/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../inc/MarlinConfigPre.h" #if HAS_PTC //#define DEBUG_PTC // Print extra debug output with 'M871' #include "probe_temp_comp.h" #include ProbeTempComp ptc; #if ENABLED(PTC_PROBE) constexpr int16_t z_offsets_probe_default[PTC_PROBE_COUNT] = PTC_PROBE_ZOFFS; int16_t ProbeTempComp::z_offsets_probe[PTC_PROBE_COUNT] = PTC_PROBE_ZOFFS; #endif #if ENABLED(PTC_BED) constexpr int16_t z_offsets_bed_default[PTC_BED_COUNT] = PTC_BED_ZOFFS; int16_t ProbeTempComp::z_offsets_bed[PTC_BED_COUNT] = PTC_BED_ZOFFS; #endif #if ENABLED(PTC_HOTEND) constexpr int16_t z_offsets_hotend_default[PTC_HOTEND_COUNT] = PTC_HOTEND_ZOFFS; int16_t ProbeTempComp::z_offsets_hotend[PTC_HOTEND_COUNT] = PTC_HOTEND_ZOFFS; #endif int16_t *ProbeTempComp::sensor_z_offsets[TSI_COUNT] = { #if ENABLED(PTC_PROBE) ProbeTempComp::z_offsets_probe, #endif #if ENABLED(PTC_BED) ProbeTempComp::z_offsets_bed, #endif #if ENABLED(PTC_HOTEND) ProbeTempComp::z_offsets_hotend, #endif }; constexpr temp_calib_t ProbeTempComp::cali_info[TSI_COUNT]; uint8_t ProbeTempComp::calib_idx; // = 0 float ProbeTempComp::init_measurement; // = 0.0 void ProbeTempComp::reset() { TERN_(PTC_PROBE, LOOP_L_N(i, PTC_PROBE_COUNT) z_offsets_probe[i] = z_offsets_probe_default[i]); TERN_(PTC_BED, LOOP_L_N(i, PTC_BED_COUNT) z_offsets_bed[i] = z_offsets_bed_default[i]); TERN_(PTC_HOTEND, LOOP_L_N(i, PTC_HOTEND_COUNT) z_offsets_hotend[i] = z_offsets_hotend_default[i]); } void ProbeTempComp::clear_offsets(const TempSensorID tsi) { LOOP_L_N(i, cali_info[tsi].measurements) sensor_z_offsets[tsi][i] = 0; calib_idx = 0; } bool ProbeTempComp::set_offset(const TempSensorID tsi, const uint8_t idx, const int16_t offset) { if (idx >= cali_info[tsi].measurements) return false; sensor_z_offsets[tsi][idx] = offset; return true; } void ProbeTempComp::print_offsets() { LOOP_L_N(s, TSI_COUNT) { celsius_t temp = cali_info[s].start_temp; for (int16_t i = -1; i < cali_info[s].measurements; ++i) { SERIAL_ECHOF( TERN_(PTC_BED, s == TSI_BED ? F("Bed") :) TERN_(PTC_HOTEND, s == TSI_EXT ? F("Extruder") :) F("Probe") ); SERIAL_ECHOLNPGM( " temp: ", temp, "C; Offset: ", i < 0 ? 0.0f : sensor_z_offsets[s][i], " um" ); temp += cali_info[s].temp_resolution; } } #if ENABLED(DEBUG_PTC) float meas[4] = { 0, 0, 0, 0 }; compensate_measurement(TSI_PROBE, 27.5, meas[0]); compensate_measurement(TSI_PROBE, 32.5, meas[1]); compensate_measurement(TSI_PROBE, 77.5, meas[2]); compensate_measurement(TSI_PROBE, 82.5, meas[3]); SERIAL_ECHOLNPGM("DEBUG_PTC 27.5:", meas[0], " 32.5:", meas[1], " 77.5:", meas[2], " 82.5:", meas[3]); #endif } void ProbeTempComp::prepare_new_calibration(const_float_t init_meas_z) { calib_idx = 0; init_measurement = init_meas_z; } void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const_float_t meas_z) { if (calib_idx >= cali_info[tsi].measurements) return; sensor_z_offsets[tsi][calib_idx++] = static_cast((meas_z - init_measurement) * 1000.0f); } bool ProbeTempComp::finish_calibration(const TempSensorID tsi) { if (!calib_idx) { SERIAL_ECHOLNPGM("!No measurements."); clear_offsets(tsi); return false; } const uint8_t measurements = cali_info[tsi].measurements; const celsius_t start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_resolution; int16_t * const data = sensor_z_offsets[tsi]; // Extrapolate float k, d; if (calib_idx < measurements) { SERIAL_ECHOLNPGM("Got ", calib_idx, " measurements. "); if (linear_regression(tsi, k, d)) { SERIAL_ECHOPGM("Applying linear extrapolation"); for (; calib_idx < measurements; ++calib_idx) { const celsius_float_t temp = start_temp + float(calib_idx + 1) * res_temp; data[calib_idx] = static_cast(k * temp + d); } } else { // Simply use the last measured value for higher temperatures SERIAL_ECHOPGM("Failed to extrapolate"); const int16_t last_val = data[calib_idx-1]; for (; calib_idx < measurements; ++calib_idx) data[calib_idx] = last_val; } SERIAL_ECHOLNPGM(" for higher temperatures."); } // Sanity check for (calib_idx = 0; calib_idx < measurements; ++calib_idx) { // Restrict the max. offset if (ABS(data[calib_idx]) > 2000) { SERIAL_ECHOLNPGM("!Invalid Z-offset detected (0-2)."); clear_offsets(tsi); return false; } // Restrict the max. offset difference between two probings if (calib_idx > 0 && ABS(data[calib_idx - 1] - data[calib_idx]) > 800) { SERIAL_ECHOLNPGM("!Invalid Z-offset between two probings detected (0-0.8)."); clear_offsets(tsi); return false; } } return true; } void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const celsius_t temp, float &meas_z) { const uint8_t measurements = cali_info[tsi].measurements; const celsius_t start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_resolution, end_temp = start_temp + measurements * res_temp; const int16_t * const data = sensor_z_offsets[tsi]; // Given a data index, return { celsius, zoffset } in the form { x, y } auto tpoint = [&](uint8_t i) -> xy_float_t { return xy_float_t({ static_cast(start_temp) + i * res_temp, i ? static_cast(data[i - 1]) : 0.0f }); }; // Interpolate Z based on a temperature being within a given range auto linear_interp = [](const_float_t x, xy_float_t p1, xy_float_t p2) { // zoffs1 + zoffset_per_toffset * toffset return p1.y + (p2.y - p1.y) / (p2.x - p1.x) * (x - p1.x); }; // offset in µm float offset = 0.0f; #if PTC_LINEAR_EXTRAPOLATION if (temp < start_temp) offset = linear_interp(temp, tpoint(0), tpoint(PTC_LINEAR_EXTRAPOLATION)); else if (temp >= end_temp) offset = linear_interp(temp, tpoint(measurements - PTC_LINEAR_EXTRAPOLATION), tpoint(measurements)); #else if (temp < start_temp) offset = 0.0f; else if (temp >= end_temp) offset = static_cast(data[measurements - 1]); #endif else { // Linear interpolation const int8_t idx = static_cast((temp - start_temp) / res_temp); offset = linear_interp(temp, tpoint(idx), tpoint(idx + 1)); } // convert offset to mm and apply it meas_z -= offset / 1000.0f; } bool ProbeTempComp::linear_regression(const TempSensorID tsi, float &k, float &d) { if (!WITHIN(calib_idx, 1, cali_info[tsi].measurements)) return false; const celsius_t start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_resolution; const int16_t * const data = sensor_z_offsets[tsi]; float sum_x = start_temp, sum_x2 = sq(start_temp), sum_xy = 0, sum_y = 0; float xi = static_cast(start_temp); LOOP_L_N(i, calib_idx) { const float yi = static_cast(data[i]); xi += res_temp; sum_x += xi; sum_x2 += sq(xi); sum_xy += xi * yi; sum_y += yi; } const float denom = static_cast(calib_idx + 1) * sum_x2 - sq(sum_x); if (fabs(denom) <= 10e-5) { // Singularity - unable to solve k = d = 0.0; return false; } k = (static_cast(calib_idx + 1) * sum_xy - sum_x * sum_y) / denom; d = (sum_y - k * sum_x) / static_cast(calib_idx + 1); return true; } #endif // HAS_PTC