Outdent UBL code
This commit is contained in:
		
				
					committed by
					
						 Scott Lahteine
						Scott Lahteine
					
				
			
			
				
	
			
			
			
						parent
						
							8fca59f63b
						
					
				
				
					commit
					dc0247c57e
				
			| @@ -24,234 +24,234 @@ | ||||
|  | ||||
| #if ENABLED(AUTO_BED_LEVELING_UBL) | ||||
|  | ||||
|   #include "../bedlevel.h" | ||||
| #include "../bedlevel.h" | ||||
|  | ||||
|   unified_bed_leveling ubl; | ||||
| unified_bed_leveling ubl; | ||||
|  | ||||
|   #include "../../../MarlinCore.h" | ||||
|   #include "../../../gcode/gcode.h" | ||||
| #include "../../../MarlinCore.h" | ||||
| #include "../../../gcode/gcode.h" | ||||
|  | ||||
|   #include "../../../module/settings.h" | ||||
|   #include "../../../module/planner.h" | ||||
|   #include "../../../module/motion.h" | ||||
|   #include "../../../module/probe.h" | ||||
| #include "../../../module/settings.h" | ||||
| #include "../../../module/planner.h" | ||||
| #include "../../../module/motion.h" | ||||
| #include "../../../module/probe.h" | ||||
|  | ||||
| #if ENABLED(EXTENSIBLE_UI) | ||||
|   #include "../../../lcd/extui/ui_api.h" | ||||
| #endif | ||||
|  | ||||
| #include "math.h" | ||||
|  | ||||
| void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); } | ||||
|  | ||||
| void unified_bed_leveling::report_current_mesh() { | ||||
|   if (!leveling_is_valid()) return; | ||||
|   SERIAL_ECHO_MSG("  G29 I999"); | ||||
|   GRID_LOOP(x, y) | ||||
|     if (!isnan(z_values[x][y])) { | ||||
|       SERIAL_ECHO_START(); | ||||
|       SERIAL_ECHOPAIR("  M421 I", x, " J", y); | ||||
|       SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4); | ||||
|       serial_delay(75); // Prevent Printrun from exploding | ||||
|     } | ||||
| } | ||||
|  | ||||
| void unified_bed_leveling::report_state() { | ||||
|   echo_name(); | ||||
|   SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n"); | ||||
|   serial_delay(50); | ||||
| } | ||||
|  | ||||
| int8_t unified_bed_leveling::storage_slot; | ||||
|  | ||||
| float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; | ||||
|  | ||||
| #define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST)) | ||||
|  | ||||
| const float | ||||
| unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X, | ||||
|   _GRIDPOS(X,  0), _GRIDPOS(X,  1), _GRIDPOS(X,  2), _GRIDPOS(X,  3), | ||||
|   _GRIDPOS(X,  4), _GRIDPOS(X,  5), _GRIDPOS(X,  6), _GRIDPOS(X,  7), | ||||
|   _GRIDPOS(X,  8), _GRIDPOS(X,  9), _GRIDPOS(X, 10), _GRIDPOS(X, 11), | ||||
|   _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15) | ||||
| ), | ||||
| unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y, | ||||
|   _GRIDPOS(Y,  0), _GRIDPOS(Y,  1), _GRIDPOS(Y,  2), _GRIDPOS(Y,  3), | ||||
|   _GRIDPOS(Y,  4), _GRIDPOS(Y,  5), _GRIDPOS(Y,  6), _GRIDPOS(Y,  7), | ||||
|   _GRIDPOS(Y,  8), _GRIDPOS(Y,  9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11), | ||||
|   _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15) | ||||
| ); | ||||
|  | ||||
| volatile int16_t unified_bed_leveling::encoder_diff; | ||||
|  | ||||
| unified_bed_leveling::unified_bed_leveling() { reset(); } | ||||
|  | ||||
| void unified_bed_leveling::reset() { | ||||
|   const bool was_enabled = planner.leveling_active; | ||||
|   set_bed_leveling_enabled(false); | ||||
|   storage_slot = -1; | ||||
|   ZERO(z_values); | ||||
|   #if ENABLED(EXTENSIBLE_UI) | ||||
|     #include "../../../lcd/extui/ui_api.h" | ||||
|     GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0); | ||||
|   #endif | ||||
|   if (was_enabled) report_current_position(); | ||||
| } | ||||
|  | ||||
|   #include "math.h" | ||||
| void unified_bed_leveling::invalidate() { | ||||
|   set_bed_leveling_enabled(false); | ||||
|   set_all_mesh_points_to_value(NAN); | ||||
| } | ||||
|  | ||||
|   void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); } | ||||
| void unified_bed_leveling::set_all_mesh_points_to_value(const float value) { | ||||
|   GRID_LOOP(x, y) { | ||||
|     z_values[x][y] = value; | ||||
|     TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value)); | ||||
|   } | ||||
| } | ||||
|  | ||||
|   void unified_bed_leveling::report_current_mesh() { | ||||
|     if (!leveling_is_valid()) return; | ||||
|     SERIAL_ECHO_MSG("  G29 I999"); | ||||
|     GRID_LOOP(x, y) | ||||
|       if (!isnan(z_values[x][y])) { | ||||
|         SERIAL_ECHO_START(); | ||||
|         SERIAL_ECHOPAIR("  M421 I", x, " J", y); | ||||
|         SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4); | ||||
|         serial_delay(75); // Prevent Printrun from exploding | ||||
|       } | ||||
| #if ENABLED(OPTIMIZED_MESH_STORAGE) | ||||
|  | ||||
|   constexpr float mesh_store_scaling = 1000; | ||||
|   constexpr int16_t Z_STEPS_NAN = INT16_MAX; | ||||
|  | ||||
|   void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) { | ||||
|     auto z_to_store = [](const float &z) { | ||||
|       if (isnan(z)) return Z_STEPS_NAN; | ||||
|       const int32_t z_scaled = TRUNC(z * mesh_store_scaling); | ||||
|       if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX)) | ||||
|         return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN' | ||||
|       return int16_t(z_scaled); | ||||
|     }; | ||||
|     GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]); | ||||
|   } | ||||
|  | ||||
|   void unified_bed_leveling::report_state() { | ||||
|     echo_name(); | ||||
|     SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n"); | ||||
|     serial_delay(50); | ||||
|   void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) { | ||||
|     auto store_to_z = [](const int16_t z_scaled) { | ||||
|       return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling; | ||||
|     }; | ||||
|     GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]); | ||||
|   } | ||||
|  | ||||
|   int8_t unified_bed_leveling::storage_slot; | ||||
| #endif // OPTIMIZED_MESH_STORAGE | ||||
|  | ||||
|   float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; | ||||
| static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) { | ||||
|   SERIAL_ECHO_SP(sp); | ||||
|   SERIAL_CHAR('('); | ||||
|   if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); } | ||||
|   SERIAL_ECHO(x); | ||||
|   SERIAL_CHAR(','); | ||||
|   if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); } | ||||
|   SERIAL_ECHO(y); | ||||
|   SERIAL_CHAR(')'); | ||||
|   serial_delay(5); | ||||
| } | ||||
|  | ||||
|   #define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST)) | ||||
|  | ||||
|   const float | ||||
|   unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X, | ||||
|     _GRIDPOS(X,  0), _GRIDPOS(X,  1), _GRIDPOS(X,  2), _GRIDPOS(X,  3), | ||||
|     _GRIDPOS(X,  4), _GRIDPOS(X,  5), _GRIDPOS(X,  6), _GRIDPOS(X,  7), | ||||
|     _GRIDPOS(X,  8), _GRIDPOS(X,  9), _GRIDPOS(X, 10), _GRIDPOS(X, 11), | ||||
|     _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15) | ||||
|   ), | ||||
|   unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y, | ||||
|     _GRIDPOS(Y,  0), _GRIDPOS(Y,  1), _GRIDPOS(Y,  2), _GRIDPOS(Y,  3), | ||||
|     _GRIDPOS(Y,  4), _GRIDPOS(Y,  5), _GRIDPOS(Y,  6), _GRIDPOS(Y,  7), | ||||
|     _GRIDPOS(Y,  8), _GRIDPOS(Y,  9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11), | ||||
|     _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15) | ||||
|   ); | ||||
|  | ||||
|   volatile int16_t unified_bed_leveling::encoder_diff; | ||||
|  | ||||
|   unified_bed_leveling::unified_bed_leveling() { reset(); } | ||||
|  | ||||
|   void unified_bed_leveling::reset() { | ||||
|     const bool was_enabled = planner.leveling_active; | ||||
|     set_bed_leveling_enabled(false); | ||||
|     storage_slot = -1; | ||||
|     ZERO(z_values); | ||||
|     #if ENABLED(EXTENSIBLE_UI) | ||||
|       GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0); | ||||
|     #endif | ||||
|     if (was_enabled) report_current_position(); | ||||
|   } | ||||
|  | ||||
|   void unified_bed_leveling::invalidate() { | ||||
|     set_bed_leveling_enabled(false); | ||||
|     set_all_mesh_points_to_value(NAN); | ||||
|   } | ||||
|  | ||||
|   void unified_bed_leveling::set_all_mesh_points_to_value(const float value) { | ||||
|     GRID_LOOP(x, y) { | ||||
|       z_values[x][y] = value; | ||||
|       TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value)); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   #if ENABLED(OPTIMIZED_MESH_STORAGE) | ||||
|  | ||||
|     constexpr float mesh_store_scaling = 1000; | ||||
|     constexpr int16_t Z_STEPS_NAN = INT16_MAX; | ||||
|  | ||||
|     void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) { | ||||
|       auto z_to_store = [](const float &z) { | ||||
|         if (isnan(z)) return Z_STEPS_NAN; | ||||
|         const int32_t z_scaled = TRUNC(z * mesh_store_scaling); | ||||
|         if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX)) | ||||
|           return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN' | ||||
|         return int16_t(z_scaled); | ||||
|       }; | ||||
|       GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]); | ||||
|     } | ||||
|  | ||||
|     void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) { | ||||
|       auto store_to_z = [](const int16_t z_scaled) { | ||||
|         return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling; | ||||
|       }; | ||||
|       GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]); | ||||
|     } | ||||
|  | ||||
|   #endif // OPTIMIZED_MESH_STORAGE | ||||
|  | ||||
|   static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) { | ||||
| static void serial_echo_column_labels(const uint8_t sp) { | ||||
|   SERIAL_ECHO_SP(7); | ||||
|   LOOP_L_N(i, GRID_MAX_POINTS_X) { | ||||
|     if (i < 10) SERIAL_CHAR(' '); | ||||
|     SERIAL_ECHO(i); | ||||
|     SERIAL_ECHO_SP(sp); | ||||
|     SERIAL_CHAR('('); | ||||
|     if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); } | ||||
|     SERIAL_ECHO(x); | ||||
|     SERIAL_CHAR(','); | ||||
|     if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); } | ||||
|     SERIAL_ECHO(y); | ||||
|     SERIAL_CHAR(')'); | ||||
|     serial_delay(5); | ||||
|   } | ||||
|   serial_delay(10); | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Produce one of these mesh maps: | ||||
|  *   0: Human-readable | ||||
|  *   1: CSV format for spreadsheet import | ||||
|  *   2: TODO: Display on Graphical LCD | ||||
|  *   4: Compact Human-Readable | ||||
|  */ | ||||
| void unified_bed_leveling::display_map(const int map_type) { | ||||
|   const bool was = gcode.set_autoreport_paused(true); | ||||
|  | ||||
|   constexpr uint8_t eachsp = 1 + 6 + 1,                           // [-3.567] | ||||
|                     twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each | ||||
|  | ||||
|   const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4; | ||||
|  | ||||
|   SERIAL_ECHOPGM("\nBed Topography Report"); | ||||
|   if (human) { | ||||
|     SERIAL_ECHOLNPGM(":\n"); | ||||
|     serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y); | ||||
|     serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y); | ||||
|     SERIAL_EOL(); | ||||
|     serial_echo_column_labels(eachsp - 2); | ||||
|   } | ||||
|   else { | ||||
|     SERIAL_ECHOPGM(" for "); | ||||
|     serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n")); | ||||
|   } | ||||
|  | ||||
|   static void serial_echo_column_labels(const uint8_t sp) { | ||||
|     SERIAL_ECHO_SP(7); | ||||
|   // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when | ||||
|   // moving to the XY position to be measured. This ensures better agreement between | ||||
|   // the current Z position after G28 and the mesh values. | ||||
|   const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy); | ||||
|  | ||||
|   if (!lcd) SERIAL_EOL(); | ||||
|   for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { | ||||
|  | ||||
|     // Row Label (J index) | ||||
|     if (human) { | ||||
|       if (j < 10) SERIAL_CHAR(' '); | ||||
|       SERIAL_ECHO(j); | ||||
|       SERIAL_ECHOPGM(" |"); | ||||
|     } | ||||
|  | ||||
|     // Row Values (I indexes) | ||||
|     LOOP_L_N(i, GRID_MAX_POINTS_X) { | ||||
|       if (i < 10) SERIAL_CHAR(' '); | ||||
|       SERIAL_ECHO(i); | ||||
|       SERIAL_ECHO_SP(sp); | ||||
|  | ||||
|       // Opening Brace or Space | ||||
|       const bool is_current = i == curr.x && j == curr.y; | ||||
|       if (human) SERIAL_CHAR(is_current ? '[' : ' '); | ||||
|  | ||||
|       // Z Value at current I, J | ||||
|       const float f = z_values[i][j]; | ||||
|       if (lcd) { | ||||
|         // TODO: Display on Graphical LCD | ||||
|       } | ||||
|       else if (isnan(f)) | ||||
|         serialprintPGM(human ? PSTR("  .   ") : PSTR("NAN")); | ||||
|       else if (human || csv) { | ||||
|         if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' ');  // Display sign also for positive numbers (' ' for 0) | ||||
|         SERIAL_ECHO_F(f, 3);                                    // Positive: 5 digits, Negative: 6 digits | ||||
|       } | ||||
|       if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t'); | ||||
|  | ||||
|       // Closing Brace or Space | ||||
|       if (human) SERIAL_CHAR(is_current ? ']' : ' '); | ||||
|  | ||||
|       SERIAL_FLUSHTX(); | ||||
|       idle_no_sleep(); | ||||
|     } | ||||
|     serial_delay(10); | ||||
|   } | ||||
|  | ||||
|   /** | ||||
|    * Produce one of these mesh maps: | ||||
|    *   0: Human-readable | ||||
|    *   1: CSV format for spreadsheet import | ||||
|    *   2: TODO: Display on Graphical LCD | ||||
|    *   4: Compact Human-Readable | ||||
|    */ | ||||
|   void unified_bed_leveling::display_map(const int map_type) { | ||||
|     const bool was = gcode.set_autoreport_paused(true); | ||||
|  | ||||
|     constexpr uint8_t eachsp = 1 + 6 + 1,                           // [-3.567] | ||||
|                       twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each | ||||
|  | ||||
|     const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4; | ||||
|  | ||||
|     SERIAL_ECHOPGM("\nBed Topography Report"); | ||||
|     if (human) { | ||||
|       SERIAL_ECHOLNPGM(":\n"); | ||||
|       serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y); | ||||
|       serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y); | ||||
|       SERIAL_EOL(); | ||||
|       serial_echo_column_labels(eachsp - 2); | ||||
|     } | ||||
|     else { | ||||
|       SERIAL_ECHOPGM(" for "); | ||||
|       serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n")); | ||||
|     } | ||||
|  | ||||
|     // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when | ||||
|     // moving to the XY position to be measured. This ensures better agreement between | ||||
|     // the current Z position after G28 and the mesh values. | ||||
|     const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy); | ||||
|  | ||||
|     if (!lcd) SERIAL_EOL(); | ||||
|     for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { | ||||
|  | ||||
|       // Row Label (J index) | ||||
|       if (human) { | ||||
|         if (j < 10) SERIAL_CHAR(' '); | ||||
|         SERIAL_ECHO(j); | ||||
|         SERIAL_ECHOPGM(" |"); | ||||
|       } | ||||
|  | ||||
|       // Row Values (I indexes) | ||||
|       LOOP_L_N(i, GRID_MAX_POINTS_X) { | ||||
|  | ||||
|         // Opening Brace or Space | ||||
|         const bool is_current = i == curr.x && j == curr.y; | ||||
|         if (human) SERIAL_CHAR(is_current ? '[' : ' '); | ||||
|  | ||||
|         // Z Value at current I, J | ||||
|         const float f = z_values[i][j]; | ||||
|         if (lcd) { | ||||
|           // TODO: Display on Graphical LCD | ||||
|         } | ||||
|         else if (isnan(f)) | ||||
|           serialprintPGM(human ? PSTR("  .   ") : PSTR("NAN")); | ||||
|         else if (human || csv) { | ||||
|           if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' ');  // Display sign also for positive numbers (' ' for 0) | ||||
|           SERIAL_ECHO_F(f, 3);                                    // Positive: 5 digits, Negative: 6 digits | ||||
|         } | ||||
|         if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t'); | ||||
|  | ||||
|         // Closing Brace or Space | ||||
|         if (human) SERIAL_CHAR(is_current ? ']' : ' '); | ||||
|  | ||||
|         SERIAL_FLUSHTX(); | ||||
|         idle_no_sleep(); | ||||
|       } | ||||
|       if (!lcd) SERIAL_EOL(); | ||||
|  | ||||
|       // A blank line between rows (unless compact) | ||||
|       if (j && human && !comp) SERIAL_ECHOLNPGM("   |"); | ||||
|     } | ||||
|  | ||||
|     if (human) { | ||||
|       serial_echo_column_labels(eachsp - 2); | ||||
|       SERIAL_EOL(); | ||||
|       serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y); | ||||
|       serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y); | ||||
|       SERIAL_EOL(); | ||||
|       SERIAL_EOL(); | ||||
|     } | ||||
|  | ||||
|     gcode.set_autoreport_paused(was); | ||||
|     // A blank line between rows (unless compact) | ||||
|     if (j && human && !comp) SERIAL_ECHOLNPGM("   |"); | ||||
|   } | ||||
|  | ||||
|   bool unified_bed_leveling::sanity_check() { | ||||
|     uint8_t error_flag = 0; | ||||
|  | ||||
|     if (settings.calc_num_meshes() < 1) { | ||||
|       SERIAL_ECHOLNPGM("?Mesh too big for EEPROM."); | ||||
|       error_flag++; | ||||
|     } | ||||
|  | ||||
|     return !!error_flag; | ||||
|   if (human) { | ||||
|     serial_echo_column_labels(eachsp - 2); | ||||
|     SERIAL_EOL(); | ||||
|     serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y); | ||||
|     serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y); | ||||
|     SERIAL_EOL(); | ||||
|     SERIAL_EOL(); | ||||
|   } | ||||
|  | ||||
|   gcode.set_autoreport_paused(was); | ||||
| } | ||||
|  | ||||
| bool unified_bed_leveling::sanity_check() { | ||||
|   uint8_t error_flag = 0; | ||||
|  | ||||
|   if (settings.calc_num_meshes() < 1) { | ||||
|     SERIAL_ECHOLNPGM("?Mesh too big for EEPROM."); | ||||
|     error_flag++; | ||||
|   } | ||||
|  | ||||
|   return !!error_flag; | ||||
| } | ||||
|  | ||||
| #endif // AUTO_BED_LEVELING_UBL | ||||
|   | ||||
| @@ -46,275 +46,275 @@ struct mesh_index_pair; | ||||
| #endif | ||||
|  | ||||
| class unified_bed_leveling { | ||||
|   private: | ||||
| private: | ||||
|  | ||||
|     static int    g29_verbose_level, | ||||
|                   g29_phase_value, | ||||
|                   g29_repetition_cnt, | ||||
|                   g29_storage_slot, | ||||
|                   g29_map_type; | ||||
|     static bool   g29_c_flag; | ||||
|     static float  g29_card_thickness, | ||||
|                   g29_constant; | ||||
|     static xy_pos_t g29_pos; | ||||
|     static xy_bool_t xy_seen; | ||||
|   static int    g29_verbose_level, | ||||
|                 g29_phase_value, | ||||
|                 g29_repetition_cnt, | ||||
|                 g29_storage_slot, | ||||
|                 g29_map_type; | ||||
|   static bool   g29_c_flag; | ||||
|   static float  g29_card_thickness, | ||||
|                 g29_constant; | ||||
|   static xy_pos_t g29_pos; | ||||
|   static xy_bool_t xy_seen; | ||||
|  | ||||
|     #if HAS_BED_PROBE | ||||
|       static int  g29_grid_size; | ||||
|     #endif | ||||
|   #if HAS_BED_PROBE | ||||
|     static int  g29_grid_size; | ||||
|   #endif | ||||
|  | ||||
|     #if IS_NEWPANEL | ||||
|       static void move_z_with_encoder(const float &multiplier); | ||||
|       static float measure_point_with_encoder(); | ||||
|       static float measure_business_card_thickness(); | ||||
|       static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; | ||||
|       static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; | ||||
|     #endif | ||||
|   #if IS_NEWPANEL | ||||
|     static void move_z_with_encoder(const float &multiplier); | ||||
|     static float measure_point_with_encoder(); | ||||
|     static float measure_business_card_thickness(); | ||||
|     static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; | ||||
|     static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; | ||||
|   #endif | ||||
|  | ||||
|     static bool g29_parameter_parsing() _O0; | ||||
|     static void shift_mesh_height(); | ||||
|     static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; | ||||
|     static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); | ||||
|     static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); | ||||
|     static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); | ||||
|     static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { | ||||
|       return smart_fill_one(pos.x, pos.y, dir.x, dir.y); | ||||
|     } | ||||
|     static void smart_fill_mesh(); | ||||
|   static bool g29_parameter_parsing() _O0; | ||||
|   static void shift_mesh_height(); | ||||
|   static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; | ||||
|   static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); | ||||
|   static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); | ||||
|   static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); | ||||
|   static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { | ||||
|     return smart_fill_one(pos.x, pos.y, dir.x, dir.y); | ||||
|   } | ||||
|   static void smart_fill_mesh(); | ||||
|  | ||||
|     #if ENABLED(UBL_DEVEL_DEBUGGING) | ||||
|       static void g29_what_command(); | ||||
|       static void g29_eeprom_dump(); | ||||
|       static void g29_compare_current_mesh_to_stored_mesh(); | ||||
|     #endif | ||||
|   #if ENABLED(UBL_DEVEL_DEBUGGING) | ||||
|     static void g29_what_command(); | ||||
|     static void g29_eeprom_dump(); | ||||
|     static void g29_compare_current_mesh_to_stored_mesh(); | ||||
|   #endif | ||||
|  | ||||
|   public: | ||||
| public: | ||||
|  | ||||
|     static void echo_name(); | ||||
|     static void report_current_mesh(); | ||||
|     static void report_state(); | ||||
|     static void save_ubl_active_state_and_disable(); | ||||
|     static void restore_ubl_active_state_and_leave(); | ||||
|     static void display_map(const int) _O0; | ||||
|     static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; | ||||
|     static mesh_index_pair find_furthest_invalid_mesh_point() _O0; | ||||
|     static void reset(); | ||||
|     static void invalidate(); | ||||
|     static void set_all_mesh_points_to_value(const float value); | ||||
|     static void adjust_mesh_to_mean(const bool cflag, const float value); | ||||
|     static bool sanity_check(); | ||||
|   static void echo_name(); | ||||
|   static void report_current_mesh(); | ||||
|   static void report_state(); | ||||
|   static void save_ubl_active_state_and_disable(); | ||||
|   static void restore_ubl_active_state_and_leave(); | ||||
|   static void display_map(const int) _O0; | ||||
|   static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; | ||||
|   static mesh_index_pair find_furthest_invalid_mesh_point() _O0; | ||||
|   static void reset(); | ||||
|   static void invalidate(); | ||||
|   static void set_all_mesh_points_to_value(const float value); | ||||
|   static void adjust_mesh_to_mean(const bool cflag, const float value); | ||||
|   static bool sanity_check(); | ||||
|  | ||||
|     static void G29() _O0;                          // O0 for no optimization | ||||
|     static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 | ||||
|   static void G29() _O0;                          // O0 for no optimization | ||||
|   static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 | ||||
|  | ||||
|     static int8_t storage_slot; | ||||
|   static int8_t storage_slot; | ||||
|  | ||||
|     static bed_mesh_t z_values; | ||||
|     #if ENABLED(OPTIMIZED_MESH_STORAGE) | ||||
|       static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values); | ||||
|       static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values); | ||||
|     #endif | ||||
|     static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], | ||||
|                        _mesh_index_to_ypos[GRID_MAX_POINTS_Y]; | ||||
|   static bed_mesh_t z_values; | ||||
|   #if ENABLED(OPTIMIZED_MESH_STORAGE) | ||||
|     static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values); | ||||
|     static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values); | ||||
|   #endif | ||||
|   static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], | ||||
|                      _mesh_index_to_ypos[GRID_MAX_POINTS_Y]; | ||||
|  | ||||
|     #if HAS_LCD_MENU | ||||
|       static bool lcd_map_control; | ||||
|       static void steppers_were_disabled(); | ||||
|     #else | ||||
|       static inline void steppers_were_disabled() {} | ||||
|     #endif | ||||
|   #if HAS_LCD_MENU | ||||
|     static bool lcd_map_control; | ||||
|     static void steppers_were_disabled(); | ||||
|   #else | ||||
|     static inline void steppers_were_disabled() {} | ||||
|   #endif | ||||
|  | ||||
|     static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time | ||||
|   static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time | ||||
|  | ||||
|     unified_bed_leveling(); | ||||
|   unified_bed_leveling(); | ||||
|  | ||||
|     FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } | ||||
|   FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } | ||||
|  | ||||
|     static int8_t cell_index_x_raw(const float &x) { | ||||
|       return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)); | ||||
|   static int8_t cell_index_x_raw(const float &x) { | ||||
|     return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)); | ||||
|   } | ||||
|  | ||||
|   static int8_t cell_index_y_raw(const float &y) { | ||||
|     return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)); | ||||
|   } | ||||
|  | ||||
|   static int8_t cell_index_x_valid(const float &x) { | ||||
|     return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2)); | ||||
|   } | ||||
|  | ||||
|   static int8_t cell_index_y_valid(const float &y) { | ||||
|     return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2)); | ||||
|   } | ||||
|  | ||||
|   static int8_t cell_index_x(const float &x) { | ||||
|     return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2); | ||||
|   } | ||||
|  | ||||
|   static int8_t cell_index_y(const float &y) { | ||||
|     return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2); | ||||
|   } | ||||
|  | ||||
|   static inline xy_int8_t cell_indexes(const float &x, const float &y) { | ||||
|     return { cell_index_x(x), cell_index_y(y) }; | ||||
|   } | ||||
|   static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } | ||||
|  | ||||
|   static int8_t closest_x_index(const float &x) { | ||||
|     const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); | ||||
|     return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; | ||||
|   } | ||||
|   static int8_t closest_y_index(const float &y) { | ||||
|     const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); | ||||
|     return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; | ||||
|   } | ||||
|   static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { | ||||
|     return { closest_x_index(xy.x), closest_y_index(xy.y) }; | ||||
|   } | ||||
|  | ||||
|   /** | ||||
|    *                           z2   --| | ||||
|    *                 z0        |      | | ||||
|    *                  |        |      + (z2-z1) | ||||
|    *   z1             |        |      | | ||||
|    * ---+-------------+--------+--  --| | ||||
|    *   a1            a0        a2 | ||||
|    *    |<---delta_a---------->| | ||||
|    * | ||||
|    *  calc_z0 is the basis for all the Mesh Based correction. It is used to | ||||
|    *  find the expected Z Height at a position between two known Z-Height locations. | ||||
|    * | ||||
|    *  It is fairly expensive with its 4 floating point additions and 2 floating point | ||||
|    *  multiplications. | ||||
|    */ | ||||
|   FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { | ||||
|     return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); | ||||
|   } | ||||
|  | ||||
|   #ifdef UBL_Z_RAISE_WHEN_OFF_MESH | ||||
|     #define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH | ||||
|   #else | ||||
|     #define _UBL_OUTER_Z_RAISE NAN | ||||
|   #endif | ||||
|  | ||||
|   /** | ||||
|    * z_correction_for_x_on_horizontal_mesh_line is an optimization for | ||||
|    * the case where the printer is making a vertical line that only crosses horizontal mesh lines. | ||||
|    */ | ||||
|   static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { | ||||
|     if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { | ||||
|  | ||||
|       if (DEBUGGING(LEVELING)) { | ||||
|         if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); | ||||
|         DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); | ||||
|       } | ||||
|  | ||||
|       // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. | ||||
|       return _UBL_OUTER_Z_RAISE; | ||||
|     } | ||||
|  | ||||
|     static int8_t cell_index_y_raw(const float &y) { | ||||
|       return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)); | ||||
|     const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), | ||||
|                 z1 = z_values[x1_i][yi]; | ||||
|  | ||||
|     return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array | ||||
|                                                                                     // If it is, it is clamped to the last element of the | ||||
|                                                                                     // z_values[][] array and no correction is applied. | ||||
|   } | ||||
|  | ||||
|   // | ||||
|   // See comments above for z_correction_for_x_on_horizontal_mesh_line | ||||
|   // | ||||
|   static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { | ||||
|     if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { | ||||
|  | ||||
|       if (DEBUGGING(LEVELING)) { | ||||
|         if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); | ||||
|         DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); | ||||
|       } | ||||
|  | ||||
|       // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. | ||||
|       return _UBL_OUTER_Z_RAISE; | ||||
|     } | ||||
|  | ||||
|     static int8_t cell_index_x_valid(const float &x) { | ||||
|       return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2)); | ||||
|     } | ||||
|     const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), | ||||
|                 z1 = z_values[xi][y1_i]; | ||||
|  | ||||
|     static int8_t cell_index_y_valid(const float &y) { | ||||
|       return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2)); | ||||
|     } | ||||
|     return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array | ||||
|                                                                                     // If it is, it is clamped to the last element of the | ||||
|                                                                                     // z_values[][] array and no correction is applied. | ||||
|   } | ||||
|  | ||||
|     static int8_t cell_index_x(const float &x) { | ||||
|       return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2); | ||||
|     } | ||||
|  | ||||
|     static int8_t cell_index_y(const float &y) { | ||||
|       return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2); | ||||
|     } | ||||
|  | ||||
|     static inline xy_int8_t cell_indexes(const float &x, const float &y) { | ||||
|       return { cell_index_x(x), cell_index_y(y) }; | ||||
|     } | ||||
|     static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } | ||||
|  | ||||
|     static int8_t closest_x_index(const float &x) { | ||||
|       const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); | ||||
|       return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; | ||||
|     } | ||||
|     static int8_t closest_y_index(const float &y) { | ||||
|       const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); | ||||
|       return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; | ||||
|     } | ||||
|     static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { | ||||
|       return { closest_x_index(xy.x), closest_y_index(xy.y) }; | ||||
|     } | ||||
|   /** | ||||
|    * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first | ||||
|    * does a linear interpolation along both of the bounding X-Mesh-Lines to find the | ||||
|    * Z-Height at both ends. Then it does a linear interpolation of these heights based | ||||
|    * on the Y position within the cell. | ||||
|    */ | ||||
|   static float get_z_correction(const float &rx0, const float &ry0) { | ||||
|     const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped | ||||
|  | ||||
|     /** | ||||
|      *                           z2   --| | ||||
|      *                 z0        |      | | ||||
|      *                  |        |      + (z2-z1) | ||||
|      *   z1             |        |      | | ||||
|      * ---+-------------+--------+--  --| | ||||
|      *   a1            a0        a2 | ||||
|      *    |<---delta_a---------->| | ||||
|      * | ||||
|      *  calc_z0 is the basis for all the Mesh Based correction. It is used to | ||||
|      *  find the expected Z Height at a position between two known Z-Height locations. | ||||
|      * | ||||
|      *  It is fairly expensive with its 4 floating point additions and 2 floating point | ||||
|      *  multiplications. | ||||
|      * Check if the requested location is off the mesh.  If so, and | ||||
|      * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. | ||||
|      */ | ||||
|     FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { | ||||
|       return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); | ||||
|     } | ||||
|  | ||||
|     #ifdef UBL_Z_RAISE_WHEN_OFF_MESH | ||||
|       #define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH | ||||
|     #else | ||||
|       #define _UBL_OUTER_Z_RAISE NAN | ||||
|       if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) | ||||
|         return UBL_Z_RAISE_WHEN_OFF_MESH; | ||||
|     #endif | ||||
|  | ||||
|     /** | ||||
|      * z_correction_for_x_on_horizontal_mesh_line is an optimization for | ||||
|      * the case where the printer is making a vertical line that only crosses horizontal mesh lines. | ||||
|      */ | ||||
|     static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { | ||||
|       if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { | ||||
|     const float z1 = calc_z0(rx0, | ||||
|                              mesh_index_to_xpos(cx), z_values[cx][cy], | ||||
|                              mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); | ||||
|  | ||||
|         if (DEBUGGING(LEVELING)) { | ||||
|           if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); | ||||
|           DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); | ||||
|         } | ||||
|     const float z2 = calc_z0(rx0, | ||||
|                              mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], | ||||
|                              mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); | ||||
|  | ||||
|         // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. | ||||
|         return _UBL_OUTER_Z_RAISE; | ||||
|       } | ||||
|     float z0 = calc_z0(ry0, | ||||
|                        mesh_index_to_ypos(cy), z1, | ||||
|                        mesh_index_to_ypos(cy + 1), z2); | ||||
|  | ||||
|       const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), | ||||
|                   z1 = z_values[x1_i][yi]; | ||||
|  | ||||
|       return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array | ||||
|                                                                                       // If it is, it is clamped to the last element of the | ||||
|                                                                                       // z_values[][] array and no correction is applied. | ||||
|     if (DEBUGGING(MESH_ADJUST)) { | ||||
|       DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); | ||||
|       DEBUG_CHAR(','); DEBUG_ECHO(ry0); | ||||
|       DEBUG_ECHOPAIR_F(") = ", z0, 6); | ||||
|       DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); | ||||
|     } | ||||
|  | ||||
|     // | ||||
|     // See comments above for z_correction_for_x_on_horizontal_mesh_line | ||||
|     // | ||||
|     static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { | ||||
|       if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { | ||||
|  | ||||
|         if (DEBUGGING(LEVELING)) { | ||||
|           if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); | ||||
|           DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); | ||||
|         } | ||||
|  | ||||
|         // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. | ||||
|         return _UBL_OUTER_Z_RAISE; | ||||
|       } | ||||
|  | ||||
|       const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), | ||||
|                   z1 = z_values[xi][y1_i]; | ||||
|  | ||||
|       return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array | ||||
|                                                                                       // If it is, it is clamped to the last element of the | ||||
|                                                                                       // z_values[][] array and no correction is applied. | ||||
|     } | ||||
|  | ||||
|     /** | ||||
|      * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first | ||||
|      * does a linear interpolation along both of the bounding X-Mesh-Lines to find the | ||||
|      * Z-Height at both ends. Then it does a linear interpolation of these heights based | ||||
|      * on the Y position within the cell. | ||||
|      */ | ||||
|     static float get_z_correction(const float &rx0, const float &ry0) { | ||||
|       const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped | ||||
|  | ||||
|       /** | ||||
|        * Check if the requested location is off the mesh.  If so, and | ||||
|        * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. | ||||
|        */ | ||||
|       #ifdef UBL_Z_RAISE_WHEN_OFF_MESH | ||||
|         if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) | ||||
|           return UBL_Z_RAISE_WHEN_OFF_MESH; | ||||
|       #endif | ||||
|  | ||||
|       const float z1 = calc_z0(rx0, | ||||
|                                mesh_index_to_xpos(cx), z_values[cx][cy], | ||||
|                                mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); | ||||
|  | ||||
|       const float z2 = calc_z0(rx0, | ||||
|                                mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], | ||||
|                                mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); | ||||
|  | ||||
|       float z0 = calc_z0(ry0, | ||||
|                          mesh_index_to_ypos(cy), z1, | ||||
|                          mesh_index_to_ypos(cy + 1), z2); | ||||
|     if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN | ||||
|       z0 = 0.0;      // in ubl.z_values[][] and propagate through the | ||||
|                      // calculations. If our correction is NAN, we throw it out | ||||
|                      // because part of the Mesh is undefined and we don't have the | ||||
|                      // information we need to complete the height correction. | ||||
|  | ||||
|       if (DEBUGGING(MESH_ADJUST)) { | ||||
|         DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); | ||||
|         DEBUG_CHAR(','); DEBUG_ECHO(ry0); | ||||
|         DEBUG_ECHOPAIR_F(") = ", z0, 6); | ||||
|         DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); | ||||
|         DEBUG_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", rx0); | ||||
|         DEBUG_CHAR(','); | ||||
|         DEBUG_ECHO(ry0); | ||||
|         DEBUG_CHAR(')'); | ||||
|         DEBUG_EOL(); | ||||
|       } | ||||
|  | ||||
|       if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN | ||||
|         z0 = 0.0;      // in ubl.z_values[][] and propagate through the | ||||
|                        // calculations. If our correction is NAN, we throw it out | ||||
|                        // because part of the Mesh is undefined and we don't have the | ||||
|                        // information we need to complete the height correction. | ||||
|  | ||||
|         if (DEBUGGING(MESH_ADJUST)) { | ||||
|           DEBUG_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", rx0); | ||||
|           DEBUG_CHAR(','); | ||||
|           DEBUG_ECHO(ry0); | ||||
|           DEBUG_CHAR(')'); | ||||
|           DEBUG_EOL(); | ||||
|         } | ||||
|       } | ||||
|       return z0; | ||||
|     } | ||||
|     static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } | ||||
|     return z0; | ||||
|   } | ||||
|   static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } | ||||
|  | ||||
|     static inline float mesh_index_to_xpos(const uint8_t i) { | ||||
|       return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); | ||||
|     } | ||||
|     static inline float mesh_index_to_ypos(const uint8_t i) { | ||||
|       return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); | ||||
|     } | ||||
|   static inline float mesh_index_to_xpos(const uint8_t i) { | ||||
|     return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); | ||||
|   } | ||||
|   static inline float mesh_index_to_ypos(const uint8_t i) { | ||||
|     return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); | ||||
|   } | ||||
|  | ||||
|     #if UBL_SEGMENTED | ||||
|       static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); | ||||
|     #else | ||||
|       static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); | ||||
|     #endif | ||||
|   #if UBL_SEGMENTED | ||||
|     static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); | ||||
|   #else | ||||
|     static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); | ||||
|   #endif | ||||
|  | ||||
|     static inline bool mesh_is_valid() { | ||||
|       GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; | ||||
|       return true; | ||||
|     } | ||||
|   static inline bool mesh_is_valid() { | ||||
|     GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; | ||||
|     return true; | ||||
|   } | ||||
|  | ||||
| }; // class unified_bed_leveling | ||||
|  | ||||
|   | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user