Marlin_Firmware/Marlin/src/gcode/gcode_d.cpp

271 lines
8.9 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../inc/MarlinConfigPre.h"
#if ENABLED(MARLIN_DEV_MODE)
#include "gcode.h"
#include "../module/settings.h"
2020-10-12 16:39:31 -05:00
#include "../module/temperature.h"
#include "../libs/hex_print.h"
#include "../HAL/shared/eeprom_if.h"
2020-10-12 16:39:31 -05:00
#include "../HAL/shared/Delay.h"
2021-03-29 21:52:30 -05:00
#include "../sd/cardreader.h"
#include "../MarlinCore.h" // for kill
2021-02-05 22:43:51 -06:00
extern void dump_delay_accuracy_check();
/**
* Dn: G-code for development and testing
*
* See https://reprap.org/wiki/G-code#D:_Debug_codes
*
* Put whatever else you need here to test ongoing development.
*/
void GcodeSuite::D(const int16_t dcode) {
switch (dcode) {
case -1:
for (;;) { /* loop forever (watchdog reset) */ }
case 0:
HAL_reboot();
break;
case 10:
kill(PSTR("D10"), PSTR("KILL TEST"), parser.seen('P'));
break;
case 1: {
// Zero or pattern-fill the EEPROM data
#if ENABLED(EEPROM_SETTINGS)
persistentStore.access_start();
size_t total = persistentStore.capacity();
int pos = 0;
const uint8_t value = 0x0;
while (total--) persistentStore.write_data(pos, &value, 1);
persistentStore.access_finish();
#else
settings.reset();
settings.save();
#endif
HAL_reboot();
} break;
case 2: { // D2 Read / Write SRAM
#define SRAM_SIZE 8192
uint8_t *pointer = parser.hex_adr_val('A');
uint16_t len = parser.ushortval('C', 1);
uintptr_t addr = (uintptr_t)pointer;
NOMORE(addr, size_t(SRAM_SIZE - 1));
NOMORE(len, SRAM_SIZE - addr);
if (parser.seenval('X')) {
// Write the hex bytes after the X
uint16_t val = parser.hex_val('X');
while (len--) {
*pointer = val;
pointer++;
}
}
else {
while (len--) print_hex_byte(*(pointer++));
SERIAL_EOL();
}
} break;
2020-10-12 16:39:31 -05:00
#if ENABLED(EEPROM_SETTINGS)
case 3: { // D3 Read / Write EEPROM
uint8_t *pointer = parser.hex_adr_val('A');
uint16_t len = parser.ushortval('C', 1);
uintptr_t addr = (uintptr_t)pointer;
NOMORE(addr, size_t(persistentStore.capacity() - 1));
NOMORE(len, persistentStore.capacity() - addr);
2020-10-12 16:39:31 -05:00
if (parser.seenval('X')) {
uint16_t val = parser.hex_val('X');
#if ENABLED(EEPROM_SETTINGS)
persistentStore.access_start();
while (len--) {
int pos = 0;
2020-10-12 16:39:31 -05:00
persistentStore.write_data(pos, (uint8_t *)&val, sizeof(val));
}
SERIAL_EOL();
persistentStore.access_finish();
#else
2020-10-19 20:38:24 -05:00
SERIAL_ECHOLNPGM("NO EEPROM");
#endif
}
2020-10-12 16:39:31 -05:00
else {
// Read bytes from EEPROM
#if ENABLED(EEPROM_SETTINGS)
persistentStore.access_start();
int pos = 0;
uint8_t val;
while (len--) if (!persistentStore.read_data(pos, &val, 1)) print_hex_byte(val);
SERIAL_EOL();
persistentStore.access_finish();
#else
SERIAL_ECHOLNPGM("NO EEPROM");
len = 0;
#endif
2020-10-12 16:39:31 -05:00
SERIAL_EOL();
}
} break;
2020-10-19 20:38:24 -05:00
#endif
case 4: { // D4 Read / Write PIN
2021-03-29 21:52:30 -05:00
//const bool is_out = parser.boolval('F');
//const uint8_t pin = parser.byteval('P'),
// val = parser.byteval('V', LOW);
if (parser.seenval('X')) {
// TODO: Write the hex bytes after the X
//while (len--) {
//}
}
else {
2021-03-29 21:52:30 -05:00
//while (len--) {
//// TODO: Read bytes from EEPROM
// print_hex_byte(eeprom_read_byte(adr++));
//}
SERIAL_EOL();
}
} break;
2021-02-05 22:43:51 -06:00
case 5: { // D5 Read / Write onboard Flash
#define FLASH_SIZE 1024
uint8_t *pointer = parser.hex_adr_val('A');
uint16_t len = parser.ushortval('C', 1);
uintptr_t addr = (uintptr_t)pointer;
NOMORE(addr, size_t(FLASH_SIZE - 1));
NOMORE(len, FLASH_SIZE - addr);
if (parser.seenval('X')) {
// TODO: Write the hex bytes after the X
//while (len--) {}
}
else {
2021-03-29 21:52:30 -05:00
//while (len--) {
//// TODO: Read bytes from EEPROM
// print_hex_byte(eeprom_read_byte(adr++));
//}
SERIAL_EOL();
}
} break;
2020-10-12 16:39:31 -05:00
2021-02-05 22:43:51 -06:00
case 6: // D6 Check delay loop accuracy
dump_delay_accuracy_check();
2021-03-04 03:15:32 -06:00
break;
2021-02-05 22:43:51 -06:00
case 7: // D7 dump the current serial port type (hence configuration)
SERIAL_ECHOLNPAIR("Current serial configuration RX_BS:", RX_BUFFER_SIZE, ", TX_BS:", TX_BUFFER_SIZE);
SERIAL_ECHOLN(gtn(&SERIAL_IMPL));
break;
2020-10-12 16:39:31 -05:00
case 100: { // D100 Disable heaters and attempt a hard hang (Watchdog Test)
2020-10-19 20:38:24 -05:00
SERIAL_ECHOLNPGM("Disabling heaters and attempting to trigger Watchdog");
SERIAL_ECHOLNPGM("(USE_WATCHDOG " TERN(USE_WATCHDOG, "ENABLED", "DISABLED") ")");
2020-10-12 16:39:31 -05:00
thermalManager.disable_all_heaters();
delay(1000); // Allow time to print
DISABLE_ISRS();
// Use a low-level delay that does not rely on interrupts to function
// Do not spin forever, to avoid thermal risks if heaters are enabled and
// watchdog does not work.
2020-10-23 19:25:22 -05:00
for (int i = 10000; i--;) DELAY_US(1000UL);
2020-10-12 16:39:31 -05:00
ENABLE_ISRS();
2020-10-19 20:38:24 -05:00
SERIAL_ECHOLNPGM("FAILURE: Watchdog did not trigger board reset.");
} break;
2021-03-29 21:52:30 -05:00
#if ENABLED(SDSUPPORT)
case 101: { // D101 Test SD Write
card.openFileWrite("test.gco");
if (!card.isFileOpen()) {
SERIAL_ECHOLNPAIR("Failed to open test.gco to write.");
return;
}
__attribute__((aligned(sizeof(size_t)))) uint8_t buf[512];
uint16_t c;
for (c = 0; c < COUNT(buf); c++)
buf[c] = 'A' + (c % ('Z' - 'A'));
c = 1024 * 4;
while (c--) {
TERN_(USE_WATCHDOG, watchdog_refresh());
card.write(buf, COUNT(buf));
}
SERIAL_ECHOLNPGM(" done");
card.closefile();
} break;
case 102: { // D102 Test SD Read
2021-04-28 02:04:07 -05:00
char testfile[] = "test.gco";
card.openFileRead(testfile);
2021-03-29 21:52:30 -05:00
if (!card.isFileOpen()) {
SERIAL_ECHOLNPAIR("Failed to open test.gco to read.");
return;
}
__attribute__((aligned(sizeof(size_t)))) uint8_t buf[512];
uint16_t c = 1024 * 4;
while (c--) {
TERN_(USE_WATCHDOG, watchdog_refresh());
card.read(buf, COUNT(buf));
bool error = false;
for (uint16_t i = 0; i < COUNT(buf); i++) {
if (buf[i] != ('A' + (i % ('Z' - 'A')))) {
error = true;
break;
}
}
if (error) {
SERIAL_ECHOLNPGM(" Read error!");
break;
}
}
SERIAL_ECHOLNPGM(" done");
card.closefile();
} break;
#endif // SDSUPPORT
#if ENABLED(POSTMORTEM_DEBUGGING)
2021-03-29 21:52:30 -05:00
case 451: { // Trigger all kind of faults to test exception catcher
SERIAL_ECHOLNPGM("Disabling heaters");
thermalManager.disable_all_heaters();
delay(1000); // Allow time to print
volatile uint8_t type[5] = { parser.byteval('T', 1) };
// The code below is obviously wrong and it's full of quirks to fool the compiler from optimizing away the code
switch (type[0]) {
case 1: default: *(int*)0 = 451; break; // Write at bad address
case 2: { volatile int a = 0; volatile int b = 452 / a; *(int*)&a = b; } break; // Divide by zero (some CPUs accept this, like ARM)
case 3: { *(uint32_t*)&type[1] = 453; volatile int a = *(int*)&type[1]; type[0] = a / 255; } break; // Unaligned access (some CPUs accept this)
case 4: { volatile void (*func)() = (volatile void (*)()) 0xE0000000; func(); } break; // Invalid instruction
}
break;
}
2021-03-29 21:52:30 -05:00
#endif
}
}
#endif