This feature allows the printer to read the filament diameter automatically and adjust the printer in real time. Added code to read an analog voltage that represents a filament diameter measurement. This measurement is delayed in a ring buffer to compensate for sensors that are a distance away from the extruder. The measurement is used to adjust the volumetric_multiplier for the extruder. Some additional g codes (M404, M405, M406, M407) are used to set parameters and turn on/off the control. g code M221 is updated. Pins for RAMPS1.4, RAMBO, and Printrboard are identified for analog input. The configuration file is updated with relevant user parameters.
		
			
				
	
	
		
			191 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   temperature.h - temperature controller
 | |
|   Part of Marlin
 | |
| 
 | |
|   Copyright (c) 2011 Erik van der Zalm
 | |
| 
 | |
|   Grbl is free software: you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation, either version 3 of the License, or
 | |
|   (at your option) any later version.
 | |
| 
 | |
|   Grbl is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| #ifndef temperature_h
 | |
| #define temperature_h 
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "planner.h"
 | |
| #ifdef PID_ADD_EXTRUSION_RATE
 | |
|   #include "stepper.h"
 | |
| #endif
 | |
| 
 | |
| // public functions
 | |
| void tp_init();  //initialize the heating
 | |
| void manage_heater(); //it is critical that this is called periodically.
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
| // For converting raw Filament Width to milimeters 
 | |
|  float analog2widthFil(); 
 | |
|  
 | |
| // For converting raw Filament Width to an extrusion ratio 
 | |
|  int widthFil_to_size_ratio();
 | |
| #endif
 | |
| 
 | |
| // low level conversion routines
 | |
| // do not use these routines and variables outside of temperature.cpp
 | |
| extern int target_temperature[EXTRUDERS];  
 | |
| extern float current_temperature[EXTRUDERS];
 | |
| #ifdef SHOW_TEMP_ADC_VALUES
 | |
|   extern int current_temperature_raw[EXTRUDERS];
 | |
|   extern int current_temperature_bed_raw;
 | |
| #endif
 | |
| extern int target_temperature_bed;
 | |
| extern float current_temperature_bed;
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|   extern float redundant_temperature;
 | |
| #endif
 | |
| 
 | |
| #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | |
|   extern unsigned char soft_pwm_bed;
 | |
| #endif
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
|   extern float Kp,Ki,Kd,Kc;
 | |
|   float scalePID_i(float i);
 | |
|   float scalePID_d(float d);
 | |
|   float unscalePID_i(float i);
 | |
|   float unscalePID_d(float d);
 | |
| 
 | |
| #endif
 | |
| #ifdef PIDTEMPBED
 | |
|   extern float bedKp,bedKi,bedKd;
 | |
| #endif
 | |
|   
 | |
|   
 | |
| #ifdef BABYSTEPPING
 | |
|   extern volatile int babystepsTodo[3];
 | |
| #endif
 | |
|   
 | |
| //high level conversion routines, for use outside of temperature.cpp
 | |
| //inline so that there is no performance decrease.
 | |
| //deg=degreeCelsius
 | |
| 
 | |
| FORCE_INLINE float degHotend(uint8_t extruder) {  
 | |
|   return current_temperature[extruder];
 | |
| };
 | |
| 
 | |
| #ifdef SHOW_TEMP_ADC_VALUES
 | |
|   FORCE_INLINE float rawHotendTemp(uint8_t extruder) {  
 | |
|     return current_temperature_raw[extruder];
 | |
|   };
 | |
| 
 | |
|   FORCE_INLINE float rawBedTemp() {  
 | |
|     return current_temperature_bed_raw;
 | |
|   };
 | |
| #endif
 | |
| 
 | |
| FORCE_INLINE float degBed() {
 | |
|   return current_temperature_bed;
 | |
| };
 | |
| 
 | |
| FORCE_INLINE float degTargetHotend(uint8_t extruder) {  
 | |
|   return target_temperature[extruder];
 | |
| };
 | |
| 
 | |
| FORCE_INLINE float degTargetBed() {   
 | |
|   return target_temperature_bed;
 | |
| };
 | |
| 
 | |
| FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {  
 | |
|   target_temperature[extruder] = celsius;
 | |
| };
 | |
| 
 | |
| FORCE_INLINE void setTargetBed(const float &celsius) {  
 | |
|   target_temperature_bed = celsius;
 | |
| };
 | |
| 
 | |
| FORCE_INLINE bool isHeatingHotend(uint8_t extruder){  
 | |
|   return target_temperature[extruder] > current_temperature[extruder];
 | |
| };
 | |
| 
 | |
| FORCE_INLINE bool isHeatingBed() {
 | |
|   return target_temperature_bed > current_temperature_bed;
 | |
| };
 | |
| 
 | |
| FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {  
 | |
|   return target_temperature[extruder] < current_temperature[extruder];
 | |
| };
 | |
| 
 | |
| FORCE_INLINE bool isCoolingBed() {
 | |
|   return target_temperature_bed < current_temperature_bed;
 | |
| };
 | |
| 
 | |
| #define degHotend0() degHotend(0)
 | |
| #define degTargetHotend0() degTargetHotend(0)
 | |
| #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
 | |
| #define isHeatingHotend0() isHeatingHotend(0)
 | |
| #define isCoolingHotend0() isCoolingHotend(0)
 | |
| #if EXTRUDERS > 1
 | |
| #define degHotend1() degHotend(1)
 | |
| #define degTargetHotend1() degTargetHotend(1)
 | |
| #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
 | |
| #define isHeatingHotend1() isHeatingHotend(1)
 | |
| #define isCoolingHotend1() isCoolingHotend(1)
 | |
| #else
 | |
| #define setTargetHotend1(_celsius) do{}while(0)
 | |
| #endif
 | |
| #if EXTRUDERS > 2
 | |
| #define degHotend2() degHotend(2)
 | |
| #define degTargetHotend2() degTargetHotend(2)
 | |
| #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
 | |
| #define isHeatingHotend2() isHeatingHotend(2)
 | |
| #define isCoolingHotend2() isCoolingHotend(2)
 | |
| #else
 | |
| #define setTargetHotend2(_celsius) do{}while(0)
 | |
| #endif
 | |
| #if EXTRUDERS > 3
 | |
| #error Invalid number of extruders
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| int getHeaterPower(int heater);
 | |
| void disable_heater();
 | |
| void setWatch();
 | |
| void updatePID();
 | |
| 
 | |
| #ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
 | |
| void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
 | |
| static int thermal_runaway_state_machine[3]; // = {0,0,0};
 | |
| static unsigned long thermal_runaway_timer[3]; // = {0,0,0};
 | |
| static bool thermal_runaway = false;
 | |
|   #if TEMP_SENSOR_BED != 0
 | |
|     static int thermal_runaway_bed_state_machine;
 | |
|     static unsigned long thermal_runaway_bed_timer;
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| FORCE_INLINE void autotempShutdown(){
 | |
|  #ifdef AUTOTEMP
 | |
|  if(autotemp_enabled)
 | |
|  {
 | |
|   autotemp_enabled=false;
 | |
|   if(degTargetHotend(active_extruder)>autotemp_min)
 | |
|     setTargetHotend(0,active_extruder);
 | |
|  }
 | |
|  #endif
 | |
| }
 | |
| 
 | |
| void PID_autotune(float temp, int extruder, int ncycles);
 | |
| 
 | |
| #endif
 | |
| 
 |