249 lines
8.2 KiB
C++
249 lines
8.2 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "../inc/MarlinConfigPre.h"
|
|
|
|
#if HAS_PTC
|
|
|
|
//#define DEBUG_PTC // Print extra debug output with 'M871'
|
|
|
|
#include "probe_temp_comp.h"
|
|
#include <math.h>
|
|
|
|
ProbeTempComp ptc;
|
|
|
|
#if ENABLED(PTC_PROBE)
|
|
constexpr int16_t z_offsets_probe_default[PTC_PROBE_COUNT] = PTC_PROBE_ZOFFS;
|
|
int16_t ProbeTempComp::z_offsets_probe[PTC_PROBE_COUNT] = PTC_PROBE_ZOFFS;
|
|
#endif
|
|
|
|
#if ENABLED(PTC_BED)
|
|
constexpr int16_t z_offsets_bed_default[PTC_BED_COUNT] = PTC_BED_ZOFFS;
|
|
int16_t ProbeTempComp::z_offsets_bed[PTC_BED_COUNT] = PTC_BED_ZOFFS;
|
|
#endif
|
|
|
|
#if ENABLED(PTC_HOTEND)
|
|
constexpr int16_t z_offsets_hotend_default[PTC_HOTEND_COUNT] = PTC_HOTEND_ZOFFS;
|
|
int16_t ProbeTempComp::z_offsets_hotend[PTC_HOTEND_COUNT] = PTC_HOTEND_ZOFFS;
|
|
#endif
|
|
|
|
int16_t *ProbeTempComp::sensor_z_offsets[TSI_COUNT] = {
|
|
#if ENABLED(PTC_PROBE)
|
|
ProbeTempComp::z_offsets_probe,
|
|
#endif
|
|
#if ENABLED(PTC_BED)
|
|
ProbeTempComp::z_offsets_bed,
|
|
#endif
|
|
#if ENABLED(PTC_HOTEND)
|
|
ProbeTempComp::z_offsets_hotend,
|
|
#endif
|
|
};
|
|
|
|
constexpr temp_calib_t ProbeTempComp::cali_info[TSI_COUNT];
|
|
|
|
uint8_t ProbeTempComp::calib_idx; // = 0
|
|
float ProbeTempComp::init_measurement; // = 0.0
|
|
|
|
void ProbeTempComp::reset() {
|
|
TERN_(PTC_PROBE, LOOP_L_N(i, PTC_PROBE_COUNT) z_offsets_probe[i] = z_offsets_probe_default[i]);
|
|
TERN_(PTC_BED, LOOP_L_N(i, PTC_BED_COUNT) z_offsets_bed[i] = z_offsets_bed_default[i]);
|
|
TERN_(PTC_HOTEND, LOOP_L_N(i, PTC_HOTEND_COUNT) z_offsets_hotend[i] = z_offsets_hotend_default[i]);
|
|
}
|
|
|
|
void ProbeTempComp::clear_offsets(const TempSensorID tsi) {
|
|
LOOP_L_N(i, cali_info[tsi].measurements)
|
|
sensor_z_offsets[tsi][i] = 0;
|
|
calib_idx = 0;
|
|
}
|
|
|
|
bool ProbeTempComp::set_offset(const TempSensorID tsi, const uint8_t idx, const int16_t offset) {
|
|
if (idx >= cali_info[tsi].measurements) return false;
|
|
sensor_z_offsets[tsi][idx] = offset;
|
|
return true;
|
|
}
|
|
|
|
void ProbeTempComp::print_offsets() {
|
|
LOOP_L_N(s, TSI_COUNT) {
|
|
celsius_t temp = cali_info[s].start_temp;
|
|
for (int16_t i = -1; i < cali_info[s].measurements; ++i) {
|
|
SERIAL_ECHOF(
|
|
TERN_(PTC_BED, s == TSI_BED ? F("Bed") :)
|
|
TERN_(PTC_HOTEND, s == TSI_EXT ? F("Extruder") :)
|
|
F("Probe")
|
|
);
|
|
SERIAL_ECHOLNPGM(
|
|
" temp: ", temp,
|
|
"C; Offset: ", i < 0 ? 0.0f : sensor_z_offsets[s][i], " um"
|
|
);
|
|
temp += cali_info[s].temp_resolution;
|
|
}
|
|
}
|
|
#if ENABLED(DEBUG_PTC)
|
|
float meas[4] = { 0, 0, 0, 0 };
|
|
compensate_measurement(TSI_PROBE, 27.5, meas[0]);
|
|
compensate_measurement(TSI_PROBE, 32.5, meas[1]);
|
|
compensate_measurement(TSI_PROBE, 77.5, meas[2]);
|
|
compensate_measurement(TSI_PROBE, 82.5, meas[3]);
|
|
SERIAL_ECHOLNPGM("DEBUG_PTC 27.5:", meas[0], " 32.5:", meas[1], " 77.5:", meas[2], " 82.5:", meas[3]);
|
|
#endif
|
|
}
|
|
|
|
void ProbeTempComp::prepare_new_calibration(const_float_t init_meas_z) {
|
|
calib_idx = 0;
|
|
init_measurement = init_meas_z;
|
|
}
|
|
|
|
void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const_float_t meas_z) {
|
|
if (calib_idx >= cali_info[tsi].measurements) return;
|
|
sensor_z_offsets[tsi][calib_idx++] = static_cast<int16_t>((meas_z - init_measurement) * 1000.0f);
|
|
}
|
|
|
|
bool ProbeTempComp::finish_calibration(const TempSensorID tsi) {
|
|
if (!calib_idx) {
|
|
SERIAL_ECHOLNPGM("!No measurements.");
|
|
clear_offsets(tsi);
|
|
return false;
|
|
}
|
|
|
|
const uint8_t measurements = cali_info[tsi].measurements;
|
|
const celsius_t start_temp = cali_info[tsi].start_temp,
|
|
res_temp = cali_info[tsi].temp_resolution;
|
|
int16_t * const data = sensor_z_offsets[tsi];
|
|
|
|
// Extrapolate
|
|
float k, d;
|
|
if (calib_idx < measurements) {
|
|
SERIAL_ECHOLNPGM("Got ", calib_idx, " measurements. ");
|
|
if (linear_regression(tsi, k, d)) {
|
|
SERIAL_ECHOPGM("Applying linear extrapolation");
|
|
for (; calib_idx < measurements; ++calib_idx) {
|
|
const celsius_float_t temp = start_temp + float(calib_idx + 1) * res_temp;
|
|
data[calib_idx] = static_cast<int16_t>(k * temp + d);
|
|
}
|
|
}
|
|
else {
|
|
// Simply use the last measured value for higher temperatures
|
|
SERIAL_ECHOPGM("Failed to extrapolate");
|
|
const int16_t last_val = data[calib_idx-1];
|
|
for (; calib_idx < measurements; ++calib_idx)
|
|
data[calib_idx] = last_val;
|
|
}
|
|
SERIAL_ECHOLNPGM(" for higher temperatures.");
|
|
}
|
|
|
|
// Sanity check
|
|
for (calib_idx = 0; calib_idx < measurements; ++calib_idx) {
|
|
// Restrict the max. offset
|
|
if (ABS(data[calib_idx]) > 2000) {
|
|
SERIAL_ECHOLNPGM("!Invalid Z-offset detected (0-2).");
|
|
clear_offsets(tsi);
|
|
return false;
|
|
}
|
|
// Restrict the max. offset difference between two probings
|
|
if (calib_idx > 0 && ABS(data[calib_idx - 1] - data[calib_idx]) > 800) {
|
|
SERIAL_ECHOLNPGM("!Invalid Z-offset between two probings detected (0-0.8).");
|
|
clear_offsets(tsi);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const celsius_t temp, float &meas_z) {
|
|
const uint8_t measurements = cali_info[tsi].measurements;
|
|
const celsius_t start_temp = cali_info[tsi].start_temp,
|
|
res_temp = cali_info[tsi].temp_resolution,
|
|
end_temp = start_temp + measurements * res_temp;
|
|
const int16_t * const data = sensor_z_offsets[tsi];
|
|
|
|
// Given a data index, return { celsius, zoffset } in the form { x, y }
|
|
auto tpoint = [&](uint8_t i) -> xy_float_t {
|
|
return xy_float_t({ static_cast<float>(start_temp) + i * res_temp, i ? static_cast<float>(data[i - 1]) : 0.0f });
|
|
};
|
|
|
|
// Interpolate Z based on a temperature being within a given range
|
|
auto linear_interp = [](const_float_t x, xy_float_t p1, xy_float_t p2) {
|
|
// zoffs1 + zoffset_per_toffset * toffset
|
|
return p1.y + (p2.y - p1.y) / (p2.x - p1.x) * (x - p1.x);
|
|
};
|
|
|
|
// offset in µm
|
|
float offset = 0.0f;
|
|
|
|
#if PTC_LINEAR_EXTRAPOLATION
|
|
if (temp < start_temp)
|
|
offset = linear_interp(temp, tpoint(0), tpoint(PTC_LINEAR_EXTRAPOLATION));
|
|
else if (temp >= end_temp)
|
|
offset = linear_interp(temp, tpoint(measurements - PTC_LINEAR_EXTRAPOLATION), tpoint(measurements));
|
|
#else
|
|
if (temp < start_temp)
|
|
offset = 0.0f;
|
|
else if (temp >= end_temp)
|
|
offset = static_cast<float>(data[measurements - 1]);
|
|
#endif
|
|
else {
|
|
// Linear interpolation
|
|
const int8_t idx = static_cast<int8_t>((temp - start_temp) / res_temp);
|
|
offset = linear_interp(temp, tpoint(idx), tpoint(idx + 1));
|
|
}
|
|
|
|
// convert offset to mm and apply it
|
|
meas_z -= offset / 1000.0f;
|
|
}
|
|
|
|
bool ProbeTempComp::linear_regression(const TempSensorID tsi, float &k, float &d) {
|
|
if (!WITHIN(calib_idx, 1, cali_info[tsi].measurements)) return false;
|
|
|
|
const celsius_t start_temp = cali_info[tsi].start_temp,
|
|
res_temp = cali_info[tsi].temp_resolution;
|
|
const int16_t * const data = sensor_z_offsets[tsi];
|
|
|
|
float sum_x = start_temp,
|
|
sum_x2 = sq(start_temp),
|
|
sum_xy = 0, sum_y = 0;
|
|
|
|
float xi = static_cast<float>(start_temp);
|
|
LOOP_L_N(i, calib_idx) {
|
|
const float yi = static_cast<float>(data[i]);
|
|
xi += res_temp;
|
|
sum_x += xi;
|
|
sum_x2 += sq(xi);
|
|
sum_xy += xi * yi;
|
|
sum_y += yi;
|
|
}
|
|
|
|
const float denom = static_cast<float>(calib_idx + 1) * sum_x2 - sq(sum_x);
|
|
if (fabs(denom) <= 10e-5) {
|
|
// Singularity - unable to solve
|
|
k = d = 0.0;
|
|
return false;
|
|
}
|
|
|
|
k = (static_cast<float>(calib_idx + 1) * sum_xy - sum_x * sum_y) / denom;
|
|
d = (sum_y - k * sum_x) / static_cast<float>(calib_idx + 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // HAS_PTC
|