Additional UBL fixes, optimizations
This commit is contained in:
@ -47,8 +47,8 @@
|
||||
#define OOZE_AMOUNT 0.3
|
||||
|
||||
#define SIZE_OF_INTERSECTION_CIRCLES 5
|
||||
#define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
|
||||
// less than SIZE_OR_INTERSECTION_CIRCLES
|
||||
#define SIZE_OF_CROSSHAIRS 3 // crosshairs inside the circle. This number should be
|
||||
// less than SIZE_OR_INTERSECTION_CIRCLES
|
||||
|
||||
/**
|
||||
* Roxy's G26 Mesh Validation Tool
|
||||
@ -132,12 +132,12 @@
|
||||
void line_to_destination(float );
|
||||
void gcode_G28();
|
||||
void sync_plan_position_e();
|
||||
void un_retract_filament();
|
||||
void retract_filament();
|
||||
void un_retract_filament(float where[XYZE]);
|
||||
void retract_filament(float where[XYZE]);
|
||||
void look_for_lines_to_connect();
|
||||
bool parse_G26_parameters();
|
||||
void move_to(const float&, const float&, const float&, const float&) ;
|
||||
void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
|
||||
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
||||
bool turn_on_heaters();
|
||||
bool prime_nozzle();
|
||||
void chirp_at_user();
|
||||
@ -154,8 +154,6 @@
|
||||
|
||||
float valid_trig_angle(float);
|
||||
mesh_index_pair find_closest_circle_to_print(float, float);
|
||||
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
|
||||
|
||||
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
||||
retraction_multiplier = RETRACTION_MULTIPLIER,
|
||||
@ -359,7 +357,7 @@
|
||||
lcd_reset_alert_level();
|
||||
lcd_setstatuspgm(PSTR("Leaving G26"));
|
||||
|
||||
retract_filament();
|
||||
retract_filament(destination);
|
||||
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
|
||||
|
||||
//debug_current_and_destination((char*)"ready to do Z-Raise.");
|
||||
@ -445,18 +443,12 @@
|
||||
// We found two circles that need a horizontal line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
||||
ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
||||
|
||||
ex = ubl.mesh_index_to_xpos[i + 1];
|
||||
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
|
||||
ey = sy;
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
||||
@ -468,7 +460,7 @@
|
||||
//debug_current_and_destination((char*)"Connecting horizontal line.");
|
||||
}
|
||||
|
||||
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
||||
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
}
|
||||
}
|
||||
@ -482,17 +474,11 @@
|
||||
// We found two circles that need a vertical line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
|
||||
sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
||||
ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
||||
|
||||
ex = sx;
|
||||
ey = ubl.mesh_index_to_ypos[j + 1];
|
||||
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
@ -504,8 +490,8 @@
|
||||
SERIAL_EOL;
|
||||
debug_current_and_destination((char*)"Connecting vertical line.");
|
||||
}
|
||||
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
|
||||
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
||||
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -533,7 +519,7 @@
|
||||
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
|
||||
destination[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
ubl_line_to_destination(feed_value, 0);
|
||||
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
@ -553,7 +539,7 @@
|
||||
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
|
||||
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
ubl_line_to_destination(feed_value, 0);
|
||||
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
|
||||
|
||||
@ -562,18 +548,18 @@
|
||||
|
||||
}
|
||||
|
||||
void retract_filament() {
|
||||
void retract_filament(float where[XYZE]) {
|
||||
if (!g26_retracted) { // Only retract if we are not already retracted!
|
||||
g26_retracted = true;
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||
}
|
||||
}
|
||||
|
||||
void un_retract_filament() {
|
||||
void un_retract_filament(float where[XYZE]) {
|
||||
if (g26_retracted) { // Only un-retract if we are retracted.
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
g26_retracted = false;
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||
}
|
||||
@ -594,7 +580,7 @@
|
||||
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
||||
* cases where the optimization comes into play.
|
||||
*/
|
||||
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
|
||||
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
||||
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
|
||||
dy_s = current_position[Y_AXIS] - sy,
|
||||
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
|
||||
@ -603,31 +589,26 @@
|
||||
dy_e = current_position[Y_AXIS] - ey,
|
||||
dist_end = HYPOT2(dx_e, dy_e),
|
||||
|
||||
dx = ex - sx,
|
||||
dy = ey - sy,
|
||||
line_length = HYPOT(dx, dy);
|
||||
line_length = HYPOT(ex - sx, ey - sy);
|
||||
|
||||
// If the end point of the line is closer to the nozzle, we are going to
|
||||
// flip the direction of this line. We will print it from the end to the start.
|
||||
// On very small lines we don't do the optimization because it just isn't worth it.
|
||||
//
|
||||
// If the end point of the line is closer to the nozzle, flip the direction,
|
||||
// moving from the end to the start. On very small lines the optimization isn't worth it.
|
||||
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
||||
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||
return;
|
||||
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||
}
|
||||
|
||||
// Now decide if we should retract.
|
||||
// Decide whether to retract.
|
||||
|
||||
if (dist_start > 2.0) {
|
||||
retract_filament();
|
||||
retract_filament(destination);
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
|
||||
}
|
||||
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
|
||||
|
||||
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
|
||||
|
||||
un_retract_filament();
|
||||
un_retract_filament(destination);
|
||||
|
||||
//if (ubl.g26_debug_flag) {
|
||||
// SERIAL_ECHOLNPGM(" doing printing move.");
|
||||
@ -814,6 +795,7 @@
|
||||
lcd_setstatuspgm(PSTR(""));
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
return UBL_OK;
|
||||
}
|
||||
|
||||
@ -832,9 +814,8 @@
|
||||
|
||||
set_destination_to_current();
|
||||
|
||||
un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
|
||||
// retracted(). We are here because we want to prime the nozzle.
|
||||
// So let's just unretract just to be sure.
|
||||
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
||||
|
||||
while (!ubl_lcd_clicked()) {
|
||||
chirp_at_user();
|
||||
destination[E_AXIS] += 0.25;
|
||||
@ -842,10 +823,7 @@
|
||||
Total_Prime += 0.25;
|
||||
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
|
||||
#endif
|
||||
ubl_line_to_destination(
|
||||
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||
);
|
||||
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
|
||||
|
||||
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
|
||||
// but because the planner has a buffer, we won't be able
|
||||
@ -874,13 +852,10 @@
|
||||
#endif
|
||||
set_destination_to_current();
|
||||
destination[E_AXIS] += prime_length;
|
||||
ubl_line_to_destination(
|
||||
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||
);
|
||||
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
retract_filament();
|
||||
retract_filament(destination);
|
||||
}
|
||||
|
||||
return UBL_OK;
|
||||
|
Reference in New Issue
Block a user