957 lines
31 KiB
C++
957 lines
31 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* module/probe.cpp
|
|
*/
|
|
|
|
#include "../inc/MarlinConfig.h"
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
#include "probe.h"
|
|
|
|
#include "../libs/buzzer.h"
|
|
#include "motion.h"
|
|
#include "temperature.h"
|
|
#include "endstops.h"
|
|
|
|
#include "../gcode/gcode.h"
|
|
#include "../lcd/marlinui.h"
|
|
|
|
#include "../MarlinCore.h" // for stop(), disable_e_steppers(), wait_for_user_response()
|
|
|
|
#if HAS_LEVELING
|
|
#include "../feature/bedlevel/bedlevel.h"
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
#include "delta.h"
|
|
#endif
|
|
|
|
#if ANY(HAS_QUIET_PROBING, USE_SENSORLESS)
|
|
#include "stepper/indirection.h"
|
|
#if BOTH(HAS_QUIET_PROBING, PROBING_ESTEPPERS_OFF)
|
|
#include "stepper.h"
|
|
#endif
|
|
#if USE_SENSORLESS
|
|
#include "../feature/tmc_util.h"
|
|
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
|
|
#include "planner.h"
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
|
|
#include "../feature/backlash.h"
|
|
#endif
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
#include "../feature/bltouch.h"
|
|
#endif
|
|
|
|
#if ENABLED(HOST_PROMPT_SUPPORT)
|
|
#include "../feature/host_actions.h" // for PROMPT_USER_CONTINUE
|
|
#endif
|
|
|
|
#if HAS_Z_SERVO_PROBE
|
|
#include "servo.h"
|
|
#endif
|
|
|
|
#if HAS_PTC
|
|
#include "../feature/probe_temp_comp.h"
|
|
#endif
|
|
|
|
#if ENABLED(X_AXIS_TWIST_COMPENSATION)
|
|
#include "../feature/x_twist.h"
|
|
#endif
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
#include "../lcd/extui/ui_api.h"
|
|
#elif ENABLED(DWIN_LCD_PROUI)
|
|
#include "../lcd/e3v2/proui/dwin.h"
|
|
#endif
|
|
|
|
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
|
|
#include "../core/debug_out.h"
|
|
|
|
Probe probe;
|
|
|
|
xyz_pos_t Probe::offset; // Initialized by settings.load()
|
|
|
|
#if HAS_PROBE_XY_OFFSET
|
|
const xy_pos_t &Probe::offset_xy = Probe::offset;
|
|
#endif
|
|
|
|
#if ENABLED(SENSORLESS_PROBING)
|
|
Probe::sense_bool_t Probe::test_sensitivity;
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
#define SLED_DOCKING_OFFSET 0
|
|
#endif
|
|
|
|
/**
|
|
* Method to dock/undock a sled designed by Charles Bell.
|
|
*
|
|
* stow[in] If false, move to MAX_X and engage the solenoid
|
|
* If true, move to MAX_X and release the solenoid
|
|
*/
|
|
static void dock_sled(const bool stow) {
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("dock_sled(", stow, ")");
|
|
|
|
// Dock sled a bit closer to ensure proper capturing
|
|
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
|
|
|
|
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
|
|
WRITE(SOL1_PIN, !stow); // switch solenoid
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(MAGLEV4)
|
|
|
|
// Write trigger pin to release the probe
|
|
inline void maglev_deploy() {
|
|
WRITE(MAGLEV_TRIGGER_PIN, HIGH);
|
|
delay(MAGLEV_TRIGGER_DELAY);
|
|
WRITE(MAGLEV_TRIGGER_PIN, LOW);
|
|
}
|
|
|
|
inline void maglev_idle() { do_blocking_move_to_z(10); }
|
|
|
|
#elif ENABLED(TOUCH_MI_PROBE)
|
|
|
|
// Move to the magnet to unlock the probe
|
|
inline void run_deploy_moves_script() {
|
|
#ifndef TOUCH_MI_DEPLOY_XPOS
|
|
#define TOUCH_MI_DEPLOY_XPOS X_MIN_POS
|
|
#elif TOUCH_MI_DEPLOY_XPOS > X_MAX_BED
|
|
TemporaryGlobalEndstopsState unlock_x(false);
|
|
#endif
|
|
#if TOUCH_MI_DEPLOY_YPOS > Y_MAX_BED
|
|
TemporaryGlobalEndstopsState unlock_y(false);
|
|
#endif
|
|
|
|
#if ENABLED(TOUCH_MI_MANUAL_DEPLOY)
|
|
|
|
const screenFunc_t prev_screen = ui.currentScreen;
|
|
LCD_MESSAGE(MSG_MANUAL_DEPLOY_TOUCHMI);
|
|
ui.return_to_status();
|
|
|
|
TERN_(HOST_PROMPT_SUPPORT, hostui.prompt_do(PROMPT_USER_CONTINUE, F("Deploy TouchMI"), FPSTR(CONTINUE_STR)));
|
|
TERN_(HAS_RESUME_CONTINUE, wait_for_user_response());
|
|
ui.reset_status();
|
|
ui.goto_screen(prev_screen);
|
|
|
|
#elif defined(TOUCH_MI_DEPLOY_XPOS) && defined(TOUCH_MI_DEPLOY_YPOS)
|
|
do_blocking_move_to_xy(TOUCH_MI_DEPLOY_XPOS, TOUCH_MI_DEPLOY_YPOS);
|
|
#elif defined(TOUCH_MI_DEPLOY_XPOS)
|
|
do_blocking_move_to_x(TOUCH_MI_DEPLOY_XPOS);
|
|
#elif defined(TOUCH_MI_DEPLOY_YPOS)
|
|
do_blocking_move_to_y(TOUCH_MI_DEPLOY_YPOS);
|
|
#endif
|
|
}
|
|
|
|
// Move down to the bed to stow the probe
|
|
inline void run_stow_moves_script() {
|
|
const xyz_pos_t oldpos = current_position;
|
|
endstops.enable_z_probe(false);
|
|
do_blocking_move_to_z(TOUCH_MI_RETRACT_Z, homing_feedrate(Z_AXIS));
|
|
do_blocking_move_to(oldpos, homing_feedrate(Z_AXIS));
|
|
}
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
inline void run_deploy_moves_script() {
|
|
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_1
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t deploy_1 = Z_PROBE_ALLEN_KEY_DEPLOY_1;
|
|
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_2
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t deploy_2 = Z_PROBE_ALLEN_KEY_DEPLOY_2;
|
|
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t deploy_3 = Z_PROBE_ALLEN_KEY_DEPLOY_3;
|
|
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_4
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t deploy_4 = Z_PROBE_ALLEN_KEY_DEPLOY_4;
|
|
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_5
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t deploy_5 = Z_PROBE_ALLEN_KEY_DEPLOY_5;
|
|
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
|
|
#endif
|
|
}
|
|
|
|
inline void run_stow_moves_script() {
|
|
#ifdef Z_PROBE_ALLEN_KEY_STOW_1
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t stow_1 = Z_PROBE_ALLEN_KEY_STOW_1;
|
|
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_STOW_2
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t stow_2 = Z_PROBE_ALLEN_KEY_STOW_2;
|
|
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_STOW_3
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t stow_3 = Z_PROBE_ALLEN_KEY_STOW_3;
|
|
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_STOW_4
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t stow_4 = Z_PROBE_ALLEN_KEY_STOW_4;
|
|
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
|
|
#endif
|
|
#ifdef Z_PROBE_ALLEN_KEY_STOW_5
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
|
|
#endif
|
|
constexpr xyz_pos_t stow_5 = Z_PROBE_ALLEN_KEY_STOW_5;
|
|
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
|
|
#endif
|
|
}
|
|
|
|
#endif // Z_PROBE_ALLEN_KEY
|
|
|
|
#if HAS_QUIET_PROBING
|
|
|
|
#ifndef DELAY_BEFORE_PROBING
|
|
#define DELAY_BEFORE_PROBING 25
|
|
#endif
|
|
|
|
void Probe::set_probing_paused(const bool dopause) {
|
|
TERN_(PROBING_HEATERS_OFF, thermalManager.pause_heaters(dopause));
|
|
TERN_(PROBING_FANS_OFF, thermalManager.set_fans_paused(dopause));
|
|
TERN_(PROBING_ESTEPPERS_OFF, if (dopause) stepper.disable_e_steppers());
|
|
#if ENABLED(PROBING_STEPPERS_OFF) && DISABLED(DELTA)
|
|
static uint8_t old_trusted;
|
|
if (dopause) {
|
|
old_trusted = axis_trusted;
|
|
stepper.disable_axis(X_AXIS);
|
|
stepper.disable_axis(Y_AXIS);
|
|
}
|
|
else {
|
|
if (TEST(old_trusted, X_AXIS)) stepper.enable_axis(X_AXIS);
|
|
if (TEST(old_trusted, Y_AXIS)) stepper.enable_axis(Y_AXIS);
|
|
axis_trusted = old_trusted;
|
|
}
|
|
#endif
|
|
if (dopause) safe_delay(_MAX(DELAY_BEFORE_PROBING, 25));
|
|
}
|
|
|
|
#endif // HAS_QUIET_PROBING
|
|
|
|
/**
|
|
* Raise Z to a minimum height to make room for a probe to move
|
|
*/
|
|
void Probe::do_z_raise(const float z_raise) {
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Probe::do_z_raise(", z_raise, ")");
|
|
float z_dest = z_raise;
|
|
if (offset.z < 0) z_dest -= offset.z;
|
|
do_z_clearance(z_dest);
|
|
}
|
|
|
|
FORCE_INLINE void probe_specific_action(const bool deploy) {
|
|
#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
|
|
do {
|
|
#if ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED)
|
|
if (deploy != PROBE_TRIGGERED()) break;
|
|
#endif
|
|
|
|
OKAY_BUZZ();
|
|
|
|
FSTR_P const ds_str = deploy ? GET_TEXT_F(MSG_MANUAL_DEPLOY) : GET_TEXT_F(MSG_MANUAL_STOW);
|
|
ui.return_to_status(); // To display the new status message
|
|
ui.set_status(ds_str, 99);
|
|
SERIAL_ECHOLNF(deploy ? GET_EN_TEXT_F(MSG_MANUAL_DEPLOY) : GET_EN_TEXT_F(MSG_MANUAL_STOW));
|
|
|
|
TERN_(HOST_PROMPT_SUPPORT, hostui.prompt_do(PROMPT_USER_CONTINUE, ds_str, FPSTR(CONTINUE_STR)));
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onUserConfirmRequired(ds_str));
|
|
TERN_(DWIN_LCD_PROUI, DWIN_Popup_Confirm(ICON_BLTouch, ds_str, FPSTR(CONTINUE_STR)));
|
|
TERN_(HAS_RESUME_CONTINUE, wait_for_user_response());
|
|
ui.reset_status();
|
|
|
|
} while (ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED));
|
|
|
|
#endif // PAUSE_BEFORE_DEPLOY_STOW
|
|
|
|
#if ENABLED(SOLENOID_PROBE)
|
|
|
|
#if HAS_SOLENOID_1
|
|
WRITE(SOL1_PIN, deploy);
|
|
#endif
|
|
|
|
#elif ENABLED(MAGLEV4)
|
|
|
|
deploy ? maglev_deploy() : maglev_idle();
|
|
|
|
#elif ENABLED(Z_PROBE_SLED)
|
|
|
|
dock_sled(!deploy);
|
|
|
|
#elif ENABLED(BLTOUCH)
|
|
|
|
deploy ? bltouch.deploy() : bltouch.stow();
|
|
|
|
#elif HAS_Z_SERVO_PROBE
|
|
|
|
MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][deploy ? 0 : 1]);
|
|
|
|
#elif EITHER(TOUCH_MI_PROBE, Z_PROBE_ALLEN_KEY)
|
|
|
|
deploy ? run_deploy_moves_script() : run_stow_moves_script();
|
|
|
|
#elif ENABLED(RACK_AND_PINION_PROBE)
|
|
|
|
do_blocking_move_to_x(deploy ? Z_PROBE_DEPLOY_X : Z_PROBE_RETRACT_X);
|
|
|
|
#elif DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
|
|
|
|
UNUSED(deploy);
|
|
|
|
#endif
|
|
}
|
|
|
|
#if EITHER(PREHEAT_BEFORE_PROBING, PREHEAT_BEFORE_LEVELING)
|
|
|
|
#if ENABLED(PREHEAT_BEFORE_PROBING)
|
|
#ifndef PROBING_NOZZLE_TEMP
|
|
#define PROBING_NOZZLE_TEMP 0
|
|
#endif
|
|
#ifndef PROBING_BED_TEMP
|
|
#define PROBING_BED_TEMP 0
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Do preheating as required before leveling or probing.
|
|
* - If a preheat input is higher than the current target, raise the target temperature.
|
|
* - If a preheat input is higher than the current temperature, wait for stabilization.
|
|
*/
|
|
void Probe::preheat_for_probing(const celsius_t hotend_temp, const celsius_t bed_temp) {
|
|
#if HAS_HOTEND && (PROBING_NOZZLE_TEMP || LEVELING_NOZZLE_TEMP)
|
|
#define WAIT_FOR_NOZZLE_HEAT
|
|
#endif
|
|
#if HAS_HEATED_BED && (PROBING_BED_TEMP || LEVELING_BED_TEMP)
|
|
#define WAIT_FOR_BED_HEAT
|
|
#endif
|
|
|
|
LCD_MESSAGE(MSG_PREHEATING);
|
|
|
|
DEBUG_ECHOPGM("Preheating ");
|
|
|
|
#if ENABLED(WAIT_FOR_NOZZLE_HEAT)
|
|
const celsius_t hotendPreheat = hotend_temp > thermalManager.degTargetHotend(0) ? hotend_temp : 0;
|
|
if (hotendPreheat) {
|
|
DEBUG_ECHOPGM("hotend (", hotendPreheat, ")");
|
|
thermalManager.setTargetHotend(hotendPreheat, 0);
|
|
}
|
|
#elif ENABLED(WAIT_FOR_BED_HEAT)
|
|
constexpr celsius_t hotendPreheat = 0;
|
|
#endif
|
|
|
|
#if ENABLED(WAIT_FOR_BED_HEAT)
|
|
const celsius_t bedPreheat = bed_temp > thermalManager.degTargetBed() ? bed_temp : 0;
|
|
if (bedPreheat) {
|
|
if (hotendPreheat) DEBUG_ECHOPGM(" and ");
|
|
DEBUG_ECHOPGM("bed (", bedPreheat, ")");
|
|
thermalManager.setTargetBed(bedPreheat);
|
|
}
|
|
#endif
|
|
|
|
DEBUG_EOL();
|
|
|
|
TERN_(WAIT_FOR_NOZZLE_HEAT, if (hotend_temp > thermalManager.wholeDegHotend(0) + (TEMP_WINDOW)) thermalManager.wait_for_hotend(0));
|
|
TERN_(WAIT_FOR_BED_HEAT, if (bed_temp > thermalManager.wholeDegBed() + (TEMP_BED_WINDOW)) thermalManager.wait_for_bed_heating());
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Print an error and stop()
|
|
*/
|
|
void Probe::probe_error_stop() {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHOPGM(STR_STOP_PRE);
|
|
#if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
|
|
SERIAL_ECHOPGM(STR_STOP_UNHOMED);
|
|
#elif ENABLED(BLTOUCH)
|
|
SERIAL_ECHOPGM(STR_STOP_BLTOUCH);
|
|
#endif
|
|
SERIAL_ECHOLNPGM(STR_STOP_POST);
|
|
stop();
|
|
}
|
|
|
|
/**
|
|
* Attempt to deploy or stow the probe
|
|
*
|
|
* Return TRUE if the probe could not be deployed/stowed
|
|
*/
|
|
bool Probe::set_deployed(const bool deploy) {
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS("Probe::set_deployed", current_position);
|
|
DEBUG_ECHOLNPGM("deploy: ", deploy);
|
|
}
|
|
|
|
if (endstops.z_probe_enabled == deploy) return false;
|
|
|
|
// Make room for probe to deploy (or stow)
|
|
// Fix-mounted probe should only raise for deploy
|
|
// unless PAUSE_BEFORE_DEPLOY_STOW is enabled
|
|
#if EITHER(FIX_MOUNTED_PROBE, NOZZLE_AS_PROBE) && DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
|
|
const bool z_raise_wanted = deploy;
|
|
#else
|
|
constexpr bool z_raise_wanted = true;
|
|
#endif
|
|
|
|
if (z_raise_wanted)
|
|
do_z_raise(_MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));
|
|
|
|
#if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
|
|
if (homing_needed_error(TERN_(Z_PROBE_SLED, _BV(X_AXIS)))) {
|
|
probe_error_stop();
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
const xy_pos_t old_xy = current_position;
|
|
|
|
#if ENABLED(PROBE_TRIGGERED_WHEN_STOWED_TEST)
|
|
|
|
// Only deploy/stow if needed
|
|
if (PROBE_TRIGGERED() == deploy) {
|
|
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
|
|
// otherwise an Allen-Key probe can't be stowed.
|
|
probe_specific_action(deploy);
|
|
}
|
|
|
|
if (PROBE_TRIGGERED() == deploy) { // Unchanged after deploy/stow action?
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_MSG("Z-Probe failed");
|
|
LCD_ALERTMESSAGE_F("Err: ZPROBE");
|
|
}
|
|
stop();
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
|
|
probe_specific_action(deploy);
|
|
|
|
#endif
|
|
|
|
// If preheating is required before any probing...
|
|
TERN_(PREHEAT_BEFORE_PROBING, if (deploy) preheat_for_probing(PROBING_NOZZLE_TEMP, PROBING_BED_TEMP));
|
|
|
|
do_blocking_move_to(old_xy);
|
|
endstops.enable_z_probe(deploy);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @brief Move down until the probe triggers or the low limit is reached
|
|
* Used by run_z_probe to do a single Z probe move.
|
|
*
|
|
* @param z Z destination
|
|
* @param fr_mm_s Feedrate in mm/s
|
|
* @return true to indicate an error
|
|
*
|
|
* @details Used by run_z_probe to get each bed Z height measurement.
|
|
* Sets current_position.z to the height where the probe triggered
|
|
* (according to the Z stepper count). The float Z is propagated
|
|
* back to the planner.position to preempt any rounding error.
|
|
*
|
|
* @return TRUE if the probe failed to trigger.
|
|
*/
|
|
bool Probe::probe_down_to_z(const_float_t z, const_feedRate_t fr_mm_s) {
|
|
DEBUG_SECTION(log_probe, "Probe::probe_down_to_z", DEBUGGING(LEVELING));
|
|
|
|
#if BOTH(HAS_HEATED_BED, WAIT_FOR_BED_HEATER)
|
|
thermalManager.wait_for_bed_heating();
|
|
#endif
|
|
|
|
#if BOTH(HAS_TEMP_HOTEND, WAIT_FOR_HOTEND)
|
|
thermalManager.wait_for_hotend_heating(active_extruder);
|
|
#endif
|
|
#if ENABLED(BLTOUCH)
|
|
if (!bltouch.high_speed_mode && bltouch.deploy())
|
|
return true; // Deploy in LOW SPEED MODE on every probe action
|
|
#endif
|
|
|
|
// Disable stealthChop if used. Enable diag1 pin on driver.
|
|
#if ENABLED(SENSORLESS_PROBING)
|
|
sensorless_t stealth_states { false };
|
|
#if HAS_DELTA_SENSORLESS_PROBING
|
|
if (test_sensitivity.x) stealth_states.x = tmc_enable_stallguard(stepperX); // Delta watches all DIAG pins for a stall
|
|
if (test_sensitivity.y) stealth_states.y = tmc_enable_stallguard(stepperY);
|
|
#endif
|
|
if (test_sensitivity.z) stealth_states.z = tmc_enable_stallguard(stepperZ); // All machines will check Z-DIAG for stall
|
|
endstops.enable(true);
|
|
set_homing_current(true); // The "homing" current also applies to probing
|
|
#endif
|
|
|
|
TERN_(HAS_QUIET_PROBING, set_probing_paused(true));
|
|
|
|
// Move down until the probe is triggered
|
|
do_blocking_move_to_z(z, fr_mm_s);
|
|
|
|
// Check to see if the probe was triggered
|
|
const bool probe_triggered =
|
|
#if HAS_DELTA_SENSORLESS_PROBING
|
|
endstops.trigger_state() & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX))
|
|
#else
|
|
TEST(endstops.trigger_state(), Z_MIN_PROBE)
|
|
#endif
|
|
;
|
|
|
|
TERN_(HAS_QUIET_PROBING, set_probing_paused(false));
|
|
|
|
// Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
#if ENABLED(SENSORLESS_PROBING)
|
|
endstops.not_homing();
|
|
#if HAS_DELTA_SENSORLESS_PROBING
|
|
if (test_sensitivity.x) tmc_disable_stallguard(stepperX, stealth_states.x);
|
|
if (test_sensitivity.y) tmc_disable_stallguard(stepperY, stealth_states.y);
|
|
#endif
|
|
if (test_sensitivity.z) tmc_disable_stallguard(stepperZ, stealth_states.z);
|
|
set_homing_current(false);
|
|
#endif
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
if (probe_triggered && !bltouch.high_speed_mode && bltouch.stow())
|
|
return true; // Stow in LOW SPEED MODE on every trigger
|
|
#endif
|
|
|
|
// Clear endstop flags
|
|
endstops.hit_on_purpose();
|
|
|
|
// Get Z where the steppers were interrupted
|
|
set_current_from_steppers_for_axis(Z_AXIS);
|
|
|
|
// Tell the planner where we actually are
|
|
sync_plan_position();
|
|
|
|
return !probe_triggered;
|
|
}
|
|
|
|
#if ENABLED(PROBE_TARE)
|
|
|
|
/**
|
|
* @brief Init the tare pin
|
|
*
|
|
* @details Init tare pin to ON state for a strain gauge, otherwise OFF
|
|
*/
|
|
void Probe::tare_init() {
|
|
OUT_WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE);
|
|
}
|
|
|
|
/**
|
|
* @brief Tare the Z probe
|
|
*
|
|
* @details Signal to the probe to tare itself
|
|
*
|
|
* @return TRUE if the tare cold not be completed
|
|
*/
|
|
bool Probe::tare() {
|
|
#if BOTH(PROBE_ACTIVATION_SWITCH, PROBE_TARE_ONLY_WHILE_INACTIVE)
|
|
if (endstops.probe_switch_activated()) {
|
|
SERIAL_ECHOLNPGM("Cannot tare an active probe");
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
SERIAL_ECHOLNPGM("Taring probe");
|
|
WRITE(PROBE_TARE_PIN, PROBE_TARE_STATE);
|
|
delay(PROBE_TARE_TIME);
|
|
WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE);
|
|
delay(PROBE_TARE_DELAY);
|
|
|
|
endstops.hit_on_purpose();
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Probe at the current XY (possibly more than once) to find the bed Z.
|
|
*
|
|
* @details Used by probe_at_point to get the bed Z height at the current XY.
|
|
* Leaves current_position.z at the height where the probe triggered.
|
|
*
|
|
* @return The Z position of the bed at the current XY or NAN on error.
|
|
*/
|
|
float Probe::run_z_probe(const bool sanity_check/*=true*/) {
|
|
DEBUG_SECTION(log_probe, "Probe::run_z_probe", DEBUGGING(LEVELING));
|
|
|
|
auto try_to_probe = [&](PGM_P const plbl, const_float_t z_probe_low_point, const feedRate_t fr_mm_s, const bool scheck, const float clearance) -> bool {
|
|
// Tare the probe, if supported
|
|
if (TERN0(PROBE_TARE, tare())) return true;
|
|
|
|
// Do a first probe at the fast speed
|
|
const bool probe_fail = probe_down_to_z(z_probe_low_point, fr_mm_s), // No probe trigger?
|
|
early_fail = (scheck && current_position.z > -offset.z + clearance); // Probe triggered too high?
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING) && (probe_fail || early_fail)) {
|
|
DEBUG_ECHOPGM_P(plbl);
|
|
DEBUG_ECHOPGM(" Probe fail! -");
|
|
if (probe_fail) DEBUG_ECHOPGM(" No trigger.");
|
|
if (early_fail) DEBUG_ECHOPGM(" Triggered early.");
|
|
DEBUG_EOL();
|
|
}
|
|
#else
|
|
UNUSED(plbl);
|
|
#endif
|
|
return probe_fail || early_fail;
|
|
};
|
|
|
|
// Stop the probe before it goes too low to prevent damage.
|
|
// If Z isn't known then probe to -10mm.
|
|
const float z_probe_low_point = axis_is_trusted(Z_AXIS) ? -offset.z + Z_PROBE_LOW_POINT : -10.0;
|
|
|
|
// Double-probing does a fast probe followed by a slow probe
|
|
#if TOTAL_PROBING == 2
|
|
|
|
// Attempt to tare the probe
|
|
if (TERN0(PROBE_TARE, tare())) return NAN;
|
|
|
|
// Do a first probe at the fast speed
|
|
if (try_to_probe(PSTR("FAST"), z_probe_low_point, z_probe_fast_mm_s,
|
|
sanity_check, Z_CLEARANCE_BETWEEN_PROBES) ) return NAN;
|
|
|
|
const float first_probe_z = current_position.z;
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("1st Probe Z:", first_probe_z);
|
|
|
|
// Raise to give the probe clearance
|
|
do_blocking_move_to_z(current_position.z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s);
|
|
|
|
#elif Z_PROBE_FEEDRATE_FAST != Z_PROBE_FEEDRATE_SLOW
|
|
|
|
// If the nozzle is well over the travel height then
|
|
// move down quickly before doing the slow probe
|
|
const float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0 + (offset.z < 0 ? -offset.z : 0);
|
|
if (current_position.z > z) {
|
|
// Probe down fast. If the probe never triggered, raise for probe clearance
|
|
if (!probe_down_to_z(z, z_probe_fast_mm_s))
|
|
do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES, z_probe_fast_mm_s);
|
|
}
|
|
#endif
|
|
|
|
#if EXTRA_PROBING > 0
|
|
float probes[TOTAL_PROBING];
|
|
#endif
|
|
|
|
#if TOTAL_PROBING > 2
|
|
float probes_z_sum = 0;
|
|
for (
|
|
#if EXTRA_PROBING > 0
|
|
uint8_t p = 0; p < TOTAL_PROBING; p++
|
|
#else
|
|
uint8_t p = TOTAL_PROBING; p--;
|
|
#endif
|
|
)
|
|
#endif
|
|
{
|
|
// If the probe won't tare, return
|
|
if (TERN0(PROBE_TARE, tare())) return true;
|
|
|
|
// Probe downward slowly to find the bed
|
|
if (try_to_probe(PSTR("SLOW"), z_probe_low_point, MMM_TO_MMS(Z_PROBE_FEEDRATE_SLOW),
|
|
sanity_check, Z_CLEARANCE_MULTI_PROBE) ) return NAN;
|
|
|
|
TERN_(MEASURE_BACKLASH_WHEN_PROBING, backlash.measure_with_probe());
|
|
|
|
const float z = current_position.z;
|
|
|
|
#if EXTRA_PROBING > 0
|
|
// Insert Z measurement into probes[]. Keep it sorted ascending.
|
|
LOOP_LE_N(i, p) { // Iterate the saved Zs to insert the new Z
|
|
if (i == p || probes[i] > z) { // Last index or new Z is smaller than this Z
|
|
for (int8_t m = p; --m >= i;) probes[m + 1] = probes[m]; // Shift items down after the insertion point
|
|
probes[i] = z; // Insert the new Z measurement
|
|
break; // Only one to insert. Done!
|
|
}
|
|
}
|
|
#elif TOTAL_PROBING > 2
|
|
probes_z_sum += z;
|
|
#else
|
|
UNUSED(z);
|
|
#endif
|
|
|
|
#if TOTAL_PROBING > 2
|
|
// Small Z raise after all but the last probe
|
|
if (p
|
|
#if EXTRA_PROBING > 0
|
|
< TOTAL_PROBING - 1
|
|
#endif
|
|
) do_blocking_move_to_z(z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s);
|
|
#endif
|
|
}
|
|
|
|
#if TOTAL_PROBING > 2
|
|
|
|
#if EXTRA_PROBING > 0
|
|
// Take the center value (or average the two middle values) as the median
|
|
static constexpr int PHALF = (TOTAL_PROBING - 1) / 2;
|
|
const float middle = probes[PHALF],
|
|
median = ((TOTAL_PROBING) & 1) ? middle : (middle + probes[PHALF + 1]) * 0.5f;
|
|
|
|
// Remove values farthest from the median
|
|
uint8_t min_avg_idx = 0, max_avg_idx = TOTAL_PROBING - 1;
|
|
for (uint8_t i = EXTRA_PROBING; i--;)
|
|
if (ABS(probes[max_avg_idx] - median) > ABS(probes[min_avg_idx] - median))
|
|
max_avg_idx--; else min_avg_idx++;
|
|
|
|
// Return the average value of all remaining probes.
|
|
LOOP_S_LE_N(i, min_avg_idx, max_avg_idx)
|
|
probes_z_sum += probes[i];
|
|
|
|
#endif
|
|
|
|
const float measured_z = probes_z_sum * RECIPROCAL(MULTIPLE_PROBING);
|
|
|
|
#elif TOTAL_PROBING == 2
|
|
|
|
const float z2 = current_position.z;
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("2nd Probe Z:", z2, " Discrepancy:", first_probe_z - z2);
|
|
|
|
// Return a weighted average of the fast and slow probes
|
|
const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
|
|
|
|
#else
|
|
|
|
// Return the single probe result
|
|
const float measured_z = current_position.z;
|
|
|
|
#endif
|
|
|
|
return measured_z;
|
|
}
|
|
|
|
/**
|
|
* - Move to the given XY
|
|
* - Deploy the probe, if not already deployed
|
|
* - Probe the bed, get the Z position
|
|
* - Depending on the 'stow' flag
|
|
* - Stow the probe, or
|
|
* - Raise to the BETWEEN height
|
|
* - Return the probed Z position
|
|
*/
|
|
float Probe::probe_at_point(const_float_t rx, const_float_t ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/, const bool sanity_check/*=true*/) {
|
|
DEBUG_SECTION(log_probe, "Probe::probe_at_point", DEBUGGING(LEVELING));
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_ECHOLNPGM(
|
|
"...(", LOGICAL_X_POSITION(rx), ", ", LOGICAL_Y_POSITION(ry),
|
|
", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_LAST_STOW ? "stow (last)" : raise_after == PROBE_PT_STOW ? "stow" : "none",
|
|
", ", verbose_level,
|
|
", ", probe_relative ? "probe" : "nozzle", "_relative)"
|
|
);
|
|
DEBUG_POS("", current_position);
|
|
}
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
if (bltouch.high_speed_mode && bltouch.triggered())
|
|
bltouch._reset();
|
|
#endif
|
|
|
|
// On delta keep Z below clip height or do_blocking_move_to will abort
|
|
xyz_pos_t npos = LINEAR_AXIS_ARRAY(
|
|
rx, ry, TERN(DELTA, _MIN(delta_clip_start_height, current_position.z), current_position.z),
|
|
current_position.i, current_position.j, current_position.k
|
|
);
|
|
if (!can_reach(npos, probe_relative)) {
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Position Not Reachable");
|
|
return NAN;
|
|
}
|
|
if (probe_relative) npos -= offset_xy; // Get the nozzle position
|
|
|
|
// Move the probe to the starting XYZ
|
|
do_blocking_move_to(npos, feedRate_t(XY_PROBE_FEEDRATE_MM_S));
|
|
|
|
float measured_z = NAN;
|
|
if (!deploy()) {
|
|
measured_z = run_z_probe(sanity_check) + offset.z;
|
|
TERN_(HAS_PTC, ptc.apply_compensation(measured_z));
|
|
TERN_(X_AXIS_TWIST_COMPENSATION, measured_z += xatc.compensation(npos + offset_xy));
|
|
}
|
|
if (!isnan(measured_z)) {
|
|
const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
|
|
if (big_raise || raise_after == PROBE_PT_RAISE)
|
|
do_blocking_move_to_z(current_position.z + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), z_probe_fast_mm_s);
|
|
else if (raise_after == PROBE_PT_STOW || raise_after == PROBE_PT_LAST_STOW)
|
|
if (stow()) measured_z = NAN; // Error on stow?
|
|
|
|
if (verbose_level > 2)
|
|
SERIAL_ECHOLNPGM("Bed X: ", LOGICAL_X_POSITION(rx), " Y: ", LOGICAL_Y_POSITION(ry), " Z: ", measured_z);
|
|
}
|
|
|
|
if (isnan(measured_z)) {
|
|
stow();
|
|
LCD_MESSAGE(MSG_LCD_PROBING_FAILED);
|
|
#if DISABLED(G29_RETRY_AND_RECOVER)
|
|
SERIAL_ERROR_MSG(STR_ERR_PROBING_FAILED);
|
|
#endif
|
|
}
|
|
|
|
return measured_z;
|
|
}
|
|
|
|
#if HAS_Z_SERVO_PROBE
|
|
|
|
void Probe::servo_probe_init() {
|
|
/**
|
|
* Set position of Z Servo Endstop
|
|
*
|
|
* The servo might be deployed and positioned too low to stow
|
|
* when starting up the machine or rebooting the board.
|
|
* There's no way to know where the nozzle is positioned until
|
|
* homing has been done - no homing with z-probe without init!
|
|
*/
|
|
STOW_Z_SERVO();
|
|
}
|
|
|
|
#endif // HAS_Z_SERVO_PROBE
|
|
|
|
#if USE_SENSORLESS
|
|
|
|
sensorless_t stealth_states { false };
|
|
|
|
/**
|
|
* Disable stealthChop if used. Enable diag1 pin on driver.
|
|
*/
|
|
void Probe::enable_stallguard_diag1() {
|
|
#if ENABLED(SENSORLESS_PROBING)
|
|
#if HAS_DELTA_SENSORLESS_PROBING
|
|
stealth_states.x = tmc_enable_stallguard(stepperX);
|
|
stealth_states.y = tmc_enable_stallguard(stepperY);
|
|
#endif
|
|
stealth_states.z = tmc_enable_stallguard(stepperZ);
|
|
endstops.enable(true);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
*/
|
|
void Probe::disable_stallguard_diag1() {
|
|
#if ENABLED(SENSORLESS_PROBING)
|
|
endstops.not_homing();
|
|
#if HAS_DELTA_SENSORLESS_PROBING
|
|
tmc_disable_stallguard(stepperX, stealth_states.x);
|
|
tmc_disable_stallguard(stepperY, stealth_states.y);
|
|
#endif
|
|
tmc_disable_stallguard(stepperZ, stealth_states.z);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Change the current in the TMC drivers to N##_CURRENT_HOME. And we save the current configuration of each TMC driver.
|
|
*/
|
|
void Probe::set_homing_current(const bool onoff) {
|
|
#define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT)
|
|
#if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Z)
|
|
#if ENABLED(DELTA)
|
|
static int16_t saved_current_X, saved_current_Y;
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Z)
|
|
static int16_t saved_current_Z;
|
|
#endif
|
|
#if ((ENABLED(DELTA) && (HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(Y))) || HAS_CURRENT_HOME(Z))
|
|
auto debug_current_on = [](PGM_P const s, const int16_t a, const int16_t b) {
|
|
if (DEBUGGING(LEVELING)) { DEBUG_ECHOPGM_P(s); DEBUG_ECHOLNPGM(" current: ", a, " -> ", b); }
|
|
};
|
|
#endif
|
|
if (onoff) {
|
|
#if ENABLED(DELTA)
|
|
#if HAS_CURRENT_HOME(X)
|
|
saved_current_X = stepperX.getMilliamps();
|
|
stepperX.rms_current(X_CURRENT_HOME);
|
|
debug_current_on(PSTR("X"), saved_current_X, X_CURRENT_HOME);
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Y)
|
|
saved_current_Y = stepperY.getMilliamps();
|
|
stepperY.rms_current(Y_CURRENT_HOME);
|
|
debug_current_on(PSTR("Y"), saved_current_Y, Y_CURRENT_HOME);
|
|
#endif
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Z)
|
|
saved_current_Z = stepperZ.getMilliamps();
|
|
stepperZ.rms_current(Z_CURRENT_HOME);
|
|
debug_current_on(PSTR("Z"), saved_current_Z, Z_CURRENT_HOME);
|
|
#endif
|
|
TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(true));
|
|
}
|
|
else {
|
|
#if ENABLED(DELTA)
|
|
#if HAS_CURRENT_HOME(X)
|
|
stepperX.rms_current(saved_current_X);
|
|
debug_current_on(PSTR("X"), X_CURRENT_HOME, saved_current_X);
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Y)
|
|
stepperY.rms_current(saved_current_Y);
|
|
debug_current_on(PSTR("Y"), Y_CURRENT_HOME, saved_current_Y);
|
|
#endif
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Z)
|
|
stepperZ.rms_current(saved_current_Z);
|
|
debug_current_on(PSTR("Z"), Z_CURRENT_HOME, saved_current_Z);
|
|
#endif
|
|
TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(false));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // SENSORLESS_PROBING || SENSORLESS_HOMING
|
|
|
|
#endif // HAS_BED_PROBE
|