/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * module/probe.cpp */ #include "../inc/MarlinConfig.h" #if HAS_BED_PROBE #include "probe.h" #include "../libs/buzzer.h" #include "motion.h" #include "temperature.h" #include "endstops.h" #include "../gcode/gcode.h" #include "../lcd/marlinui.h" #include "../MarlinCore.h" // for stop(), disable_e_steppers(), wait_for_user_response() #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if ENABLED(DELTA) #include "delta.h" #endif #if ANY(HAS_QUIET_PROBING, USE_SENSORLESS) #include "stepper/indirection.h" #if BOTH(HAS_QUIET_PROBING, PROBING_ESTEPPERS_OFF) #include "stepper.h" #endif #if USE_SENSORLESS #include "../feature/tmc_util.h" #if ENABLED(IMPROVE_HOMING_RELIABILITY) #include "planner.h" #endif #endif #endif #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) #include "../feature/backlash.h" #endif #if ENABLED(BLTOUCH) #include "../feature/bltouch.h" #endif #if ENABLED(HOST_PROMPT_SUPPORT) #include "../feature/host_actions.h" // for PROMPT_USER_CONTINUE #endif #if HAS_Z_SERVO_PROBE #include "servo.h" #endif #if HAS_PTC #include "../feature/probe_temp_comp.h" #endif #if ENABLED(X_AXIS_TWIST_COMPENSATION) #include "../feature/x_twist.h" #endif #if ENABLED(EXTENSIBLE_UI) #include "../lcd/extui/ui_api.h" #elif ENABLED(DWIN_LCD_PROUI) #include "../lcd/e3v2/proui/dwin.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../core/debug_out.h" Probe probe; xyz_pos_t Probe::offset; // Initialized by settings.load() #if HAS_PROBE_XY_OFFSET const xy_pos_t &Probe::offset_xy = Probe::offset; #endif #if ENABLED(SENSORLESS_PROBING) Probe::sense_bool_t Probe::test_sensitivity; #endif #if ENABLED(Z_PROBE_SLED) #ifndef SLED_DOCKING_OFFSET #define SLED_DOCKING_OFFSET 0 #endif /** * Method to dock/undock a sled designed by Charles Bell. * * stow[in] If false, move to MAX_X and engage the solenoid * If true, move to MAX_X and release the solenoid */ static void dock_sled(const bool stow) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("dock_sled(", stow, ")"); // Dock sled a bit closer to ensure proper capturing do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0)); #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID) WRITE(SOL1_PIN, !stow); // switch solenoid #endif } #elif ENABLED(MAGLEV4) // Write trigger pin to release the probe inline void maglev_deploy() { WRITE(MAGLEV_TRIGGER_PIN, HIGH); delay(MAGLEV_TRIGGER_DELAY); WRITE(MAGLEV_TRIGGER_PIN, LOW); } inline void maglev_idle() { do_blocking_move_to_z(10); } #elif ENABLED(TOUCH_MI_PROBE) // Move to the magnet to unlock the probe inline void run_deploy_moves_script() { #ifndef TOUCH_MI_DEPLOY_XPOS #define TOUCH_MI_DEPLOY_XPOS X_MIN_POS #elif TOUCH_MI_DEPLOY_XPOS > X_MAX_BED TemporaryGlobalEndstopsState unlock_x(false); #endif #if TOUCH_MI_DEPLOY_YPOS > Y_MAX_BED TemporaryGlobalEndstopsState unlock_y(false); #endif #if ENABLED(TOUCH_MI_MANUAL_DEPLOY) const screenFunc_t prev_screen = ui.currentScreen; LCD_MESSAGE(MSG_MANUAL_DEPLOY_TOUCHMI); ui.return_to_status(); TERN_(HOST_PROMPT_SUPPORT, hostui.prompt_do(PROMPT_USER_CONTINUE, F("Deploy TouchMI"), FPSTR(CONTINUE_STR))); TERN_(HAS_RESUME_CONTINUE, wait_for_user_response()); ui.reset_status(); ui.goto_screen(prev_screen); #elif defined(TOUCH_MI_DEPLOY_XPOS) && defined(TOUCH_MI_DEPLOY_YPOS) do_blocking_move_to_xy(TOUCH_MI_DEPLOY_XPOS, TOUCH_MI_DEPLOY_YPOS); #elif defined(TOUCH_MI_DEPLOY_XPOS) do_blocking_move_to_x(TOUCH_MI_DEPLOY_XPOS); #elif defined(TOUCH_MI_DEPLOY_YPOS) do_blocking_move_to_y(TOUCH_MI_DEPLOY_YPOS); #endif } // Move down to the bed to stow the probe inline void run_stow_moves_script() { const xyz_pos_t oldpos = current_position; endstops.enable_z_probe(false); do_blocking_move_to_z(TOUCH_MI_RETRACT_Z, homing_feedrate(Z_AXIS)); do_blocking_move_to(oldpos, homing_feedrate(Z_AXIS)); } #elif ENABLED(Z_PROBE_ALLEN_KEY) inline void run_deploy_moves_script() { #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_1 #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0 #endif constexpr xyz_pos_t deploy_1 = Z_PROBE_ALLEN_KEY_DEPLOY_1; do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_2 #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0 #endif constexpr xyz_pos_t deploy_2 = Z_PROBE_ALLEN_KEY_DEPLOY_2; do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3 #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0 #endif constexpr xyz_pos_t deploy_3 = Z_PROBE_ALLEN_KEY_DEPLOY_3; do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_4 #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0 #endif constexpr xyz_pos_t deploy_4 = Z_PROBE_ALLEN_KEY_DEPLOY_4; do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_5 #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0 #endif constexpr xyz_pos_t deploy_5 = Z_PROBE_ALLEN_KEY_DEPLOY_5; do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE)); #endif } inline void run_stow_moves_script() { #ifdef Z_PROBE_ALLEN_KEY_STOW_1 #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0 #endif constexpr xyz_pos_t stow_1 = Z_PROBE_ALLEN_KEY_STOW_1; do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_STOW_2 #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0 #endif constexpr xyz_pos_t stow_2 = Z_PROBE_ALLEN_KEY_STOW_2; do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_STOW_3 #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0 #endif constexpr xyz_pos_t stow_3 = Z_PROBE_ALLEN_KEY_STOW_3; do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_STOW_4 #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0 #endif constexpr xyz_pos_t stow_4 = Z_PROBE_ALLEN_KEY_STOW_4; do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE)); #endif #ifdef Z_PROBE_ALLEN_KEY_STOW_5 #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0 #endif constexpr xyz_pos_t stow_5 = Z_PROBE_ALLEN_KEY_STOW_5; do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE)); #endif } #endif // Z_PROBE_ALLEN_KEY #if HAS_QUIET_PROBING #ifndef DELAY_BEFORE_PROBING #define DELAY_BEFORE_PROBING 25 #endif void Probe::set_probing_paused(const bool dopause) { TERN_(PROBING_HEATERS_OFF, thermalManager.pause_heaters(dopause)); TERN_(PROBING_FANS_OFF, thermalManager.set_fans_paused(dopause)); TERN_(PROBING_ESTEPPERS_OFF, if (dopause) stepper.disable_e_steppers()); #if ENABLED(PROBING_STEPPERS_OFF) && DISABLED(DELTA) static uint8_t old_trusted; if (dopause) { old_trusted = axis_trusted; stepper.disable_axis(X_AXIS); stepper.disable_axis(Y_AXIS); } else { if (TEST(old_trusted, X_AXIS)) stepper.enable_axis(X_AXIS); if (TEST(old_trusted, Y_AXIS)) stepper.enable_axis(Y_AXIS); axis_trusted = old_trusted; } #endif if (dopause) safe_delay(_MAX(DELAY_BEFORE_PROBING, 25)); } #endif // HAS_QUIET_PROBING /** * Raise Z to a minimum height to make room for a probe to move */ void Probe::do_z_raise(const float z_raise) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Probe::do_z_raise(", z_raise, ")"); float z_dest = z_raise; if (offset.z < 0) z_dest -= offset.z; do_z_clearance(z_dest); } FORCE_INLINE void probe_specific_action(const bool deploy) { #if ENABLED(PAUSE_BEFORE_DEPLOY_STOW) do { #if ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED) if (deploy != PROBE_TRIGGERED()) break; #endif OKAY_BUZZ(); FSTR_P const ds_str = deploy ? GET_TEXT_F(MSG_MANUAL_DEPLOY) : GET_TEXT_F(MSG_MANUAL_STOW); ui.return_to_status(); // To display the new status message ui.set_status(ds_str, 99); SERIAL_ECHOLNF(deploy ? GET_EN_TEXT_F(MSG_MANUAL_DEPLOY) : GET_EN_TEXT_F(MSG_MANUAL_STOW)); TERN_(HOST_PROMPT_SUPPORT, hostui.prompt_do(PROMPT_USER_CONTINUE, ds_str, FPSTR(CONTINUE_STR))); TERN_(EXTENSIBLE_UI, ExtUI::onUserConfirmRequired(ds_str)); TERN_(DWIN_LCD_PROUI, DWIN_Popup_Confirm(ICON_BLTouch, ds_str, FPSTR(CONTINUE_STR))); TERN_(HAS_RESUME_CONTINUE, wait_for_user_response()); ui.reset_status(); } while (ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED)); #endif // PAUSE_BEFORE_DEPLOY_STOW #if ENABLED(SOLENOID_PROBE) #if HAS_SOLENOID_1 WRITE(SOL1_PIN, deploy); #endif #elif ENABLED(MAGLEV4) deploy ? maglev_deploy() : maglev_idle(); #elif ENABLED(Z_PROBE_SLED) dock_sled(!deploy); #elif ENABLED(BLTOUCH) deploy ? bltouch.deploy() : bltouch.stow(); #elif HAS_Z_SERVO_PROBE MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][deploy ? 0 : 1]); #elif EITHER(TOUCH_MI_PROBE, Z_PROBE_ALLEN_KEY) deploy ? run_deploy_moves_script() : run_stow_moves_script(); #elif ENABLED(RACK_AND_PINION_PROBE) do_blocking_move_to_x(deploy ? Z_PROBE_DEPLOY_X : Z_PROBE_RETRACT_X); #elif DISABLED(PAUSE_BEFORE_DEPLOY_STOW) UNUSED(deploy); #endif } #if EITHER(PREHEAT_BEFORE_PROBING, PREHEAT_BEFORE_LEVELING) #if ENABLED(PREHEAT_BEFORE_PROBING) #ifndef PROBING_NOZZLE_TEMP #define PROBING_NOZZLE_TEMP 0 #endif #ifndef PROBING_BED_TEMP #define PROBING_BED_TEMP 0 #endif #endif /** * Do preheating as required before leveling or probing. * - If a preheat input is higher than the current target, raise the target temperature. * - If a preheat input is higher than the current temperature, wait for stabilization. */ void Probe::preheat_for_probing(const celsius_t hotend_temp, const celsius_t bed_temp) { #if HAS_HOTEND && (PROBING_NOZZLE_TEMP || LEVELING_NOZZLE_TEMP) #define WAIT_FOR_NOZZLE_HEAT #endif #if HAS_HEATED_BED && (PROBING_BED_TEMP || LEVELING_BED_TEMP) #define WAIT_FOR_BED_HEAT #endif LCD_MESSAGE(MSG_PREHEATING); DEBUG_ECHOPGM("Preheating "); #if ENABLED(WAIT_FOR_NOZZLE_HEAT) const celsius_t hotendPreheat = hotend_temp > thermalManager.degTargetHotend(0) ? hotend_temp : 0; if (hotendPreheat) { DEBUG_ECHOPGM("hotend (", hotendPreheat, ")"); thermalManager.setTargetHotend(hotendPreheat, 0); } #elif ENABLED(WAIT_FOR_BED_HEAT) constexpr celsius_t hotendPreheat = 0; #endif #if ENABLED(WAIT_FOR_BED_HEAT) const celsius_t bedPreheat = bed_temp > thermalManager.degTargetBed() ? bed_temp : 0; if (bedPreheat) { if (hotendPreheat) DEBUG_ECHOPGM(" and "); DEBUG_ECHOPGM("bed (", bedPreheat, ")"); thermalManager.setTargetBed(bedPreheat); } #endif DEBUG_EOL(); TERN_(WAIT_FOR_NOZZLE_HEAT, if (hotend_temp > thermalManager.wholeDegHotend(0) + (TEMP_WINDOW)) thermalManager.wait_for_hotend(0)); TERN_(WAIT_FOR_BED_HEAT, if (bed_temp > thermalManager.wholeDegBed() + (TEMP_BED_WINDOW)) thermalManager.wait_for_bed_heating()); } #endif /** * Print an error and stop() */ void Probe::probe_error_stop() { SERIAL_ERROR_START(); SERIAL_ECHOPGM(STR_STOP_PRE); #if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY) SERIAL_ECHOPGM(STR_STOP_UNHOMED); #elif ENABLED(BLTOUCH) SERIAL_ECHOPGM(STR_STOP_BLTOUCH); #endif SERIAL_ECHOLNPGM(STR_STOP_POST); stop(); } /** * Attempt to deploy or stow the probe * * Return TRUE if the probe could not be deployed/stowed */ bool Probe::set_deployed(const bool deploy) { if (DEBUGGING(LEVELING)) { DEBUG_POS("Probe::set_deployed", current_position); DEBUG_ECHOLNPGM("deploy: ", deploy); } if (endstops.z_probe_enabled == deploy) return false; // Make room for probe to deploy (or stow) // Fix-mounted probe should only raise for deploy // unless PAUSE_BEFORE_DEPLOY_STOW is enabled #if EITHER(FIX_MOUNTED_PROBE, NOZZLE_AS_PROBE) && DISABLED(PAUSE_BEFORE_DEPLOY_STOW) const bool z_raise_wanted = deploy; #else constexpr bool z_raise_wanted = true; #endif if (z_raise_wanted) do_z_raise(_MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE)); #if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY) if (homing_needed_error(TERN_(Z_PROBE_SLED, _BV(X_AXIS)))) { probe_error_stop(); return true; } #endif const xy_pos_t old_xy = current_position; #if ENABLED(PROBE_TRIGGERED_WHEN_STOWED_TEST) // Only deploy/stow if needed if (PROBE_TRIGGERED() == deploy) { if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early // otherwise an Allen-Key probe can't be stowed. probe_specific_action(deploy); } if (PROBE_TRIGGERED() == deploy) { // Unchanged after deploy/stow action? if (IsRunning()) { SERIAL_ERROR_MSG("Z-Probe failed"); LCD_ALERTMESSAGE_F("Err: ZPROBE"); } stop(); return true; } #else probe_specific_action(deploy); #endif // If preheating is required before any probing... TERN_(PREHEAT_BEFORE_PROBING, if (deploy) preheat_for_probing(PROBING_NOZZLE_TEMP, PROBING_BED_TEMP)); do_blocking_move_to(old_xy); endstops.enable_z_probe(deploy); return false; } /** * @brief Move down until the probe triggers or the low limit is reached * Used by run_z_probe to do a single Z probe move. * * @param z Z destination * @param fr_mm_s Feedrate in mm/s * @return true to indicate an error * * @details Used by run_z_probe to get each bed Z height measurement. * Sets current_position.z to the height where the probe triggered * (according to the Z stepper count). The float Z is propagated * back to the planner.position to preempt any rounding error. * * @return TRUE if the probe failed to trigger. */ bool Probe::probe_down_to_z(const_float_t z, const_feedRate_t fr_mm_s) { DEBUG_SECTION(log_probe, "Probe::probe_down_to_z", DEBUGGING(LEVELING)); #if BOTH(HAS_HEATED_BED, WAIT_FOR_BED_HEATER) thermalManager.wait_for_bed_heating(); #endif #if BOTH(HAS_TEMP_HOTEND, WAIT_FOR_HOTEND) thermalManager.wait_for_hotend_heating(active_extruder); #endif #if ENABLED(BLTOUCH) if (!bltouch.high_speed_mode && bltouch.deploy()) return true; // Deploy in LOW SPEED MODE on every probe action #endif // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_PROBING) sensorless_t stealth_states { false }; #if HAS_DELTA_SENSORLESS_PROBING if (test_sensitivity.x) stealth_states.x = tmc_enable_stallguard(stepperX); // Delta watches all DIAG pins for a stall if (test_sensitivity.y) stealth_states.y = tmc_enable_stallguard(stepperY); #endif if (test_sensitivity.z) stealth_states.z = tmc_enable_stallguard(stepperZ); // All machines will check Z-DIAG for stall endstops.enable(true); set_homing_current(true); // The "homing" current also applies to probing #endif TERN_(HAS_QUIET_PROBING, set_probing_paused(true)); // Move down until the probe is triggered do_blocking_move_to_z(z, fr_mm_s); // Check to see if the probe was triggered const bool probe_triggered = #if HAS_DELTA_SENSORLESS_PROBING endstops.trigger_state() & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)) #else TEST(endstops.trigger_state(), Z_MIN_PROBE) #endif ; TERN_(HAS_QUIET_PROBING, set_probing_paused(false)); // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_PROBING) endstops.not_homing(); #if HAS_DELTA_SENSORLESS_PROBING if (test_sensitivity.x) tmc_disable_stallguard(stepperX, stealth_states.x); if (test_sensitivity.y) tmc_disable_stallguard(stepperY, stealth_states.y); #endif if (test_sensitivity.z) tmc_disable_stallguard(stepperZ, stealth_states.z); set_homing_current(false); #endif #if ENABLED(BLTOUCH) if (probe_triggered && !bltouch.high_speed_mode && bltouch.stow()) return true; // Stow in LOW SPEED MODE on every trigger #endif // Clear endstop flags endstops.hit_on_purpose(); // Get Z where the steppers were interrupted set_current_from_steppers_for_axis(Z_AXIS); // Tell the planner where we actually are sync_plan_position(); return !probe_triggered; } #if ENABLED(PROBE_TARE) /** * @brief Init the tare pin * * @details Init tare pin to ON state for a strain gauge, otherwise OFF */ void Probe::tare_init() { OUT_WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE); } /** * @brief Tare the Z probe * * @details Signal to the probe to tare itself * * @return TRUE if the tare cold not be completed */ bool Probe::tare() { #if BOTH(PROBE_ACTIVATION_SWITCH, PROBE_TARE_ONLY_WHILE_INACTIVE) if (endstops.probe_switch_activated()) { SERIAL_ECHOLNPGM("Cannot tare an active probe"); return true; } #endif SERIAL_ECHOLNPGM("Taring probe"); WRITE(PROBE_TARE_PIN, PROBE_TARE_STATE); delay(PROBE_TARE_TIME); WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE); delay(PROBE_TARE_DELAY); endstops.hit_on_purpose(); return false; } #endif /** * @brief Probe at the current XY (possibly more than once) to find the bed Z. * * @details Used by probe_at_point to get the bed Z height at the current XY. * Leaves current_position.z at the height where the probe triggered. * * @return The Z position of the bed at the current XY or NAN on error. */ float Probe::run_z_probe(const bool sanity_check/*=true*/) { DEBUG_SECTION(log_probe, "Probe::run_z_probe", DEBUGGING(LEVELING)); auto try_to_probe = [&](PGM_P const plbl, const_float_t z_probe_low_point, const feedRate_t fr_mm_s, const bool scheck, const float clearance) -> bool { // Tare the probe, if supported if (TERN0(PROBE_TARE, tare())) return true; // Do a first probe at the fast speed const bool probe_fail = probe_down_to_z(z_probe_low_point, fr_mm_s), // No probe trigger? early_fail = (scheck && current_position.z > -offset.z + clearance); // Probe triggered too high? #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING) && (probe_fail || early_fail)) { DEBUG_ECHOPGM_P(plbl); DEBUG_ECHOPGM(" Probe fail! -"); if (probe_fail) DEBUG_ECHOPGM(" No trigger."); if (early_fail) DEBUG_ECHOPGM(" Triggered early."); DEBUG_EOL(); } #else UNUSED(plbl); #endif return probe_fail || early_fail; }; // Stop the probe before it goes too low to prevent damage. // If Z isn't known then probe to -10mm. const float z_probe_low_point = axis_is_trusted(Z_AXIS) ? -offset.z + Z_PROBE_LOW_POINT : -10.0; // Double-probing does a fast probe followed by a slow probe #if TOTAL_PROBING == 2 // Attempt to tare the probe if (TERN0(PROBE_TARE, tare())) return NAN; // Do a first probe at the fast speed if (try_to_probe(PSTR("FAST"), z_probe_low_point, z_probe_fast_mm_s, sanity_check, Z_CLEARANCE_BETWEEN_PROBES) ) return NAN; const float first_probe_z = current_position.z; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("1st Probe Z:", first_probe_z); // Raise to give the probe clearance do_blocking_move_to_z(current_position.z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s); #elif Z_PROBE_FEEDRATE_FAST != Z_PROBE_FEEDRATE_SLOW // If the nozzle is well over the travel height then // move down quickly before doing the slow probe const float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0 + (offset.z < 0 ? -offset.z : 0); if (current_position.z > z) { // Probe down fast. If the probe never triggered, raise for probe clearance if (!probe_down_to_z(z, z_probe_fast_mm_s)) do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES, z_probe_fast_mm_s); } #endif #if EXTRA_PROBING > 0 float probes[TOTAL_PROBING]; #endif #if TOTAL_PROBING > 2 float probes_z_sum = 0; for ( #if EXTRA_PROBING > 0 uint8_t p = 0; p < TOTAL_PROBING; p++ #else uint8_t p = TOTAL_PROBING; p--; #endif ) #endif { // If the probe won't tare, return if (TERN0(PROBE_TARE, tare())) return true; // Probe downward slowly to find the bed if (try_to_probe(PSTR("SLOW"), z_probe_low_point, MMM_TO_MMS(Z_PROBE_FEEDRATE_SLOW), sanity_check, Z_CLEARANCE_MULTI_PROBE) ) return NAN; TERN_(MEASURE_BACKLASH_WHEN_PROBING, backlash.measure_with_probe()); const float z = current_position.z; #if EXTRA_PROBING > 0 // Insert Z measurement into probes[]. Keep it sorted ascending. LOOP_LE_N(i, p) { // Iterate the saved Zs to insert the new Z if (i == p || probes[i] > z) { // Last index or new Z is smaller than this Z for (int8_t m = p; --m >= i;) probes[m + 1] = probes[m]; // Shift items down after the insertion point probes[i] = z; // Insert the new Z measurement break; // Only one to insert. Done! } } #elif TOTAL_PROBING > 2 probes_z_sum += z; #else UNUSED(z); #endif #if TOTAL_PROBING > 2 // Small Z raise after all but the last probe if (p #if EXTRA_PROBING > 0 < TOTAL_PROBING - 1 #endif ) do_blocking_move_to_z(z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s); #endif } #if TOTAL_PROBING > 2 #if EXTRA_PROBING > 0 // Take the center value (or average the two middle values) as the median static constexpr int PHALF = (TOTAL_PROBING - 1) / 2; const float middle = probes[PHALF], median = ((TOTAL_PROBING) & 1) ? middle : (middle + probes[PHALF + 1]) * 0.5f; // Remove values farthest from the median uint8_t min_avg_idx = 0, max_avg_idx = TOTAL_PROBING - 1; for (uint8_t i = EXTRA_PROBING; i--;) if (ABS(probes[max_avg_idx] - median) > ABS(probes[min_avg_idx] - median)) max_avg_idx--; else min_avg_idx++; // Return the average value of all remaining probes. LOOP_S_LE_N(i, min_avg_idx, max_avg_idx) probes_z_sum += probes[i]; #endif const float measured_z = probes_z_sum * RECIPROCAL(MULTIPLE_PROBING); #elif TOTAL_PROBING == 2 const float z2 = current_position.z; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("2nd Probe Z:", z2, " Discrepancy:", first_probe_z - z2); // Return a weighted average of the fast and slow probes const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2; #else // Return the single probe result const float measured_z = current_position.z; #endif return measured_z; } /** * - Move to the given XY * - Deploy the probe, if not already deployed * - Probe the bed, get the Z position * - Depending on the 'stow' flag * - Stow the probe, or * - Raise to the BETWEEN height * - Return the probed Z position */ float Probe::probe_at_point(const_float_t rx, const_float_t ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/, const bool sanity_check/*=true*/) { DEBUG_SECTION(log_probe, "Probe::probe_at_point", DEBUGGING(LEVELING)); if (DEBUGGING(LEVELING)) { DEBUG_ECHOLNPGM( "...(", LOGICAL_X_POSITION(rx), ", ", LOGICAL_Y_POSITION(ry), ", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_LAST_STOW ? "stow (last)" : raise_after == PROBE_PT_STOW ? "stow" : "none", ", ", verbose_level, ", ", probe_relative ? "probe" : "nozzle", "_relative)" ); DEBUG_POS("", current_position); } #if ENABLED(BLTOUCH) if (bltouch.high_speed_mode && bltouch.triggered()) bltouch._reset(); #endif // On delta keep Z below clip height or do_blocking_move_to will abort xyz_pos_t npos = LINEAR_AXIS_ARRAY( rx, ry, TERN(DELTA, _MIN(delta_clip_start_height, current_position.z), current_position.z), current_position.i, current_position.j, current_position.k ); if (!can_reach(npos, probe_relative)) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Position Not Reachable"); return NAN; } if (probe_relative) npos -= offset_xy; // Get the nozzle position // Move the probe to the starting XYZ do_blocking_move_to(npos, feedRate_t(XY_PROBE_FEEDRATE_MM_S)); float measured_z = NAN; if (!deploy()) { measured_z = run_z_probe(sanity_check) + offset.z; TERN_(HAS_PTC, ptc.apply_compensation(measured_z)); TERN_(X_AXIS_TWIST_COMPENSATION, measured_z += xatc.compensation(npos + offset_xy)); } if (!isnan(measured_z)) { const bool big_raise = raise_after == PROBE_PT_BIG_RAISE; if (big_raise || raise_after == PROBE_PT_RAISE) do_blocking_move_to_z(current_position.z + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), z_probe_fast_mm_s); else if (raise_after == PROBE_PT_STOW || raise_after == PROBE_PT_LAST_STOW) if (stow()) measured_z = NAN; // Error on stow? if (verbose_level > 2) SERIAL_ECHOLNPGM("Bed X: ", LOGICAL_X_POSITION(rx), " Y: ", LOGICAL_Y_POSITION(ry), " Z: ", measured_z); } if (isnan(measured_z)) { stow(); LCD_MESSAGE(MSG_LCD_PROBING_FAILED); #if DISABLED(G29_RETRY_AND_RECOVER) SERIAL_ERROR_MSG(STR_ERR_PROBING_FAILED); #endif } return measured_z; } #if HAS_Z_SERVO_PROBE void Probe::servo_probe_init() { /** * Set position of Z Servo Endstop * * The servo might be deployed and positioned too low to stow * when starting up the machine or rebooting the board. * There's no way to know where the nozzle is positioned until * homing has been done - no homing with z-probe without init! */ STOW_Z_SERVO(); } #endif // HAS_Z_SERVO_PROBE #if USE_SENSORLESS sensorless_t stealth_states { false }; /** * Disable stealthChop if used. Enable diag1 pin on driver. */ void Probe::enable_stallguard_diag1() { #if ENABLED(SENSORLESS_PROBING) #if HAS_DELTA_SENSORLESS_PROBING stealth_states.x = tmc_enable_stallguard(stepperX); stealth_states.y = tmc_enable_stallguard(stepperY); #endif stealth_states.z = tmc_enable_stallguard(stepperZ); endstops.enable(true); #endif } /** * Re-enable stealthChop if used. Disable diag1 pin on driver. */ void Probe::disable_stallguard_diag1() { #if ENABLED(SENSORLESS_PROBING) endstops.not_homing(); #if HAS_DELTA_SENSORLESS_PROBING tmc_disable_stallguard(stepperX, stealth_states.x); tmc_disable_stallguard(stepperY, stealth_states.y); #endif tmc_disable_stallguard(stepperZ, stealth_states.z); #endif } /** * Change the current in the TMC drivers to N##_CURRENT_HOME. And we save the current configuration of each TMC driver. */ void Probe::set_homing_current(const bool onoff) { #define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT) #if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Z) #if ENABLED(DELTA) static int16_t saved_current_X, saved_current_Y; #endif #if HAS_CURRENT_HOME(Z) static int16_t saved_current_Z; #endif #if ((ENABLED(DELTA) && (HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(Y))) || HAS_CURRENT_HOME(Z)) auto debug_current_on = [](PGM_P const s, const int16_t a, const int16_t b) { if (DEBUGGING(LEVELING)) { DEBUG_ECHOPGM_P(s); DEBUG_ECHOLNPGM(" current: ", a, " -> ", b); } }; #endif if (onoff) { #if ENABLED(DELTA) #if HAS_CURRENT_HOME(X) saved_current_X = stepperX.getMilliamps(); stepperX.rms_current(X_CURRENT_HOME); debug_current_on(PSTR("X"), saved_current_X, X_CURRENT_HOME); #endif #if HAS_CURRENT_HOME(Y) saved_current_Y = stepperY.getMilliamps(); stepperY.rms_current(Y_CURRENT_HOME); debug_current_on(PSTR("Y"), saved_current_Y, Y_CURRENT_HOME); #endif #endif #if HAS_CURRENT_HOME(Z) saved_current_Z = stepperZ.getMilliamps(); stepperZ.rms_current(Z_CURRENT_HOME); debug_current_on(PSTR("Z"), saved_current_Z, Z_CURRENT_HOME); #endif TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(true)); } else { #if ENABLED(DELTA) #if HAS_CURRENT_HOME(X) stepperX.rms_current(saved_current_X); debug_current_on(PSTR("X"), X_CURRENT_HOME, saved_current_X); #endif #if HAS_CURRENT_HOME(Y) stepperY.rms_current(saved_current_Y); debug_current_on(PSTR("Y"), Y_CURRENT_HOME, saved_current_Y); #endif #endif #if HAS_CURRENT_HOME(Z) stepperZ.rms_current(saved_current_Z); debug_current_on(PSTR("Z"), Z_CURRENT_HOME, saved_current_Z); #endif TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(false)); } #endif } #endif // SENSORLESS_PROBING || SENSORLESS_HOMING #endif // HAS_BED_PROBE