534 lines
20 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2020-02-03 08:00:57 -06:00
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
2019-06-27 23:57:50 -05:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
2020-07-23 05:20:14 +02:00
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
#include "../../feature/z_stepper_align.h"
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
2020-10-16 20:48:52 -05:00
#include "../../lcd/marlinui.h" // for LCD_MESSAGEPGM
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
#endif
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
#include "../../libs/least_squares_fit.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
/**
* G34: Z-Stepper automatic alignment
*
* Manual stepper lock controls (reset by G28):
* L Unlock all steppers
* Z<1-4> Z stepper to lock / unlock
* S<state> 0=UNLOCKED 1=LOCKED. If omitted, assume LOCKED.
*
* Examples:
* G34 Z1 ; Lock Z1
* G34 L Z2 ; Unlock all, then lock Z2
* G34 Z2 S0 ; Unlock Z2
*
* With Z_STEPPER_AUTO_ALIGN:
* I<iterations> Number of tests. If omitted, Z_STEPPER_ALIGN_ITERATIONS.
* T<accuracy> Target Accuracy factor. If omitted, Z_STEPPER_ALIGN_ACC.
* A<amplification> Provide an Amplification value. If omitted, Z_STEPPER_ALIGN_AMP.
* R Flag to recalculate points based on current probe offsets
*/
void GcodeSuite::G34() {
DEBUG_SECTION(log_G34, "G34", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) log_machine_info();
planner.synchronize(); // Prevent damage
const bool seenL = parser.seen('L');
if (seenL) stepper.set_all_z_lock(false);
const bool seenZ = parser.seenval('Z');
if (seenZ) {
const bool state = parser.boolval('S', true);
switch (parser.intval('Z')) {
case 1: stepper.set_z1_lock(state); break;
case 2: stepper.set_z2_lock(state); break;
#if NUM_Z_STEPPER_DRIVERS >= 3
case 3: stepper.set_z3_lock(state); break;
#if NUM_Z_STEPPER_DRIVERS >= 4
case 4: stepper.set_z4_lock(state); break;
#endif
#endif
}
}
if (seenL || seenZ) {
stepper.set_separate_multi_axis(seenZ);
return;
}
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
do { // break out on error
#if NUM_Z_STEPPER_DRIVERS == 4
SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
#elif NUM_Z_STEPPER_DRIVERS > 4
SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
break;
#endif
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
break;
}
const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
break;
}
const float z_auto_align_amplification = TERN(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, Z_STEPPER_ALIGN_AMP, parser.floatval('A', Z_STEPPER_ALIGN_AMP));
if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
break;
}
if (parser.seen('R')) z_stepper_align.reset_to_default();
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
// Disable the leveling matrix before auto-aligning
#if HAS_LEVELING
TERN_(RESTORE_LEVELING_AFTER_G34, const bool leveling_was_active = planner.leveling_active);
set_bed_leveling_enabled(false);
#endif
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
// Always home with tool 0 active
#if HAS_MULTI_HOTEND
const uint8_t old_tool_index = active_extruder;
tool_change(0, true);
#endif
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
// In BLTOUCH HS mode, the probe travels in a deployed state.
// Users of G34 might have a badly misaligned bed, so raise Z by the
// length of the deployed pin (BLTOUCH stroke < 7mm)
#define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE))
// Compute a worst-case clearance height to probe from. After the first
// iteration this will be re-calculated based on the actual bed position
auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
return HYPOT2(diff.x, diff.y);
};
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
2020-01-20 00:35:07 -05:00
#if NUM_Z_STEPPER_DRIVERS == 3
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
#elif NUM_Z_STEPPER_DRIVERS == 4
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
#else
magnitude2(0, 1)
#endif
);
// Home before the alignment procedure
if (!all_axes_trusted()) home_all_axes();
// Move the Z coordinate realm towards the positive - dirty trick
current_position.z += z_probe * 0.5f;
sync_plan_position();
// Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
#else
float last_z_align_level_indicator = 10000.0f;
#endif
float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
z_maxdiff = 0.0f,
amplification = z_auto_align_amplification;
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
bool adjustment_reverse = false;
#endif
#if HAS_DISPLAY
PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION);
const uint8_t iter_str_len = strlen_P(msg_iteration);
#endif
// Final z and iteration values will be used after breaking the loop
float z_measured_min;
uint8_t iteration = 0;
bool err_break = false; // To break out of nested loops
while (iteration < z_auto_align_iterations) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
const int iter = iteration + 1;
SERIAL_ECHOLNPAIR("\nG34 Iteration: ", iter);
#if HAS_DISPLAY
char str[iter_str_len + 2 + 1];
sprintf_P(str, msg_iteration, iter);
ui.set_status(str);
#endif
// Initialize minimum value
z_measured_min = 100000.0f;
float z_measured_max = -100000.0f;
// Probe all positions (one per Z-Stepper)
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
// iteration odd/even --> downward / upward stepper sequence
const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
// Safe clearance even on an incline
if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
if (DEBUGGING(LEVELING))
DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
// Probe a Z height for each stepper.
// Probing sanity check is disabled, as it would trigger even in normal cases because
// current_position.z has been manually altered in the "dirty trick" above.
const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
if (isnan(z_probed_height)) {
SERIAL_ECHOLNPGM("Probing failed");
LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
err_break = true;
break;
}
// Add height to each value, to provide a more useful target height for
// the next iteration of probing. This allows adjustments to be made away from the bed.
z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", iprobe + 1, " measured position is ", z_measured[iprobe]);
// Remember the minimum measurement to calculate the correction later on
z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
} // for (i)
if (err_break) break;
// Adapt the next probe clearance height based on the new measurements.
// Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
z_maxdiff = z_measured_max - z_measured_min;
z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Replace the initial values in z_measured with calculated heights at
// each stepper position. This allows the adjustment algorithm to be
// shared between both possible probing mechanisms.
// This must be done after the next z_probe height is calculated, so that
// the height is calculated from actual print area positions, and not
// extrapolated motor movements.
// Compute the least-squares fit for all probed points.
// Calculate the Z position of each stepper and store it in z_measured.
// This allows the actual adjustment logic to be shared by both algorithms.
linear_fit_data lfd;
incremental_LSF_reset(&lfd);
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
SERIAL_ECHOLNPAIR("PROBEPT_", i, ": ", z_measured[i]);
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
}
finish_incremental_LSF(&lfd);
z_measured_min = 100000.0f;
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
z_measured_min = _MIN(z_measured_min, z_measured[i]);
}
SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
#endif
SERIAL_ECHOLNPAIR("\n"
"DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
#if NUM_Z_STEPPER_DRIVERS == 3
, " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
#endif
);
#if HAS_DISPLAY
char fstr1[10];
#if NUM_Z_STEPPER_DRIVERS == 2
char msg[6 + (6 + 5) * 1 + 1];
#else
char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
#endif
sprintf_P(msg,
PSTR("Diffs Z1-Z2=%s"
#if NUM_Z_STEPPER_DRIVERS == 3
" Z2-Z3=%s"
" Z3-Z1=%s"
#endif
), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
#if NUM_Z_STEPPER_DRIVERS == 3
, dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
#endif
);
ui.set_status(msg);
#endif
auto decreasing_accuracy = [](const float &v1, const float &v2){
if (v1 < v2 * 0.7f) {
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
return true;
}
return false;
};
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Check if the applied corrections go in the correct direction.
// Calculate the sum of the absolute deviations from the mean of the probe measurements.
// Compare to the last iteration to ensure it's getting better.
// Calculate mean value as a reference
float z_measured_mean = 0.0f;
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
// Calculate the sum of the absolute deviations from the mean value
float z_align_level_indicator = 0.0f;
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
// If it's getting worse, stop and throw an error
err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator);
if (err_break) break;
last_z_align_level_indicator = z_align_level_indicator;
#endif
// The following correction actions are to be enabled for select Z-steppers only
stepper.set_separate_multi_axis(true);
bool success_break = true;
// Correct the individual stepper offsets
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
// Calculate current stepper move
float z_align_move = z_measured[zstepper] - z_measured_min;
const float z_align_abs = ABS(z_align_move);
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Optimize one iteration's correction based on the first measurements
if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
// Check for less accuracy compared to last move
if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " last_z_align_move = ", last_z_align_move[zstepper]);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " z_align_abs = ", z_align_abs);
adjustment_reverse = !adjustment_reverse;
}
// Remember the alignment for the next iteration, but only if steppers move,
// otherwise it would be just zero (in case this stepper was at z_measured_min already)
if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs;
#endif
// Stop early if all measured points achieve accuracy target
if (z_align_abs > z_auto_align_accuracy) success_break = false;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " corrected by ", z_align_move);
// Lock all steppers except one
stepper.set_all_z_lock(true, zstepper);
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Decreasing accuracy was detected so move was inverted.
// Will match reversed Z steppers on dual steppers. Triple will need more work to map.
if (adjustment_reverse) {
z_align_move = -z_align_move;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " correction reversed to ", z_align_move);
}
#endif
// Do a move to correct part of the misalignment for the current stepper
do_blocking_move_to_z(amplification * z_align_move + current_position.z);
} // for (zstepper)
// Back to normal stepper operations
stepper.set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
if (err_break) break;
if (success_break) {
SERIAL_ECHOLNPGM("Target accuracy achieved.");
LCD_MESSAGEPGM(MSG_ACCURACY_ACHIEVED);
break;
}
iteration++;
} // while (iteration < z_auto_align_iterations)
if (err_break)
SERIAL_ECHOLNPGM("G34 aborted.");
else {
SERIAL_ECHOLNPAIR("Did ", iteration + (iteration != z_auto_align_iterations), " of ", z_auto_align_iterations);
SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
}
// Stow the probe, as the last call to probe.probe_at_point(...) left
// the probe deployed if it was successful.
probe.stow();
#if ENABLED(HOME_AFTER_G34)
// After this operation the z position needs correction
set_axis_never_homed(Z_AXIS);
// Home Z after the alignment procedure
process_subcommands_now_P(PSTR("G28Z"));
#else
// Use the probed height from the last iteration to determine the Z height.
// z_measured_min is used, because all steppers are aligned to z_measured_min.
// Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
sync_plan_position();
#endif
// Restore the active tool after homing
TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
#if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
set_bed_leveling_enabled(leveling_was_active);
#endif
}while(0);
#endif
}
#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
/**
* M422: Set a Z-Stepper automatic alignment XY point.
* Use repeatedly to set multiple points.
*
* S<index> : Index of the probe point to set
*
* With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS:
* W<index> : Index of the Z stepper position to set
* The W and S parameters may not be combined.
*
* S and W require an X and/or Y parameter
* X<pos> : X position to set (Unchanged if omitted)
* Y<pos> : Y position to set (Unchanged if omitted)
*
* R : Recalculate points based on current probe offsets
*/
void GcodeSuite::M422() {
if (parser.seen('R')) {
z_stepper_align.reset_to_default();
return;
}
if (!parser.seen_any()) {
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), i + 1, SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y);
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), i + 1, SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y);
#endif
return;
}
const bool is_probe_point = parser.seen('S');
2019-09-29 04:25:39 -05:00
2021-01-04 17:51:46 -06:00
if (TERN0(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, is_probe_point && parser.seen('W'))) {
SERIAL_ECHOLNPGM("?(S) and (W) may not be combined.");
return;
}
xy_pos_t *pos_dest = (
2021-01-04 17:51:46 -06:00
TERN_(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, !is_probe_point ? z_stepper_align.stepper_xy :)
z_stepper_align.xy
);
2021-01-04 17:51:46 -06:00
if (!is_probe_point && TERN1(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, !parser.seen('W'))) {
SERIAL_ECHOLNPGM("?(S)" TERN_(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, " or (W)") " is required.");
2019-10-24 12:52:20 -05:00
return;
}
// Get the Probe Position Index or Z Stepper Index
int8_t position_index;
if (is_probe_point) {
position_index = parser.intval('S') - 1;
if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) {
2021-01-04 17:51:46 -06:00
SERIAL_ECHOLNPGM("?(S) Probe-position index invalid.");
return;
}
}
else {
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
position_index = parser.intval('W') - 1;
2020-01-20 00:35:07 -05:00
if (!WITHIN(position_index, 0, NUM_Z_STEPPER_DRIVERS - 1)) {
2021-01-04 17:51:46 -06:00
SERIAL_ECHOLNPGM("?(W) Z-stepper index invalid.");
return;
}
#endif
}
const xy_pos_t pos = {
parser.floatval('X', pos_dest[position_index].x),
parser.floatval('Y', pos_dest[position_index].y)
};
if (is_probe_point) {
2020-02-27 06:16:33 -06:00
if (!probe.can_reach(pos.x, Y_CENTER)) {
SERIAL_ECHOLNPGM("?(X) out of bounds.");
return;
}
2020-02-27 06:16:33 -06:00
if (!probe.can_reach(pos)) {
SERIAL_ECHOLNPGM("?(Y) out of bounds.");
return;
}
}
pos_dest[position_index] = pos;
}
#endif // Z_STEPPER_AUTO_ALIGN