# endif
2016-04-27 07:15:20 -07:00
private :
2018-06-27 20:11:16 -03:00
static block_t * current_block ; // A pointer to the block currently being traced
2018-05-23 03:45:25 -05:00
static uint8_t last_direction_bits , // The next stepping-bits to be output
axis_did_move ; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
2018-06-03 00:59:21 -03:00
2018-05-23 03:45:25 -05:00
static bool abort_current_block ; // Signals to the stepper that current block should be aborted
2016-04-27 07:15:20 -07:00
2017-10-29 03:43:44 -05:00
# if ENABLED(X_DUAL_ENDSTOPS)
2018-06-01 21:02:22 -03:00
static bool locked_X_motor , locked_X2_motor ;
2017-10-29 03:43:44 -05:00
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
2018-06-01 21:02:22 -03:00
static bool locked_Y_motor , locked_Y2_motor ;
2017-10-29 03:43:44 -05:00
# endif
2020-01-20 00:35:07 -05:00
# if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool locked_Z_motor , locked_Z2_motor
# if NUM_Z_STEPPER_DRIVERS >= 3
, locked_Z3_motor
# if NUM_Z_STEPPER_DRIVERS >= 4
, locked_Z4_motor
# endif
# endif
;
2018-06-19 18:55:49 +02:00
# endif
2016-04-27 07:15:20 -07:00
2018-06-03 00:59:21 -03:00
static uint32_t acceleration_time , deceleration_time ; // time measured in Stepper Timer ticks
static uint8_t steps_per_isr ; // Count of steps to perform per Stepper ISR call
# if ENABLED(ADAPTIVE_STEP_SMOOTHING)
static uint8_t oversampling_factor ; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
# else
static constexpr uint8_t oversampling_factor = 0 ;
# endif
// Delta error variables for the Bresenham line tracer
2019-09-29 04:25:39 -05:00
static xyze_long_t delta_error ;
static xyze_ulong_t advance_dividend ;
static uint32_t advance_divisor ,
2018-06-03 00:59:21 -03:00
step_events_completed , // The number of step events executed in the current block
accelerate_until , // The point from where we need to stop acceleration
decelerate_after , // The point from where we need to start decelerating
step_event_count ; // The total event count for the current block
2020-09-20 18:29:08 -05:00
# if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
2018-10-16 10:38:57 +02:00
static uint8_t stepper_extruder ;
2018-06-03 00:59:21 -03:00
# else
2018-10-16 10:38:57 +02:00
static constexpr uint8_t stepper_extruder = 0 ;
2018-06-03 00:59:21 -03:00
# endif
2016-04-27 07:15:20 -07:00
2018-05-26 02:02:39 -05:00
# if ENABLED(S_CURVE_ACCELERATION)
2018-04-11 20:13:42 -03:00
static int32_t bezier_A , // A coefficient in Bézier speed curve
bezier_B , // B coefficient in Bézier speed curve
bezier_C ; // C coefficient in Bézier speed curve
2018-05-20 22:20:11 -05:00
static uint32_t bezier_F , // F coefficient in Bézier speed curve
bezier_AV ; // AV coefficient in Bézier speed curve
2018-04-11 20:13:42 -03:00
# ifdef __AVR__
static bool A_negative ; // If A coefficient was negative
# endif
static bool bezier_2nd_half ; // If Bézier curve has been initialized or not
2018-04-06 22:48:06 -03:00
# endif
2017-10-09 04:25:18 -05:00
# if ENABLED(LIN_ADVANCE)
2020-02-14 05:14:37 -06:00
static constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF ;
2018-06-03 00:59:21 -03:00
static uint32_t nextAdvanceISR , LA_isr_rate ;
static uint16_t LA_current_adv_steps , LA_final_adv_steps , LA_max_adv_steps ; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static int8_t LA_steps ;
static bool LA_use_advance_lead ;
2020-02-14 05:14:37 -06:00
# endif
2018-02-23 00:53:29 -06:00
2020-02-15 21:42:28 -06:00
# if ENABLED(INTEGRATED_BABYSTEPPING)
static constexpr uint32_t BABYSTEP_NEVER = 0xFFFFFFFF ;
static uint32_t nextBabystepISR ;
# endif
2020-05-11 18:22:41 -06:00
# if ENABLED(DIRECT_STEPPING)
static page_step_state_t page_step_state ;
# endif
2018-06-03 00:59:21 -03:00
static int32_t ticks_nominal ;
2018-05-26 02:02:39 -05:00
# if DISABLED(S_CURVE_ACCELERATION)
2018-05-09 02:17:53 -03:00
static uint32_t acc_step_rate ; // needed for deceleration start point
2018-04-06 22:48:06 -03:00
# endif
2016-04-27 07:15:20 -07:00
2019-09-14 03:05:10 -05:00
// Exact steps at which an endstop was triggered
2019-09-29 04:25:39 -05:00
static xyz_long_t endstops_trigsteps ;
2016-04-27 07:15:20 -07:00
2016-09-15 03:18:10 -05:00
// Positions of stepper motors, in step units
2019-09-29 04:25:39 -05:00
static xyze_long_t count_position ;
2016-09-15 03:18:10 -05:00
2020-04-03 01:31:08 +01:00
// Current stepper motor directions (+1 or -1)
2019-09-29 04:25:39 -05:00
static xyze_int8_t count_direction ;
2016-04-27 07:15:20 -07:00
2020-04-03 01:31:08 +01:00
# if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
typedef struct {
2020-06-08 19:53:39 -05:00
bool enabled ; // Trapezoid needed flag (i.e., laser on, planner in control)
2020-04-03 01:31:08 +01:00
uint8_t cur_power ; // Current laser power
bool cruise_set ; // Power set up for cruising?
# if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
uint32_t last_step_count , // Step count from the last update
acc_step_count ; // Bresenham counter for laser accel/decel
# else
uint16_t till_update ; // Countdown to the next update
# endif
} stepper_laser_t ;
2020-06-08 19:53:39 -05:00
static stepper_laser_t laser_trap ;
2016-04-27 07:15:20 -07:00
2020-04-03 01:31:08 +01:00
# endif
public :
2016-04-27 07:15:20 -07:00
// Initialize stepper hardware
2016-06-02 17:57:56 -07:00
static void init ( ) ;
2016-04-27 07:15:20 -07:00
2020-02-14 05:14:37 -06:00
// Interrupt Service Routine and phases
// The stepper subsystem goes to sleep when it runs out of things to execute.
// Call this to notify the subsystem that it is time to go to work.
static inline void wake_up ( ) { ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ; }
static inline bool is_awake ( ) { return STEPPER_ISR_ENABLED ( ) ; }
static inline bool suspend ( ) {
const bool awake = is_awake ( ) ;
if ( awake ) DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
return awake ;
}
2016-04-27 07:15:20 -07:00
2018-05-09 02:17:53 -03:00
// The ISR scheduler
2018-06-01 21:02:22 -03:00
static void isr ( ) ;
2016-04-27 07:15:20 -07:00
2020-02-14 05:14:37 -06:00
// The stepper pulse ISR phase
static void pulse_phase_isr ( ) ;
2018-05-03 17:45:13 -05:00
2020-02-14 05:14:37 -06:00
// The stepper block processing ISR phase
static uint32_t block_phase_isr ( ) ;
2018-05-03 17:45:13 -05:00
2018-05-09 02:17:53 -03:00
# if ENABLED(LIN_ADVANCE)
2020-02-14 05:14:37 -06:00
// The Linear advance ISR phase
2018-05-09 02:17:53 -03:00
static uint32_t advance_isr ( ) ;
2020-02-14 05:14:37 -06:00
FORCE_INLINE static void initiateLA ( ) { nextAdvanceISR = 0 ; }
2018-05-09 02:17:53 -03:00
# endif
2016-04-27 07:15:20 -07:00
2020-02-15 21:42:28 -06:00
# if ENABLED(INTEGRATED_BABYSTEPPING)
// The Babystepping ISR phase
static uint32_t babystepping_isr ( ) ;
FORCE_INLINE static void initiateBabystepping ( ) {
if ( nextBabystepISR = = BABYSTEP_NEVER ) {
nextBabystepISR = 0 ;
wake_up ( ) ;
}
}
# endif
2018-06-27 20:11:16 -03:00
// Check if the given block is busy or not - Must not be called from ISR contexts
static bool is_block_busy ( const block_t * const block ) ;
2016-04-27 07:15:20 -07:00
// Get the position of a stepper, in steps
2018-05-03 20:13:01 -05:00
static int32_t position ( const AxisEnum axis ) ;
2016-04-27 07:15:20 -07:00
2020-02-14 05:14:37 -06:00
// Set the current position in steps
static void set_position ( const int32_t & a , const int32_t & b , const int32_t & c , const int32_t & e ) ;
static inline void set_position ( const xyze_long_t & abce ) { set_position ( abce . a , abce . b , abce . c , abce . e ) ; }
static void set_axis_position ( const AxisEnum a , const int32_t & v ) ;
2016-04-27 07:15:20 -07:00
// Report the positions of the steppers, in steps
2020-03-02 21:52:53 -06:00
static void report_a_position ( const xyz_long_t & pos ) ;
2016-06-02 17:57:56 -07:00
static void report_positions ( ) ;
2016-04-27 07:15:20 -07:00
2020-05-11 18:22:41 -06:00
// Discard current block and free any resources
FORCE_INLINE static void discard_current_block ( ) {
# if ENABLED(DIRECT_STEPPING)
if ( IS_PAGE ( current_block ) )
page_manager . free_page ( current_block - > page_idx ) ;
# endif
current_block = nullptr ;
axis_did_move = 0 ;
planner . release_current_block ( ) ;
}
2018-05-09 02:17:53 -03:00
// Quickly stop all steppers
2018-05-16 04:08:43 -03:00
FORCE_INLINE static void quick_stop ( ) { abort_current_block = true ; }
2011-11-20 14:50:08 +01:00
2016-04-27 07:15:20 -07:00
// The direction of a single motor
2017-12-09 02:10:54 -06:00
FORCE_INLINE static bool motor_direction ( const AxisEnum axis ) { return TEST ( last_direction_bits , axis ) ; }
2011-12-12 19:34:37 +01:00
2018-05-16 04:08:43 -03:00
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
2018-05-23 03:45:25 -05:00
FORCE_INLINE static bool axis_is_moving ( const AxisEnum axis ) { return TEST ( axis_did_move , axis ) ; }
2018-05-16 04:08:43 -03:00
2018-05-09 02:17:53 -03:00
// Handle a triggered endstop
static void endstop_triggered ( const AxisEnum axis ) ;
// Triggered position of an axis in steps
static int32_t triggered_position ( const AxisEnum axis ) ;
2020-10-11 14:58:35 -05:00
# if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void set_digipot_value_spi ( const int16_t address , const int16_t value ) ;
static void set_digipot_current ( const uint8_t driver , const int16_t current ) ;
2016-09-25 06:32:58 -05:00
# endif
# if HAS_MICROSTEPS
2018-10-11 00:56:26 -05:00
static void microstep_ms ( const uint8_t driver , const int8_t ms1 , const int8_t ms2 , const int8_t ms3 ) ;
2017-06-24 22:23:45 -05:00
static void microstep_mode ( const uint8_t driver , const uint8_t stepping ) ;
2016-09-25 06:32:58 -05:00
static void microstep_readings ( ) ;
2016-04-27 07:15:20 -07:00
# endif
2011-11-20 14:50:08 +01:00
2020-04-23 21:42:38 -05:00
# if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
2018-06-19 18:55:49 +02:00
FORCE_INLINE static void set_separate_multi_axis ( const bool state ) { separate_multi_axis = state ; }
2018-06-02 20:39:00 -05:00
# endif
2017-10-29 03:43:44 -05:00
# if ENABLED(X_DUAL_ENDSTOPS)
2018-06-01 21:02:22 -03:00
FORCE_INLINE static void set_x_lock ( const bool state ) { locked_X_motor = state ; }
FORCE_INLINE static void set_x2_lock ( const bool state ) { locked_X2_motor = state ; }
2017-10-29 03:43:44 -05:00
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
2018-06-01 21:02:22 -03:00
FORCE_INLINE static void set_y_lock ( const bool state ) { locked_Y_motor = state ; }
FORCE_INLINE static void set_y2_lock ( const bool state ) { locked_Y2_motor = state ; }
2017-10-29 03:43:44 -05:00
# endif
2020-01-20 00:35:07 -05:00
# if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
2020-05-31 01:03:28 -05:00
FORCE_INLINE static void set_z1_lock ( const bool state ) { locked_Z_motor = state ; }
2018-06-01 21:02:22 -03:00
FORCE_INLINE static void set_z2_lock ( const bool state ) { locked_Z2_motor = state ; }
2020-01-20 00:35:07 -05:00
# if NUM_Z_STEPPER_DRIVERS >= 3
FORCE_INLINE static void set_z3_lock ( const bool state ) { locked_Z3_motor = state ; }
# if NUM_Z_STEPPER_DRIVERS >= 4
FORCE_INLINE static void set_z4_lock ( const bool state ) { locked_Z4_motor = state ; }
# endif
# endif
2020-05-31 01:03:28 -05:00
static inline void set_all_z_lock ( const bool lock , const int8_t except = - 1 ) {
set_z1_lock ( lock ^ ( except = = 0 ) ) ;
set_z2_lock ( lock ^ ( except = = 1 ) ) ;
# if NUM_Z_STEPPER_DRIVERS >= 3
set_z3_lock ( lock ^ ( except = = 2 ) ) ;
# if NUM_Z_STEPPER_DRIVERS >= 4
set_z4_lock ( lock ^ ( except = = 3 ) ) ;
# endif
# endif
}
2018-06-19 18:55:49 +02:00
# endif
2011-11-20 14:50:08 +01:00
2016-04-27 07:15:20 -07:00
# if ENABLED(BABYSTEPPING)
2020-02-16 17:46:41 -06:00
static void do_babystep ( const AxisEnum axis , const bool direction ) ; // perform a short step with a single stepper motor, outside of any convention
2016-04-27 07:15:20 -07:00
# endif
2011-11-20 14:50:08 +01:00
2017-06-02 23:38:07 -06:00
# if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power ( ) ;
# endif
2020-10-16 14:59:55 -07:00
// Update direction states for all steppers
2018-09-16 01:31:51 +01:00
static void set_directions ( ) ;
2016-05-03 17:00:28 -07:00
2020-10-16 14:59:55 -07:00
// Set direction bits and update all stepper DIR states
static void set_directions ( const uint8_t bits ) {
last_direction_bits = bits ;
set_directions ( ) ;
}
2018-09-17 01:06:22 -05:00
private :
2018-09-15 20:11:10 -05:00
2018-05-09 02:17:53 -03:00
// Set the current position in steps
static void _set_position ( const int32_t & a , const int32_t & b , const int32_t & c , const int32_t & e ) ;
2019-09-29 04:25:39 -05:00
FORCE_INLINE static void _set_position ( const abce_long_t & spos ) { _set_position ( spos . a , spos . b , spos . c , spos . e ) ; }
2018-05-09 02:17:53 -03:00
2020-02-14 05:14:37 -06:00
FORCE_INLINE static uint32_t calc_timer_interval ( uint32_t step_rate , uint8_t * loops ) {
2018-05-09 02:17:53 -03:00
uint32_t timer ;
2015-10-02 23:08:58 -07:00
2018-06-03 00:59:21 -03:00
// Scale the frequency, as requested by the caller
2020-02-14 05:14:37 -06:00
step_rate < < = oversampling_factor ;
2011-11-20 14:50:08 +01:00
2018-06-03 00:59:21 -03:00
uint8_t multistep = 1 ;
2018-05-28 17:39:23 -05:00
# if DISABLED(DISABLE_MULTI_STEPPING)
2018-06-03 00:59:21 -03:00
// The stepping frequency limits for each multistepping rate
static const uint32_t limit [ ] PROGMEM = {
2018-06-12 17:28:57 -05:00
( MAX_STEP_ISR_FREQUENCY_1X ) ,
( MAX_STEP_ISR_FREQUENCY_2X > > 1 ) ,
( MAX_STEP_ISR_FREQUENCY_4X > > 2 ) ,
( MAX_STEP_ISR_FREQUENCY_8X > > 3 ) ,
( MAX_STEP_ISR_FREQUENCY_16X > > 4 ) ,
( MAX_STEP_ISR_FREQUENCY_32X > > 5 ) ,
( MAX_STEP_ISR_FREQUENCY_64X > > 6 ) ,
( MAX_STEP_ISR_FREQUENCY_128X > > 7 )
2018-06-03 00:59:21 -03:00
} ;
// Select the proper multistepping
uint8_t idx = 0 ;
while ( idx < 7 & & step_rate > ( uint32_t ) pgm_read_dword ( & limit [ idx ] ) ) {
2017-06-18 00:36:10 +01:00
step_rate > > = 1 ;
2018-06-03 00:59:21 -03:00
multistep < < = 1 ;
+ + idx ;
} ;
# else
2018-06-12 17:28:57 -05:00
NOMORE ( step_rate , uint32_t ( MAX_STEP_ISR_FREQUENCY_1X ) ) ;
2017-06-18 00:36:10 +01:00
# endif
2018-06-03 00:59:21 -03:00
* loops = multistep ;
2017-06-18 00:36:10 +01:00
# ifdef CPU_32_BIT
2017-09-27 04:57:14 -05:00
// In case of high-performance processor, it is able to calculate in real-time
2018-06-12 16:32:22 -05:00
timer = uint32_t ( STEPPER_TIMER_RATE ) / step_rate ;
2017-06-18 00:36:10 +01:00
# else
2020-07-14 21:26:09 -05:00
constexpr uint32_t min_step_rate = ( F_CPU ) / 500000U ;
2018-05-28 17:39:23 -05:00
NOLESS ( step_rate , min_step_rate ) ;
step_rate - = min_step_rate ; // Correct for minimal speed
2017-06-18 00:36:10 +01:00
if ( step_rate > = ( 8 * 256 ) ) { // higher step rate
2018-05-20 22:20:11 -05:00
const uint8_t tmp_step_rate = ( step_rate & 0x00FF ) ;
const uint16_t table_address = ( uint16_t ) & speed_lookuptable_fast [ ( uint8_t ) ( step_rate > > 8 ) ] [ 0 ] ,
2018-11-02 00:42:16 -05:00
gain = ( uint16_t ) pgm_read_word ( table_address + 2 ) ;
2018-05-13 08:10:08 -05:00
timer = MultiU16X8toH16 ( tmp_step_rate , gain ) ;
2018-11-02 00:42:16 -05:00
timer = ( uint16_t ) pgm_read_word ( table_address ) - timer ;
2017-06-18 00:36:10 +01:00
}
else { // lower step rates
2018-05-13 08:10:08 -05:00
uint16_t table_address = ( uint16_t ) & speed_lookuptable_slow [ 0 ] [ 0 ] ;
2018-05-08 09:17:44 -05:00
table_address + = ( ( step_rate ) > > 1 ) & 0xFFFC ;
2018-11-02 00:42:16 -05:00
timer = ( uint16_t ) pgm_read_word ( table_address )
- ( ( ( uint16_t ) pgm_read_word ( table_address + 2 ) * ( uint8_t ) ( step_rate & 0x0007 ) ) > > 3 ) ;
2017-06-18 00:36:10 +01:00
}
2018-06-03 00:59:21 -03:00
// (there is no need to limit the timer value here. All limits have been
// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
2017-06-18 00:36:10 +01:00
# endif
2016-04-27 07:15:20 -07:00
return timer ;
}
2016-03-24 03:18:45 -07:00
2018-05-26 02:02:39 -05:00
# if ENABLED(S_CURVE_ACCELERATION)
2018-04-11 20:13:42 -03:00
static void _calc_bezier_curve_coeffs ( const int32_t v0 , const int32_t v1 , const uint32_t av ) ;
2018-04-06 22:48:06 -03:00
static int32_t _eval_bezier_curve ( const uint32_t curr_step ) ;
# endif
2012-08-30 00:16:57 -07:00
2020-10-11 14:58:35 -05:00
# if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
2017-06-02 23:38:07 -06:00
static void digipot_init ( ) ;
# endif
2016-09-25 06:32:58 -05:00
# if HAS_MICROSTEPS
static void microstep_init ( ) ;
# endif
2015-03-24 14:06:44 -03:00
2016-04-27 07:15:20 -07:00
} ;
2015-10-02 23:08:58 -07:00
2018-06-12 17:28:57 -05:00
extern Stepper stepper ;