Additional UBL fixes, optimizations
This commit is contained in:
parent
a5e085cbea
commit
342ee458ae
@ -120,7 +120,7 @@ script:
|
||||
# Test a simple build of AUTO_BED_LEVELING_UBL
|
||||
#
|
||||
- restore_configs
|
||||
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
|
||||
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
|
||||
- build_marlin
|
||||
#
|
||||
# Test a Sled Z Probe
|
||||
|
@ -47,8 +47,8 @@
|
||||
#define OOZE_AMOUNT 0.3
|
||||
|
||||
#define SIZE_OF_INTERSECTION_CIRCLES 5
|
||||
#define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
|
||||
// less than SIZE_OR_INTERSECTION_CIRCLES
|
||||
#define SIZE_OF_CROSSHAIRS 3 // crosshairs inside the circle. This number should be
|
||||
// less than SIZE_OR_INTERSECTION_CIRCLES
|
||||
|
||||
/**
|
||||
* Roxy's G26 Mesh Validation Tool
|
||||
@ -132,12 +132,12 @@
|
||||
void line_to_destination(float );
|
||||
void gcode_G28();
|
||||
void sync_plan_position_e();
|
||||
void un_retract_filament();
|
||||
void retract_filament();
|
||||
void un_retract_filament(float where[XYZE]);
|
||||
void retract_filament(float where[XYZE]);
|
||||
void look_for_lines_to_connect();
|
||||
bool parse_G26_parameters();
|
||||
void move_to(const float&, const float&, const float&, const float&) ;
|
||||
void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
|
||||
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
||||
bool turn_on_heaters();
|
||||
bool prime_nozzle();
|
||||
void chirp_at_user();
|
||||
@ -154,8 +154,6 @@
|
||||
|
||||
float valid_trig_angle(float);
|
||||
mesh_index_pair find_closest_circle_to_print(float, float);
|
||||
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
|
||||
|
||||
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
||||
retraction_multiplier = RETRACTION_MULTIPLIER,
|
||||
@ -359,7 +357,7 @@
|
||||
lcd_reset_alert_level();
|
||||
lcd_setstatuspgm(PSTR("Leaving G26"));
|
||||
|
||||
retract_filament();
|
||||
retract_filament(destination);
|
||||
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
|
||||
|
||||
//debug_current_and_destination((char*)"ready to do Z-Raise.");
|
||||
@ -445,18 +443,12 @@
|
||||
// We found two circles that need a horizontal line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
||||
ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
||||
|
||||
ex = ubl.mesh_index_to_xpos[i + 1];
|
||||
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
|
||||
ey = sy;
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
||||
@ -468,7 +460,7 @@
|
||||
//debug_current_and_destination((char*)"Connecting horizontal line.");
|
||||
}
|
||||
|
||||
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
||||
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
}
|
||||
}
|
||||
@ -482,17 +474,11 @@
|
||||
// We found two circles that need a vertical line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
|
||||
sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
||||
ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
||||
|
||||
ex = sx;
|
||||
ey = ubl.mesh_index_to_ypos[j + 1];
|
||||
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
@ -504,8 +490,8 @@
|
||||
SERIAL_EOL;
|
||||
debug_current_and_destination((char*)"Connecting vertical line.");
|
||||
}
|
||||
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
|
||||
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
||||
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -533,7 +519,7 @@
|
||||
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
|
||||
destination[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
ubl_line_to_destination(feed_value, 0);
|
||||
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
@ -553,7 +539,7 @@
|
||||
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
|
||||
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
ubl_line_to_destination(feed_value, 0);
|
||||
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
|
||||
|
||||
@ -562,18 +548,18 @@
|
||||
|
||||
}
|
||||
|
||||
void retract_filament() {
|
||||
void retract_filament(float where[XYZE]) {
|
||||
if (!g26_retracted) { // Only retract if we are not already retracted!
|
||||
g26_retracted = true;
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||
}
|
||||
}
|
||||
|
||||
void un_retract_filament() {
|
||||
void un_retract_filament(float where[XYZE]) {
|
||||
if (g26_retracted) { // Only un-retract if we are retracted.
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
g26_retracted = false;
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||
}
|
||||
@ -594,7 +580,7 @@
|
||||
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
||||
* cases where the optimization comes into play.
|
||||
*/
|
||||
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
|
||||
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
||||
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
|
||||
dy_s = current_position[Y_AXIS] - sy,
|
||||
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
|
||||
@ -603,31 +589,26 @@
|
||||
dy_e = current_position[Y_AXIS] - ey,
|
||||
dist_end = HYPOT2(dx_e, dy_e),
|
||||
|
||||
dx = ex - sx,
|
||||
dy = ey - sy,
|
||||
line_length = HYPOT(dx, dy);
|
||||
line_length = HYPOT(ex - sx, ey - sy);
|
||||
|
||||
// If the end point of the line is closer to the nozzle, we are going to
|
||||
// flip the direction of this line. We will print it from the end to the start.
|
||||
// On very small lines we don't do the optimization because it just isn't worth it.
|
||||
//
|
||||
// If the end point of the line is closer to the nozzle, flip the direction,
|
||||
// moving from the end to the start. On very small lines the optimization isn't worth it.
|
||||
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
||||
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||
return;
|
||||
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||
}
|
||||
|
||||
// Now decide if we should retract.
|
||||
// Decide whether to retract.
|
||||
|
||||
if (dist_start > 2.0) {
|
||||
retract_filament();
|
||||
retract_filament(destination);
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
|
||||
}
|
||||
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
|
||||
|
||||
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
|
||||
|
||||
un_retract_filament();
|
||||
un_retract_filament(destination);
|
||||
|
||||
//if (ubl.g26_debug_flag) {
|
||||
// SERIAL_ECHOLNPGM(" doing printing move.");
|
||||
@ -814,6 +795,7 @@
|
||||
lcd_setstatuspgm(PSTR(""));
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
return UBL_OK;
|
||||
}
|
||||
|
||||
@ -832,9 +814,8 @@
|
||||
|
||||
set_destination_to_current();
|
||||
|
||||
un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
|
||||
// retracted(). We are here because we want to prime the nozzle.
|
||||
// So let's just unretract just to be sure.
|
||||
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
||||
|
||||
while (!ubl_lcd_clicked()) {
|
||||
chirp_at_user();
|
||||
destination[E_AXIS] += 0.25;
|
||||
@ -842,10 +823,7 @@
|
||||
Total_Prime += 0.25;
|
||||
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
|
||||
#endif
|
||||
ubl_line_to_destination(
|
||||
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||
);
|
||||
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
|
||||
|
||||
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
|
||||
// but because the planner has a buffer, we won't be able
|
||||
@ -874,13 +852,10 @@
|
||||
#endif
|
||||
set_destination_to_current();
|
||||
destination[E_AXIS] += prime_length;
|
||||
ubl_line_to_destination(
|
||||
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||
);
|
||||
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
retract_filament();
|
||||
retract_filament(destination);
|
||||
}
|
||||
|
||||
return UBL_OK;
|
||||
|
@ -9901,11 +9901,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
if (ubl.state.active) {
|
||||
|
||||
// ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
||||
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
|
||||
MMS_SCALED(feedrate_mm_s), active_extruder);
|
||||
ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
72
Marlin/UBL.h
72
Marlin/UBL.h
@ -43,7 +43,7 @@
|
||||
bool ubl_lcd_clicked();
|
||||
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
|
||||
void debug_current_and_destination(char *title);
|
||||
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
void ubl_line_to_destination(const float&, uint8_t);
|
||||
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
|
||||
vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
|
||||
float measure_business_card_thickness(const float&);
|
||||
@ -193,22 +193,16 @@
|
||||
* multiplications.
|
||||
*/
|
||||
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1),
|
||||
delta_a = (a0 - a1) / (a2 - a1);
|
||||
return z1 + delta_a * delta_z;
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
||||
}
|
||||
|
||||
/**
|
||||
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||
* point operations.
|
||||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
|
||||
*/
|
||||
static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
|
||||
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
|
||||
SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
@ -216,20 +210,18 @@
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi],
|
||||
z2 = z_values[x1_i + 1][yi],
|
||||
dz = (z2 - z1);
|
||||
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi];
|
||||
|
||||
return z1 + xratio * dz;
|
||||
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
|
||||
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0);
|
||||
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
@ -237,12 +229,10 @@
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i],
|
||||
z2 = z_values[xi][y1_i + 1],
|
||||
dz = (z2 - z1);
|
||||
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i];
|
||||
|
||||
return z1 + yratio * dz;
|
||||
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -251,14 +241,14 @@
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const float &x0, const float &y0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(y0));
|
||||
static float get_z_correction(const float &lx0, const float &ly0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
|
||||
|
||||
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||
if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||
SERIAL_ECHOPAIR(", y0=", y0);
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
|
||||
SERIAL_ECHOPAIR(", ly0=", ly0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
|
||||
@ -269,21 +259,21 @@
|
||||
return 0.0; // this used to return state.z_offset
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(x0),
|
||||
const float z1 = calc_z0(RAW_X_POSITION(lx0),
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy],
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(RAW_X_POSITION(x0),
|
||||
z2 = calc_z0(RAW_X_POSITION(lx0),
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
|
||||
float z0 = calc_z0(RAW_Y_POSITION(y0),
|
||||
float z0 = calc_z0(RAW_Y_POSITION(ly0),
|
||||
mesh_index_to_ypos[cy], z1,
|
||||
mesh_index_to_ypos[cy + 1], z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
|
||||
SERIAL_CHAR(',')
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_ECHO(ly0);
|
||||
SERIAL_ECHOPGM(") = ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
@ -305,9 +295,9 @@
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_ECHO(ly0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
}
|
||||
@ -327,7 +317,7 @@
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
||||
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
|
||||
static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
|
@ -203,7 +203,7 @@
|
||||
|
||||
const float f = z_values[i][j];
|
||||
if (isnan(f)) {
|
||||
serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
|
||||
serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
|
||||
}
|
||||
else {
|
||||
// if we don't do this, the columns won't line up nicely
|
||||
|
@ -515,16 +515,23 @@
|
||||
}
|
||||
|
||||
if (code_seen('T')) {
|
||||
float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level),
|
||||
z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level),
|
||||
z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level);
|
||||
const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
|
||||
lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
|
||||
lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
|
||||
ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
|
||||
ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
|
||||
ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
|
||||
|
||||
float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
|
||||
z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
|
||||
z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level);
|
||||
|
||||
// We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
||||
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
|
||||
|
||||
z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
|
||||
z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
|
||||
z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
|
||||
z1 -= ubl.get_z_correction(lx1, ly1);
|
||||
z2 -= ubl.get_z_correction(lx2, ly2);
|
||||
z3 -= ubl.get_z_correction(lx3, ly3);
|
||||
|
||||
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
|
||||
tilt_mesh_based_on_3pts(z1, z2, z3);
|
||||
@ -778,17 +785,17 @@
|
||||
);
|
||||
}
|
||||
|
||||
vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) {
|
||||
vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
|
||||
float c, d, t;
|
||||
int i, j;
|
||||
|
||||
vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
|
||||
(ubl_3_point_1_Y - ubl_3_point_2_Y),
|
||||
(pt1 - pt2) ),
|
||||
(z1 - z2) ),
|
||||
|
||||
v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
|
||||
(ubl_3_point_3_Y - ubl_3_point_2_Y),
|
||||
(pt3 - pt2) ),
|
||||
(z3 - z2) ),
|
||||
|
||||
normal = vector_3::cross(v1, v2);
|
||||
|
||||
@ -810,7 +817,7 @@
|
||||
// All of 3 of these points should give us the same d constant
|
||||
//
|
||||
t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
|
||||
d = t + normal.z * pt1;
|
||||
d = t + normal.z * z1;
|
||||
c = d - t;
|
||||
SERIAL_ECHOPGM("d from 1st point: ");
|
||||
SERIAL_ECHO_F(d, 6);
|
||||
@ -818,7 +825,7 @@
|
||||
SERIAL_ECHO_F(c, 6);
|
||||
SERIAL_EOL;
|
||||
t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
|
||||
d = t + normal.z * pt2;
|
||||
d = t + normal.z * z2;
|
||||
c = d - t;
|
||||
SERIAL_ECHOPGM("d from 2nd point: ");
|
||||
SERIAL_ECHO_F(d, 6);
|
||||
@ -826,7 +833,7 @@
|
||||
SERIAL_ECHO_F(c, 6);
|
||||
SERIAL_EOL;
|
||||
t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
|
||||
d = t + normal.z * pt3;
|
||||
d = t + normal.z * z3;
|
||||
c = d - t;
|
||||
SERIAL_ECHOPGM("d from 3rd point: ");
|
||||
SERIAL_ECHO_F(d, 6);
|
||||
@ -1425,4 +1432,4 @@
|
||||
SERIAL_ECHOLNPGM("Done Editing Mesh.");
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
@ -31,7 +31,14 @@
|
||||
|
||||
extern float destination[XYZE];
|
||||
extern void set_current_to_destination();
|
||||
extern float destination[];
|
||||
|
||||
static void debug_echo_axis(const AxisEnum axis) {
|
||||
if (current_position[axis] == destination[axis])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_ECHO_F(destination[X_AXIS], 6);
|
||||
}
|
||||
|
||||
void debug_current_and_destination(char *title) {
|
||||
|
||||
// if the title message starts with a '!' it is so important, we are going to
|
||||
@ -67,32 +74,13 @@
|
||||
SERIAL_ECHOPGM(", ");
|
||||
SERIAL_ECHO_F(current_position[E_AXIS], 6);
|
||||
SERIAL_ECHOPGM(" ) destination=( ");
|
||||
if (current_position[X_AXIS] == destination[X_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_ECHO_F(destination[X_AXIS], 6);
|
||||
|
||||
debug_echo_axis(X_AXIS);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
|
||||
if (current_position[Y_AXIS] == destination[Y_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_ECHO_F(destination[Y_AXIS], 6);
|
||||
|
||||
debug_echo_axis(Y_AXIS);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
|
||||
if (current_position[Z_AXIS] == destination[Z_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_ECHO_F(destination[Z_AXIS], 6);
|
||||
|
||||
debug_echo_axis(Z_AXIS);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
|
||||
if (current_position[E_AXIS] == destination[E_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_ECHO_F(destination[E_AXIS], 6);
|
||||
|
||||
debug_echo_axis(E_AXIS);
|
||||
SERIAL_ECHOPGM(" ) ");
|
||||
SERIAL_ECHO(title);
|
||||
SERIAL_EOL;
|
||||
@ -105,32 +93,37 @@
|
||||
//}
|
||||
}
|
||||
|
||||
void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
|
||||
void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
|
||||
/**
|
||||
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
* as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
||||
*/
|
||||
const float x_start = current_position[X_AXIS],
|
||||
y_start = current_position[Y_AXIS],
|
||||
z_start = current_position[Z_AXIS],
|
||||
e_start = current_position[E_AXIS];
|
||||
const float start[XYZE] = {
|
||||
current_position[X_AXIS],
|
||||
current_position[Y_AXIS],
|
||||
current_position[Z_AXIS],
|
||||
current_position[E_AXIS]
|
||||
},
|
||||
end[XYZE] = {
|
||||
destination[X_AXIS],
|
||||
destination[Y_AXIS],
|
||||
destination[Z_AXIS],
|
||||
destination[E_AXIS]
|
||||
};
|
||||
|
||||
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)),
|
||||
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)),
|
||||
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)),
|
||||
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end));
|
||||
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
|
||||
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
|
||||
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
|
||||
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
|
||||
SERIAL_ECHO(x_end);
|
||||
SERIAL_ECHOPGM(", ye=");
|
||||
SERIAL_ECHO(y_end);
|
||||
SERIAL_ECHOPGM(", ze=");
|
||||
SERIAL_ECHO(z_end);
|
||||
SERIAL_ECHOPGM(", ee=");
|
||||
SERIAL_ECHO(e_end);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
|
||||
}
|
||||
|
||||
@ -142,12 +135,12 @@
|
||||
* But we detect it and isolate it. For now, we just pass along the request.
|
||||
*/
|
||||
|
||||
if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
|
||||
|
||||
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
||||
// a reasonable correction would be.
|
||||
|
||||
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
|
||||
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
|
||||
set_current_to_destination();
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
@ -167,7 +160,7 @@
|
||||
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||
*/
|
||||
|
||||
const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
|
||||
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
@ -176,7 +169,7 @@
|
||||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
|
||||
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
|
||||
|
||||
float z0 = z1 + (z2 - z1) * yratio;
|
||||
|
||||
@ -186,20 +179,20 @@
|
||||
*/
|
||||
/*
|
||||
z_optimized = z0;
|
||||
z0 = ubl.get_z_correction(x_end, y_end);
|
||||
z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]);
|
||||
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
|
||||
debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
|
||||
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
|
||||
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
|
||||
SERIAL_ECHOPAIR(" x_end=", x_end);
|
||||
SERIAL_ECHOPAIR(" y_end=", y_end);
|
||||
SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" z0=", z0);
|
||||
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
|
||||
SERIAL_EOL;
|
||||
}
|
||||
//*/
|
||||
z0 *= ubl.fade_scaling_factor_for_z(z_end);
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
@ -210,7 +203,7 @@
|
||||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
|
||||
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
|
||||
@ -227,8 +220,8 @@
|
||||
* blocks of code:
|
||||
*/
|
||||
|
||||
const float dx = x_end - x_start,
|
||||
dy = y_end - y_start;
|
||||
const float dx = end[X_AXIS] - start[X_AXIS],
|
||||
dy = end[Y_AXIS] - start[Y_AXIS];
|
||||
|
||||
const int left_flag = dx < 0.0 ? 1 : 0,
|
||||
down_flag = dy < 0.0 ? 1 : 0;
|
||||
@ -251,8 +244,8 @@
|
||||
const bool use_x_dist = adx > ady;
|
||||
|
||||
float on_axis_distance = use_x_dist ? dx : dy,
|
||||
e_position = e_end - e_start,
|
||||
z_position = z_end - z_start;
|
||||
e_position = end[E_AXIS] - start[E_AXIS],
|
||||
z_position = end[Z_AXIS] - start[Z_AXIS];
|
||||
|
||||
const float e_normalized_dist = e_position / on_axis_distance,
|
||||
z_normalized_dist = z_position / on_axis_distance;
|
||||
@ -260,7 +253,7 @@
|
||||
int current_xi = cell_start_xi, current_yi = cell_start_yi;
|
||||
|
||||
const float m = dy / dx,
|
||||
c = y_start - m * x_start;
|
||||
c = start[Y_AXIS] - m * start[X_AXIS];
|
||||
|
||||
const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance),
|
||||
inf_m_flag = NEAR_ZERO(dx);
|
||||
@ -281,9 +274,9 @@
|
||||
* else, we know the next X is the same so we can recover and continue!
|
||||
* Calculate X at the next Y mesh line
|
||||
*/
|
||||
const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
|
||||
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
||||
|
||||
float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
|
||||
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
|
||||
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
@ -305,7 +298,7 @@
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(z_end);
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
@ -324,15 +317,15 @@
|
||||
* happens, it might be best to remove the check and always 'schedule' the move because
|
||||
* the planner.buffer_line() routine will filter it if that happens.
|
||||
*/
|
||||
if (y != y_start) {
|
||||
if (y != start[Y_AXIS]) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = y - y_start; // we don't need to check if the extruder position
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position
|
||||
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
||||
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = e_start;
|
||||
z_position = z_start;
|
||||
e_position = start[E_AXIS];
|
||||
z_position = start[Z_AXIS];
|
||||
}
|
||||
|
||||
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
@ -345,7 +338,7 @@
|
||||
//
|
||||
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
||||
//
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
|
||||
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
||||
goto FINAL_MOVE;
|
||||
|
||||
set_current_to_destination();
|
||||
@ -368,7 +361,7 @@
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
|
||||
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
||||
|
||||
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
|
||||
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
@ -390,7 +383,7 @@
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
@ -409,15 +402,15 @@
|
||||
* that happens, it might be best to remove the check and always 'schedule' the move because
|
||||
* the planner.buffer_line() routine will filter it if that happens.
|
||||
*/
|
||||
if (x != x_start) {
|
||||
if (x != start[X_AXIS]) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = x - x_start; // we don't need to check if the extruder position
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position
|
||||
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = e_start;
|
||||
z_position = z_start;
|
||||
e_position = start[E_AXIS];
|
||||
z_position = start[Z_AXIS];
|
||||
}
|
||||
|
||||
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
@ -427,7 +420,7 @@
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
|
||||
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
|
||||
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
||||
goto FINAL_MOVE;
|
||||
|
||||
set_current_to_destination();
|
||||
@ -454,16 +447,16 @@
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
|
||||
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
||||
// about m being equal to 0.0 If this was the case, we would have
|
||||
// detected this as a vertical line move up above and we wouldn't
|
||||
// be down here doing a generic type of move.
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about m being zero.
|
||||
// If that was the case, it was already detected
|
||||
// as a vertical line move above.)
|
||||
|
||||
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
//
|
||||
// Yes! Crossing a Y Mesh Line next
|
||||
//
|
||||
float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
|
||||
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
|
||||
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
@ -486,7 +479,7 @@
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(z_end);
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
@ -498,13 +491,13 @@
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
|
||||
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
||||
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = e_start;
|
||||
z_position = z_start;
|
||||
e_position = start[E_AXIS];
|
||||
z_position = start[Z_AXIS];
|
||||
}
|
||||
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
current_yi += dyi;
|
||||
@ -514,7 +507,7 @@
|
||||
//
|
||||
// Yes! Crossing a X Mesh Line next
|
||||
//
|
||||
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
|
||||
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
|
||||
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
@ -536,7 +529,7 @@
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(z_end);
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
@ -548,13 +541,13 @@
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
|
||||
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
||||
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = e_start;
|
||||
z_position = z_start;
|
||||
e_position = start[E_AXIS];
|
||||
z_position = start[Z_AXIS];
|
||||
}
|
||||
|
||||
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
@ -566,7 +559,7 @@
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
|
||||
|
||||
if (current_position[0] != x_end || current_position[1] != y_end)
|
||||
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
||||
goto FINAL_MOVE;
|
||||
|
||||
set_current_to_destination();
|
||||
|
Loading…
Reference in New Issue
Block a user