295 lines
9.5 KiB
C++
Raw Normal View History

2017-03-18 10:14:31 -05:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
2017-03-18 10:14:31 -05:00
#include "hex_print_routines.h"
/**
* These support functions allow the use of large bit arrays of flags that take very
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
* in the future.
*/
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
2017-03-28 19:45:54 -05:00
static void serial_echo_xy(const uint16_t x, const uint16_t y) {
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_CHAR(',');
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(10);
}
static void serial_echo_10x_spaces() {
for (uint8_t i = GRID_MAX_POINTS_X - 1; --i;) {
2017-03-28 19:45:54 -05:00
SERIAL_ECHOPGM(" ");
#if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX();
#endif
safe_delay(10);
}
}
ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
2017-03-18 10:14:31 -05:00
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
unified_bed_leveling::last_specified_z,
unified_bed_leveling::mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
unified_bed_leveling::mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1];
bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false;
2017-03-18 10:14:31 -05:00
int8_t unified_bed_leveling::eeprom_start = -1;
2017-03-18 10:14:31 -05:00
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() {
for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
2017-03-18 10:14:31 -05:00
reset();
}
2017-03-20 01:42:41 -05:00
void unified_bed_leveling::store_state() {
const uint16_t i = UBL_LAST_EEPROM_INDEX;
eeprom_write_block((void *)&ubl.state, (void *)i, sizeof(state));
2017-03-18 10:14:31 -05:00
}
2017-03-20 01:42:41 -05:00
void unified_bed_leveling::load_state() {
const uint16_t i = UBL_LAST_EEPROM_INDEX;
eeprom_read_block((void *)&ubl.state, (void *)i, sizeof(state));
2017-03-18 10:14:31 -05:00
if (sanity_check())
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/**
* These lines can go away in a few weeks. They are just
* to make sure people updating their firmware won't be using
* an incomplete Bed_Leveling.state structure. For speed
* we now multiply by the inverse of the Fade Height instead of
* dividing by it. Soon... all of the old structures will be
* updated, but until then, we try to ease the transition
* for our Beta testers.
*/
const float recip = ubl.state.g29_correction_fade_height ? 1.0 / ubl.state.g29_correction_fade_height : 1.0;
if (ubl.state.g29_fade_height_multiplier != recip) {
ubl.state.g29_fade_height_multiplier = recip;
store_state();
}
#endif
2017-03-18 10:14:31 -05:00
}
void unified_bed_leveling::load_mesh(const int16_t m) {
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
2017-03-18 10:14:31 -05:00
if (m == -1) {
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
reset();
return;
}
2017-03-31 08:56:29 -05:00
if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
return;
}
j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
2017-03-28 19:45:54 -05:00
eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
2017-03-18 10:14:31 -05:00
2017-03-28 19:45:54 -05:00
SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
2017-03-18 10:14:31 -05:00
}
void unified_bed_leveling::store_mesh(const int16_t m) {
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
2017-03-18 10:14:31 -05:00
2017-03-31 08:56:29 -05:00
if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
SERIAL_PROTOCOLLNPAIR("k : ", (int)UBL_LAST_EEPROM_INDEX);
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPAIR("j : ", j);
SERIAL_PROTOCOLLNPAIR("m : ", m);
SERIAL_EOL;
return;
}
j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
2017-03-18 10:14:31 -05:00
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
2017-03-28 19:45:54 -05:00
SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
2017-03-18 10:14:31 -05:00
}
2017-03-20 01:42:41 -05:00
void unified_bed_leveling::reset() {
2017-03-18 10:14:31 -05:00
state.active = false;
state.z_offset = 0;
2017-03-20 01:42:41 -05:00
state.eeprom_storage_slot = -1;
2017-03-18 10:14:31 -05:00
ZERO(z_values);
2017-03-20 01:42:41 -05:00
last_specified_z = -999.9;
2017-03-18 10:14:31 -05:00
}
2017-03-20 01:42:41 -05:00
void unified_bed_leveling::invalidate() {
2017-03-18 10:14:31 -05:00
state.active = false;
state.z_offset = 0;
for (int x = 0; x < GRID_MAX_POINTS_X; x++)
for (int y = 0; y < GRID_MAX_POINTS_Y; y++)
2017-03-18 10:14:31 -05:00
z_values[x][y] = NAN;
}
void unified_bed_leveling::display_map(const int map_type) {
2017-03-18 10:14:31 -05:00
2017-03-28 19:45:54 -05:00
const bool map0 = map_type == 0;
2017-03-18 10:14:31 -05:00
2017-03-28 19:45:54 -05:00
if (map0) {
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
2017-03-28 19:45:54 -05:00
SERIAL_ECHOPGM(" ");
}
2017-03-18 10:14:31 -05:00
2017-03-28 19:45:54 -05:00
if (map0) {
serial_echo_10x_spaces();
serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
2017-03-28 19:45:54 -05:00
SERIAL_EOL;
serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
serial_echo_10x_spaces();
serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
SERIAL_EOL;
}
2017-03-18 10:14:31 -05:00
2017-03-28 19:45:54 -05:00
const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
2017-03-28 19:45:54 -05:00
const bool is_current = i == current_xi && j == current_yi;
2017-03-18 10:14:31 -05:00
// is the nozzle here? then mark the number
if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
2017-03-28 19:45:54 -05:00
const float f = z_values[i][j];
if (isnan(f)) {
2017-03-31 07:57:41 -05:00
serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
2017-03-28 19:45:54 -05:00
}
2017-03-18 10:14:31 -05:00
else {
// if we don't do this, the columns won't line up nicely
if (map0 && f >= 0.0) SERIAL_CHAR(' ');
SERIAL_PROTOCOL_F(f, 3);
2017-03-18 10:14:31 -05:00
idle();
}
if (!map0 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
2017-03-28 19:45:54 -05:00
#if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX();
#endif
safe_delay(15);
2017-03-28 19:45:54 -05:00
if (map0) {
SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_CHAR(' ');
}
2017-03-18 10:14:31 -05:00
}
SERIAL_EOL;
2017-03-28 19:45:54 -05:00
if (j && map0) { // we want the (0,0) up tight against the block of numbers
2017-03-18 10:14:31 -05:00
SERIAL_CHAR(' ');
SERIAL_EOL;
}
}
2017-03-28 19:45:54 -05:00
if (map0) {
serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
SERIAL_ECHOPGM(" ");
serial_echo_10x_spaces();
serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
SERIAL_EOL;
serial_echo_xy(0, 0);
SERIAL_ECHOPGM(" ");
serial_echo_10x_spaces();
serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
SERIAL_EOL;
}
2017-03-18 10:14:31 -05:00
}
2017-03-20 01:42:41 -05:00
bool unified_bed_leveling::sanity_check() {
2017-03-18 10:14:31 -05:00
uint8_t error_flag = 0;
if (state.n_x != GRID_MAX_POINTS_X) {
SERIAL_PROTOCOLLNPGM("?GRID_MAX_POINTS_X set wrong\n");
2017-03-18 10:14:31 -05:00
error_flag++;
}
if (state.n_y != GRID_MAX_POINTS_Y) {
SERIAL_PROTOCOLLNPGM("?GRID_MAX_POINTS_Y set wrong\n");
2017-03-18 10:14:31 -05:00
error_flag++;
}
if (state.mesh_x_min != UBL_MESH_MIN_X) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
error_flag++;
}
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
error_flag++;
}
if (state.mesh_x_max != UBL_MESH_MAX_X) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
error_flag++;
}
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
error_flag++;
}
if (state.mesh_x_dist != MESH_X_DIST) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
error_flag++;
}
if (state.mesh_y_dist != MESH_Y_DIST) {
2017-03-18 10:14:31 -05:00
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
error_flag++;
}
const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
2017-03-18 10:14:31 -05:00
if (j < 1) {
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
error_flag++;
}
// SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
// SERIAL_PROTOCOL(error_flag);
// SERIAL_EOL;
return !!error_flag;
}
#endif // AUTO_BED_LEVELING_UBL