1091 lines
37 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2019-06-27 23:57:50 -05:00
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
2019-06-27 23:57:50 -05:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* DGUS implementation written by coldtobi in 2019 for Marlin */
#include "../../../../inc/MarlinConfigPre.h"
#if ENABLED(DGUS_LCD)
#include "DGUSDisplay.h"
#include "DGUSVPVariable.h"
#include "DGUSDisplayDefinition.h"
#include "../../ui_api.h"
#include "../../../../Marlin.h"
#include "../../../../module/temperature.h"
#include "../../../../module/motion.h"
#include "../../../../gcode/queue.h"
#include "../../../../module/planner.h"
#include "../../../../sd/cardreader.h"
#include "../../../../libs/duration_t.h"
#include "../../../../module/printcounter.h"
// Preamble... 2 Bytes, usually 0x5A 0xA5, but configurable
constexpr uint8_t DGUS_HEADER1 = 0x5A;
constexpr uint8_t DGUS_HEADER2 = 0xA5;
constexpr uint8_t DGUS_CMD_WRITEVAR = 0x82;
constexpr uint8_t DGUS_CMD_READVAR = 0x83;
#if ENABLED(DEBUG_DGUSLCD)
bool dguslcd_local_debug; // = false;
#endif
uint16_t DGUSScreenVariableHandler::ConfirmVP;
#if ENABLED(SDSUPPORT)
int16_t DGUSScreenVariableHandler::top_file = 0;
int16_t DGUSScreenVariableHandler::file_to_print = 0;
static ExtUI::FileList filelist;
#endif
void (*DGUSScreenVariableHandler::confirm_action_cb)() = nullptr;
//DGUSScreenVariableHandler ScreenHandler;
DGUSLCD_Screens DGUSScreenVariableHandler::current_screen;
DGUSLCD_Screens DGUSScreenVariableHandler::past_screens[NUM_PAST_SCREENS];
uint8_t DGUSScreenVariableHandler::update_ptr;
uint16_t DGUSScreenVariableHandler::skipVP;
bool DGUSScreenVariableHandler::ScreenComplete;
//DGUSDisplay dgusdisplay;
rx_datagram_state_t DGUSDisplay::rx_datagram_state = DGUS_IDLE;
uint8_t DGUSDisplay::rx_datagram_len = 0;
bool DGUSDisplay::Initialized = false;
bool DGUSDisplay::no_reentrance = false;
#if DGUS_RX_BUFFER_SIZE > 256
typedef uint16_t r_ring_buffer_pos_t;
#else
typedef uint8_t r_ring_buffer_pos_t;
#endif
#if DGUS_TX_BUFFER_SIZE > 256
typedef uint16_t t_ring_buffer_pos_t;
#else
typedef uint8_t t_ring_buffer_pos_t;
#endif
class DGUSSerial {
public:
DGUSSerial();
~DGUSSerial();
r_ring_buffer_pos_t available();
t_ring_buffer_pos_t GetTxBufferFree();
void write(const uint8_t c);
int read();
// ISR for Rx
void store_rxd_char();
// ISR for Tx (UDRE vector)
void tx_udr_empty_irq(void);
inline volatile bool is_rx_overrun() {
return dgus_rx_overrun;
}
inline void reset_rx_overun() {
dgus_rx_overrun = false;
}
private:
r_ring_buffer_pos_t atomic_read_rx_head();
void atomic_set_rx_tail(r_ring_buffer_pos_t value);
r_ring_buffer_pos_t atomic_read_rx_tail();
volatile bool dgus_rx_overrun = false;
struct ring_buffer_r {
volatile r_ring_buffer_pos_t head, tail;
unsigned char buffer[DGUS_RX_BUFFER_SIZE];
} rx_buffer = { 0, 0, { 0 } };
struct ring_buffer_t {
volatile t_ring_buffer_pos_t head, tail;
unsigned char buffer[DGUS_TX_BUFFER_SIZE];
} tx_buffer = { 0, 0, { 0 } };
#if DGUS_RX_BUFFER_SIZE > 256
volatile bool rx_tail_value_not_stable = false;
volatile uint16_t rx_tail_value_backup = 0;
#endif
};
static DGUSSerial dgusserial;
// endianness swap
uint16_t swap16(const uint16_t value) { return (value & 0xffU) << 8U | (value >> 8U); }
bool populate_VPVar(const uint16_t VP, DGUS_VP_Variable * const ramcopy) {
// DEBUG_ECHOPAIR("populate_VPVar ", VP);
const DGUS_VP_Variable *pvp = DGUSLCD_FindVPVar(VP);
// DEBUG_ECHOLNPAIR(" pvp ", (uint16_t )pvp);
if (!pvp) return false;
memcpy_P(ramcopy, pvp, sizeof(DGUS_VP_Variable));
return true;
}
void DGUSScreenVariableHandler::sendinfoscreen(const char* line1, const char* line2, const char* line3, const char* line4, bool l1inflash, bool l2inflash, bool l3inflash, bool l4inflash) {
DGUS_VP_Variable ramcopy;
if (populate_VPVar(VP_MSGSTR1, &ramcopy)) {
ramcopy.memadr = (void*) line1;
l1inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy);
}
if (populate_VPVar(VP_MSGSTR2, &ramcopy)) {
ramcopy.memadr = (void*) line2;
l2inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy);
}
if (populate_VPVar(VP_MSGSTR3, &ramcopy)) {
ramcopy.memadr = (void*) line3;
l3inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy);
}
if (populate_VPVar(VP_MSGSTR4, &ramcopy)) {
ramcopy.memadr = (void*) line4;
l4inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy);
}
}
void DGUSScreenVariableHandler::HandleUserConfirmationPopUp(uint16_t VP, const char* line1, const char* line2, const char* line3, const char* line4, bool l1, bool l2, bool l3, bool l4) {
if (current_screen == DGUSLCD_SCREEN_CONFIRM) {
// Already showing a pop up, so we need to cancel that first.
PopToOldScreen();
}
ConfirmVP = VP;
sendinfoscreen(line1, line2, line3, line4, l1, l2, l3, l4);
ScreenHandler.GotoScreen(DGUSLCD_SCREEN_CONFIRM);
}
void DGUSScreenVariableHandler::setstatusmessage(const char *msg) {
DGUS_VP_Variable ramcopy;
if (populate_VPVar(VP_M117, &ramcopy)) {
ramcopy.memadr = (void*) msg;
DGUSLCD_SendStringToDisplay(ramcopy);
}
}
void DGUSScreenVariableHandler::setstatusmessagePGM(PGM_P const msg) {
DGUS_VP_Variable ramcopy;
if (populate_VPVar(VP_M117, &ramcopy)) {
ramcopy.memadr = (void*) msg;
DGUSLCD_SendStringToDisplayPGM(ramcopy);
}
}
// Send an 8 bit or 16 bit value to the display.
void DGUSScreenVariableHandler::DGUSLCD_SendWordValueToDisplay(DGUS_VP_Variable &var) {
if (var.memadr) {
//DEBUG_ECHOPAIR(" DGUS_LCD_SendWordValueToDisplay ", var.VP);
//DEBUG_ECHOLNPAIR(" data ", *(uint16_t *)var.memadr);
uint8_t *tmp = (uint8_t *) var.memadr;
uint16_t data_to_send = (tmp[0] << 8);
if (var.size >= 1) data_to_send |= tmp[1];
dgusdisplay.WriteVariable(var.VP, data_to_send);
}
}
// Send an uint8_t between 0 and 255 to the display, but scale to a percentage (0..100)
void DGUSScreenVariableHandler::DGUSLCD_SendPercentageToDisplay(DGUS_VP_Variable &var) {
if (var.memadr) {
//DEBUG_ECHOPAIR(" DGUS_LCD_SendWordValueToDisplay ", var.VP);
//DEBUG_ECHOLNPAIR(" data ", *(uint16_t *)var.memadr);
uint16_t tmp = *(uint8_t *) var.memadr +1 ; // +1 -> avoid rounding issues for the display.
tmp = map(tmp, 0, 255, 0, 100);
uint16_t data_to_send = swap16(tmp);
dgusdisplay.WriteVariable(var.VP, data_to_send);
}
}
// Send the current print time to the display.
// It is using a hex display for that: It expects BSD coded data in the format xxyyzz
void DGUSScreenVariableHandler::DGUSLCD_SendPrintTimeToDisplay(DGUS_VP_Variable &var) {
duration_t elapsed = print_job_timer.duration();
uint8_t days = elapsed.day(),
hours = elapsed.hour() % 24,
minutes = elapsed.minute() % 60,
seconds = elapsed.second() % 60;
char buf[14], *p = buf; // that two extra bytes saves us some flash...
if (days) { *p++ = days / 10 + '0'; *p++ = days % 10 + '0'; *p++ = 'd'; }
*p++ = hours / 10 + '0'; *p++ = hours % 10 + '0'; *p++ = 'h';
*p++ = minutes / 10 + '0'; *p++ = minutes % 10 + '0'; *p++ = 'm';
*p++ = seconds / 10 + '0'; *p++ = seconds % 10 + '0'; *p++ = 's';
*p = '\0';
dgusdisplay.WriteVariable(VP_PrintTime, buf, var.size, true);
}
// Send an uint8_t between 0 and 100 to a variable scale to 0..255
void DGUSScreenVariableHandler::DGUSLCD_PercentageToUint8(DGUS_VP_Variable &var, void *val_ptr) {
if (var.memadr) {
uint16_t value = swap16(*(uint16_t*)val_ptr);
*(uint8_t*)var.memadr = map(constrain(value, 0, 100), 0, 100, 0, 255);
}
}
// Sends a (RAM located) string to the DGUS Display
// (Note: The DGUS Display does not clear after the \0, you have to
// overwrite the remainings with spaces.// var.size has the display buffer size!
void DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(DGUS_VP_Variable &var) {
char *tmp = (char*) var.memadr;
dgusdisplay.WriteVariable(var.VP, tmp, var.size, true);
}
// Sends a (flash located) string to the DGUS Display
// (Note: The DGUS Display does not clear after the \0, you have to
// overwrite the remainings with spaces.// var.size has the display buffer size!
void DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(DGUS_VP_Variable &var) {
char *tmp = (char*) var.memadr;
dgusdisplay.WriteVariablePGM(var.VP, tmp, var.size, true);
}
#if ENABLED(SDSUPPORT)
void DGUSScreenVariableHandler::ScreenChangeHookIfSD(DGUS_VP_Variable &var, void *val_ptr) {
// default action executed when there is a SD card, but not printing
if (ExtUI::isMediaInserted() && !ExtUI::isPrintingFromMedia()) {
ScreenChangeHook(var, val_ptr);
dgusdisplay.RequestScreen(current_screen);
return;
}
// if we are printing, we jump to two screens after the requested one.
// This should host e.g a print pause / print abort / print resume dialog.
// This concept allows to recycle this hook for other file
if (ExtUI::isPrintingFromMedia() && !card.flag.abort_sd_printing) {
GotoScreen(DGUSLCD_SCREEN_SDPRINTMANIPULATION);
return;
}
// Don't let the user in the dark why there is no reaction.
if (!ExtUI::isMediaInserted()) {
setstatusmessagePGM(PSTR("No SD Card"));
return;
}
if (card.flag.abort_sd_printing) {
setstatusmessagePGM(PSTR("Aborting..."));
return;
}
}
void DGUSScreenVariableHandler::DGUSLCD_SD_ScrollFilelist(DGUS_VP_Variable& var, void *val_ptr) {
auto old_top = top_file;
int16_t scroll = (int16_t)swap16(*(uint16_t*)val_ptr);
if (scroll == 0) {
if (!filelist.isAtRootDir()) {
filelist.upDir();
top_file = 0;
ForceCompleteUpdate();
}
}
else {
top_file += scroll;
DEBUG_ECHOPAIR("new topfile calculated:", top_file);
if (top_file < 0) {
top_file = 0;
DEBUG_ECHOLN("Top of filelist reached");
}
else {
int16_t max_top = filelist.count() - DGUS_SD_FILESPERSCREEN;
NOLESS(max_top, 0);
NOMORE(top_file, max_top);
}
DEBUG_ECHOPAIR("new topfile adjusted:", top_file);
}
if (old_top != top_file) ForceCompleteUpdate();
}
void DGUSScreenVariableHandler::DGUSLCD_SD_FileSelected(DGUS_VP_Variable &var, void *val_ptr) {
uint16_t touched_nr = (int16_t)swap16(*(uint16_t*)val_ptr) + top_file;
if (touched_nr > filelist.count()) return;
if (!filelist.seek(touched_nr)) return;
if (filelist.isDir()) {
filelist.changeDir(filelist.filename());
top_file = 0;
ForceCompleteUpdate();
return;
}
// Setup Confirmation screen
file_to_print = touched_nr;
HandleUserConfirmationPopUp(VP_SD_FileSelectConfirm, nullptr, PSTR("Print file"), filelist.filename(), PSTR("from SD Card?"), true, true, false, true);
}
void DGUSScreenVariableHandler::DGUSLCD_SD_StartPrint(DGUS_VP_Variable &var, void *val_ptr) {
if(!filelist.seek(file_to_print)) return;
ExtUI::printFile(filelist.filename());
ScreenHandler.GotoScreen(DGUSLCD_SCREEN_STATUS);
}
void DGUSScreenVariableHandler::DGUSLCD_SD_ResumePauseAbort(DGUS_VP_Variable &var, void *val_ptr) {
if (!ExtUI::isPrintingFromMedia()) return; // avoid race condition when user stays in this menu and printer finishes.
switch (swap16(*(uint16_t*)val_ptr)) {
case 0: // Resume
if (ExtUI::isPrintingFromMediaPaused()) ExtUI::resumePrint();
break;
case 1: // Pause
if (!ExtUI::isPrintingFromMediaPaused()) ExtUI::pausePrint();
break;
case 2: // Abort
ScreenHandler.HandleUserConfirmationPopUp(VP_SD_AbortPrintConfirmed, nullptr, PSTR("Abort printing"), filelist.filename(), PSTR("?"), true, true, false, true);
break;
}
}
void DGUSScreenVariableHandler::DGUSLCD_SD_ReallyAbort(DGUS_VP_Variable &var, void *val_ptr) {
ExtUI::stopPrint();
GotoScreen(DGUSLCD_SCREEN_MAIN);
}
void DGUSScreenVariableHandler::DGUSLCD_SD_SendFilename(DGUS_VP_Variable& var) {
uint16_t target_line = (var.VP - VP_SD_FileName0) / VP_SD_FileName_LEN;
if (target_line > DGUS_SD_FILESPERSCREEN) return;
char tmpfilename[VP_SD_FileName_LEN + 1] = "";
var.memadr = (void*)tmpfilename;
if (filelist.seek(top_file + target_line))
snprintf_P(tmpfilename, VP_SD_FileName_LEN, PSTR("%s%c"), filelist.filename(), filelist.isDir() ? '/' : 0);
DGUSLCD_SendStringToDisplay(var);
}
void DGUSScreenVariableHandler::SDCardInserted() {
top_file = 0;
auto cs = ScreenHandler.getCurrentScreen();
if (cs == DGUSLCD_SCREEN_MAIN || cs == DGUSLCD_SCREEN_STATUS)
ScreenHandler.GotoScreen(DGUSLCD_SCREEN_SDFILELIST);
}
void DGUSScreenVariableHandler::SDCardRemoved() {
if (current_screen == DGUSLCD_SCREEN_SDFILELIST
|| (current_screen == DGUSLCD_SCREEN_CONFIRM && (ConfirmVP == VP_SD_AbortPrintConfirmed || ConfirmVP == VP_SD_FileSelectConfirm))
|| current_screen == DGUSLCD_SCREEN_SDPRINTMANIPULATION
) ScreenHandler.GotoScreen(DGUSLCD_SCREEN_MAIN);
}
void DGUSScreenVariableHandler::SDCardError() {
DGUSScreenVariableHandler::SDCardRemoved();
ScreenHandler.sendinfoscreen(PSTR("NOTICE"), nullptr, PSTR("SD card error"), nullptr, true, true, true, true);
ScreenHandler.SetupConfirmAction(nullptr);
ScreenHandler.GotoScreen(DGUSLCD_SCREEN_POPUP);
}
#endif // SDSUPPORT
void DGUSScreenVariableHandler::ScreenConfirmedOK(DGUS_VP_Variable &var, void *val_ptr) {
DGUS_VP_Variable ramcopy;
if (!populate_VPVar(ConfirmVP, &ramcopy)) return;
if (ramcopy.set_by_display_handler) ramcopy.set_by_display_handler(ramcopy, val_ptr);
}
const uint16_t* DGUSLCD_FindScreenVPMapList(uint8_t screen) {
const uint16_t *ret;
const struct VPMapping *map = VPMap;
while (ret = (uint16_t*) pgm_read_word(&(map->VPList))) {
if (pgm_read_byte(&(map->screen)) == screen) return ret;
map++;
}
return nullptr;
}
const DGUS_VP_Variable* DGUSLCD_FindVPVar(const uint16_t vp) {
const DGUS_VP_Variable *ret = ListOfVP;
do {
const uint16_t vpcheck = pgm_read_word(&(ret->VP));
if (vpcheck == 0) break;
if (vpcheck == vp) return ret;
++ret;
} while (1);
DEBUG_ECHOLNPAIR("FindVPVar NOT FOUND ", vp);
return nullptr;
}
void DGUSScreenVariableHandler::ScreenChangeHookIfIdle(DGUS_VP_Variable &var, void *val_ptr) {
if (!ExtUI::isPrinting()) {
ScreenChangeHook(var, val_ptr);
dgusdisplay.RequestScreen(current_screen);
}
}
void DGUSScreenVariableHandler::ScreenChangeHook(DGUS_VP_Variable &var, void *val_ptr) {
uint8_t *tmp = (uint8_t*)val_ptr;
// The keycode in target is coded as <from-frame><to-frame>, so 0x0100A means
// from screen 1 (main) to 10 (temperature). DGUSLCD_SCREEN_POPUP is special,
// meaning "return to previous screen"
DGUSLCD_Screens target = (DGUSLCD_Screens)tmp[1];
if (target == DGUSLCD_SCREEN_POPUP) {
// special handling for popup is to return to previous menu
if (current_screen == DGUSLCD_SCREEN_POPUP && confirm_action_cb) confirm_action_cb();
PopToOldScreen();
return;
}
UpdateNewScreen(target);
#ifdef DEBUG_DGUSLCD
if (!DGUSLCD_FindScreenVPMapList(target)) DEBUG_ECHOLNPAIR("WARNING: No screen Mapping found for ", x);
#endif
}
void DGUSScreenVariableHandler::HandleAllHeatersOff(DGUS_VP_Variable &var, void *val_ptr) {
thermalManager.disable_all_heaters();
ScreenHandler.ForceCompleteUpdate(); // hint to send all data.
}
void DGUSScreenVariableHandler::HandleTemperatureChanged(DGUS_VP_Variable &var, void *val_ptr) {
uint16_t newvalue = swap16(*(uint16_t*)val_ptr);
uint16_t acceptedvalue;
switch (var.VP) {
default: return;
#if HOTENDS >= 1
case VP_T_E1_Set:
thermalManager.setTargetHotend(newvalue, 0);
acceptedvalue = thermalManager.temp_hotend[0].target;
break;
#endif
#if HOTENDS >= 2
case VP_T_E2_Set:
thermalManager.setTargetHotend(newvalue, 1);
acceptedvalue = thermalManager.temp_hotend[1].target;
break;
#endif
#if HAS_HEATED_BED
case VP_T_Bed_Set:
thermalManager.setTargetBed(newvalue);
acceptedvalue = thermalManager.temp_bed.target;
break;
#endif
}
// reply to display the new value to update the view if the new value was rejected by the Thermal Manager.
if (newvalue != acceptedvalue && var.send_to_display_handler) var.send_to_display_handler(var);
ScreenHandler.skipVP = var.VP; // don't overwrite value the next update time as the display might autoincrement in parallel
}
void DGUSScreenVariableHandler::HandleFlowRateChanged(DGUS_VP_Variable &var, void *val_ptr) {
uint16_t newvalue = swap16(*(uint16_t*)val_ptr);
uint8_t target_extruder;
switch (var.VP) {
default: return;
#if (HOTENDS >= 1)
case VP_Flowrate_E1: target_extruder = 0; break;
#endif
#if (HOTENDS >= 2)
case VP_Flowrate_E2: target_extruder = 1; break;
#endif
}
planner.flow_percentage[target_extruder] = newvalue;
planner.refresh_e_factor(target_extruder);
ScreenHandler.skipVP = var.VP; // don't overwrite value the next update time as the display might autoincrement in parallel
}
void DGUSScreenVariableHandler::HandleManualExtrude(DGUS_VP_Variable &var, void *val_ptr) {
DEBUG_ECHOLNPGM("HandleManualMove");
int16_t movevalue = swap16(*(uint16_t*)val_ptr);
float target = movevalue * 0.01f;
ExtUI::extruder_t target_extruder;
switch (var.VP) {
#if HOTENDS >=1
case VP_MOVE_E1: target_extruder = ExtUI::extruder_t::E0; break;
#endif
#if HOTENDS >=2
case VP_MOVE_E2: target_extruder = ExtUI::extruder_t::E1; break
#endif
default: return;
}
target += ExtUI::getAxisPosition_mm(target_extruder);
ExtUI::setAxisPosition_mm(target, target_extruder);
skipVP = var.VP;
}
void DGUSScreenVariableHandler::HandleManualMove(DGUS_VP_Variable &var, void *val_ptr) {
DEBUG_ECHOLNPGM("HandleManualMove");
int16_t movevalue = swap16(*(uint16_t*)val_ptr);
char axiscode;
unsigned int speed = 1500; //FIXME: get default feedrate for manual moves, dont hardcode.
switch (var.VP) {
case VP_MOVE_X:
axiscode = 'X';
if (!ExtUI::canMove(ExtUI::axis_t::X)) goto cannotmove;
break;
case VP_MOVE_Y:
axiscode = 'Y';
if (!ExtUI::canMove(ExtUI::axis_t::Y)) goto cannotmove;
break;
case VP_MOVE_Z:
axiscode = 'Z';
speed = 300; // default to 5mm/s
if (!ExtUI::canMove(ExtUI::axis_t::Z)) goto cannotmove;
break;
case VP_HOME_ALL: // only used for homing
axiscode = '\0';
movevalue = 0; // ignore value sent from display, this VP is _ONLY_ for homing.
break;
default: return;
}
if (!movevalue) {
// homing
DEBUG_ECHOPAIR(" homing ", axiscode);
char buf[6] = "G28 X";
buf[4] = axiscode;
//DEBUG_ECHOPAIR(" ", buf);
while (!enqueue_and_echo_command(buf)) idle();
//DEBUG_ECHOLN(" ✓");
ScreenHandler.ForceCompleteUpdate();
return;
}
else {
//movement
DEBUG_ECHOPAIR(" move ", axiscode);
bool old_relative_mode = relative_mode;
if (!relative_mode) {
//DEBUG_ECHO(" G91");
while (!enqueue_and_echo_command("G91")) idle();
//DEBUG_ECHOPGM(" ✓ ");
}
char buf[32]; // G1 X9999.99 F12345
unsigned int backup_speed = MMS_TO_MMM(feedrate_mm_s);
char sign[]="\0";
int16_t value = movevalue / 100;
if (movevalue < 0) { value = -value; sign[0] = '-'; }
int16_t fraction = ABS(movevalue) % 100;
snprintf_P(buf, 32, PSTR("G0 %c%s%d.%02d F%d"), axiscode, sign, value, fraction, speed);
//DEBUG_ECHOPAIR(" ", buf);
while (!enqueue_and_echo_command(buf)) idle();
//DEBUG_ECHOLN(" ✓ ");
if (backup_speed != speed) {
snprintf_P(buf, 32, PSTR("G0 F%d"), backup_speed);
while (!enqueue_and_echo_command(buf)) idle();
//DEBUG_ECHOPAIR(" ", buf);
}
//while (!enqueue_and_echo_command(buf)) idle();
//DEBUG_ECHOLN(" ✓ ");
if (!old_relative_mode) {
//DEBUG_ECHO("G90");
while (!enqueue_and_echo_command("G90")) idle();
//DEBUG_ECHO(" ✓ ");
}
}
ScreenHandler.ForceCompleteUpdate();
DEBUG_ECHOLNPGM("manmv done.");
return;
cannotmove:
DEBUG_ECHOLNPAIR(" cannot move ", axiscode);
return;
}
void DGUSScreenVariableHandler::UpdateNewScreen(DGUSLCD_Screens newscreen, bool popup) {
DEBUG_ECHOLNPAIR("SetNewScreen: ", newscreen);
if (!popup) {
memmove(&past_screens[1], &past_screens[0], sizeof(past_screens) - 1);
past_screens[0] = current_screen;
}
current_screen = newscreen;
skipVP = 0;
ForceCompleteUpdate();
}
void DGUSScreenVariableHandler::PopToOldScreen() {
DEBUG_ECHOLNPAIR("PopToOldScreen s=", past_screens[0]);
GotoScreen(past_screens[0], true);
memmove(&past_screens[0], &past_screens[1], sizeof(past_screens) - 1);
past_screens[sizeof(past_screens) - 1] = DGUSLCD_SCREEN_MAIN;
}
void DGUSScreenVariableHandler::UpdateScreenVPData() {
DEBUG_ECHOPAIR(" UpdateScreenVPData Screen: ", current_screen);
const uint16_t *VPList = DGUSLCD_FindScreenVPMapList(current_screen);
if (!VPList) {
DEBUG_ECHOLNPAIR(" NO SCREEN FOR: ", current_screen);
ScreenComplete = true;
return; // nothing to do, likely a bug or boring screen.
}
// Round-Robbin updating of all VPs.
VPList += update_ptr;
bool sent_one = false;
do {
uint16_t VP = pgm_read_word(VPList);
DEBUG_ECHOPAIR(" VP: ", VP);
if (!VP) {
update_ptr = 0;
DEBUG_ECHOLNPGM(" UpdateScreenVPData done");
ScreenComplete = true;
return; // Screen completed.
}
if (VP == skipVP) {
skipVP = 0;
continue;
}
DGUS_VP_Variable rcpy;
if (populate_VPVar(VP, &rcpy)) {
uint8_t expected_tx = 6 + rcpy.size; // expected overhead is 6 bytes + payload.
// Send the VP to the display, but try to avoid overruning the Tx Buffer.
// But send at least one VP, to avoid getting stalled.
if (rcpy.send_to_display_handler && (!sent_one || expected_tx <= dgusdisplay.GetFreeTxBuffer())) {
//DEBUG_ECHOPAIR(" calling handler for ", rcpy.VP);
sent_one = true;
rcpy.send_to_display_handler(rcpy);
}
else {
//auto x=dgusdisplay.GetFreeTxBuffer();
//DEBUG_ECHOLNPAIR(" tx almost full: ", x);
//DEBUG_ECHOPAIR(" update_ptr ", update_ptr);
ScreenComplete = false;
return; // please call again!
}
}
} while (++update_ptr, ++VPList, true);
}
void DGUSDisplay::loop() {
// protection against recursion… ProcessRx() might call indirectly idle() when trying to injecting gcode commands if the queue is full.
if (!no_reentrance) {
no_reentrance = true;
ProcessRx();
no_reentrance = false;
}
}
void DGUSDisplay::InitDisplay() {
RequestScreen(
#if ENABLED(SHOW_BOOTSCREEN)
DGUSLCD_SCREEN_BOOT
#else
DGUSLCD_SCREEN_MAIN
#endif
);
}
void DGUSDisplay::WriteVariable(uint16_t adr, const void* values, uint8_t valueslen, bool isstr) {
const char* myvalues = static_cast<const char*>(values);
bool strend = myvalues ? false : true;
WriteHeader(adr, DGUS_CMD_WRITEVAR, valueslen);
while (valueslen--) {
char x;
if (!strend) x = *myvalues++;
if ((isstr && !x) || strend) {
strend = true;
x = ' ';
}
dgusserial.write(x);
}
}
void DGUSDisplay::WriteVariablePGM(uint16_t adr, const void* values, uint8_t valueslen, bool isstr) {
const char* myvalues = static_cast<const char*>(values);
bool strend = myvalues ? false : true;
WriteHeader(adr, DGUS_CMD_WRITEVAR, valueslen);
while (valueslen--) {
char x;
if (!strend) x = pgm_read_byte(myvalues++);
if ((isstr && !x) || strend) {
strend = true;
x = ' ';
}
dgusserial.write(x);
}
}
void DGUSScreenVariableHandler::GotoScreen(DGUSLCD_Screens screen, bool ispopup) {
dgusdisplay.RequestScreen(screen);
UpdateNewScreen(screen, ispopup);
}
bool DGUSScreenVariableHandler::loop() {
dgusdisplay.loop();
const millis_t ms = millis();
static millis_t next_event_ms = 0;
if (!IsScreenComplete() || ELAPSED(ms, next_event_ms)) {
next_event_ms = ms + DGUS_UPDATE_INTERVAL_MS;
UpdateScreenVPData();
}
#if ENABLED(SHOW_BOOTSCREEN)
static bool booted = false;
if (!booted && ELAPSED(ms, BOOTSCREEN_TIMEOUT)) {
booted = true;
GotoScreen(DGUSLCD_SCREEN_MAIN);
}
#endif
return IsScreenComplete();
}
void DGUSDisplay::RequestScreen(DGUSLCD_Screens screen) {
DEBUG_ECHOLNPAIR("GotoScreen ", screen);
const unsigned char gotoscreen[] = { 0x5A, 0x01, (unsigned char) (screen >> 8U), (unsigned char) (screen & 0xFFU) };
WriteVariable(0x84, gotoscreen, sizeof(gotoscreen));
}
void DGUSDisplay::ProcessRx() {
if (!dgusserial.available() && dgusserial.is_rx_overrun()) {
// if we've got an overrun, but reset the flag only when we've emptied the buffer
// We want to extract as many as valid datagrams possible...
DEBUG_ECHOPGM("OVFL");
rx_datagram_state = DGUS_IDLE;
dgusserial.reset_rx_overun();
}
uint8_t receivedbyte;
while (dgusserial.available()) {
switch (rx_datagram_state) {
case DGUS_IDLE: // Waiting for the first header byte
receivedbyte = dgusserial.read();
//DEBUG_ECHOPAIR("< ",x);
if (DGUS_HEADER1 == receivedbyte) rx_datagram_state = DGUS_HEADER1_SEEN;
break;
case DGUS_HEADER1_SEEN: // Waiting for the second header byte
receivedbyte = dgusserial.read();
//DEBUG_ECHOPAIR(" ",x);
rx_datagram_state = (DGUS_HEADER2 == receivedbyte) ? DGUS_HEADER2_SEEN : DGUS_IDLE;
break;
case DGUS_HEADER2_SEEN: // Waiting for the length byte
rx_datagram_len = dgusserial.read();
DEBUG_ECHOPAIR(" (", rx_datagram_len);
DEBUG_ECHOPGM(") ");
// Telegram min len is 3 (command and one word of payload)
rx_datagram_state = WITHIN(rx_datagram_len, 3, DGUS_RX_BUFFER_SIZE) ? DGUS_WAIT_TELEGRAM : DGUS_IDLE;
break;
case DGUS_WAIT_TELEGRAM: // wait for complete datagram to arrive.
if (dgusserial.available() < rx_datagram_len) return;
Initialized = true; // We've talked to it, so we defined it as initialized.
uint8_t command = dgusserial.read();
DEBUG_ECHOPAIR("# ", command);
uint8_t readlen = rx_datagram_len - 1; // command is part of len.
unsigned char tmp[rx_datagram_len - 1];
unsigned char *ptmp = tmp;
while (readlen--) {
receivedbyte = dgusserial.read();
DEBUG_ECHOPAIR(" ", receivedbyte);
*ptmp++ = receivedbyte;
}
DEBUG_ECHOPGM(" # ");
// mostly we'll get this: 5A A5 03 82 4F 4B -- ACK on 0x82, so discard it.
if (command == DGUS_CMD_WRITEVAR && 'O' == tmp[0] && 'K' == tmp[1]) {
DEBUG_ECHOLNPGM(">");
rx_datagram_state = DGUS_IDLE;
break;
}
/* AutoUpload, (and answer to) Command 0x83 :
| tmp[0 1 2 3 4 ... ]
| Example 5A A5 06 83 20 01 01 78 01
| / / | | \ / | \ \
| Header | | | | \_____\_ DATA (Words!)
| DatagramLen / VPAdr |
| Command DataLen (in Words) */
if (command == DGUS_CMD_READVAR) {
const uint16_t vp = tmp[0] << 8 | tmp[1];
const uint8_t dlen = tmp[2] << 1; // Convert to Bytes. (Display works with words)
//DEBUG_ECHOPAIR(" vp=", vp, " dlen=", dlen);
DGUS_VP_Variable ramcopy;
if (populate_VPVar(vp, &ramcopy)) {
if (!(dlen == ramcopy.size || (dlen == 2 && ramcopy.size == 1)))
DEBUG_ECHOLNPGM("SIZE MISMATCH");
else if (ramcopy.set_by_display_handler) {
ramcopy.set_by_display_handler(ramcopy, &tmp[3]);
}
else
DEBUG_ECHOLNPGM(" VPVar found, no handler.");
}
else
DEBUG_ECHOLNPAIR(" VPVar not found:", vp);
rx_datagram_state = DGUS_IDLE;
break;
}
// discard what we do not understand.
rx_datagram_state = DGUS_IDLE;
}
}
}
size_t DGUSDisplay::GetFreeTxBuffer() { return dgusserial.GetTxBufferFree(); }
void DGUSDisplay::WriteHeader(uint16_t adr, uint8_t cmd, uint8_t payloadlen) {
dgusserial.write(DGUS_HEADER1);
dgusserial.write(DGUS_HEADER2);
dgusserial.write(payloadlen + 3);
dgusserial.write(cmd);
dgusserial.write(adr >> 8);
dgusserial.write(adr & 0xFF);
}
void DGUSDisplay::WritePGM(const char str[], uint8_t len) {
while (len--) dgusserial.write(pgm_read_byte(str++));
}
// Serial implementation stolen from MarlinSerial.cpp -- but functinality reduced to our use case
// (no XON/XOFF, no Emergency Parser, no error statistics, no support to send from interrupts ...)
// Define all UART registers
#define _TNAME(X,Y,Z) X##Y##Z
#define TNAME(X,Y,Z) _TNAME(X,Y,Z)
#define DGUS_SERIAL_RX_VECT TNAME(USART,DGUS_SER_PORT,_RX_vect)
#define DGUS_SERIAL_UDRE_VECT TNAME(USART,DGUS_SER_PORT,_UDRE_vect)
#define DGUS_UCSRxA TNAME(UCSR,DGUS_SER_PORT,A)
#define DGUS_UCSRxB TNAME(UCSR,DGUS_SER_PORT,B)
#define DGUS_UCSRxC TNAME(UCSR,DGUS_SER_PORT,C)
#define DGUS_UBRRxH TNAME(UBRR,DGUS_SER_PORT,H)
#define DGUS_UBRRxL TNAME(UBRR,DGUS_SER_PORT,L)
#define DGUS_UDRx TNAME(UDR,DGUS_SER_PORT,)
#define U2Xx TNAME(U2X,DGUS_SER_PORT,)
#define RXENx TNAME(RXEN,DGUS_SER_PORT,)
#define TXENx TNAME(TXEN,DGUS_SER_PORT,)
#define TXCx TNAME(TXC,DGUS_SER_PORT,)
#define RXCIEx TNAME(RXCIE,DGUS_SER_PORT,)
#define UDRIEx TNAME(UDRIE,DGUS_SER_PORT,)
#define UDREx TNAME(UDRE,DGUS_SER_PORT,)
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
DGUSSerial::DGUSSerial() {
// Initialize UART
DGUS_UCSRxA = 1 << U2Xx;
const uint16_t baud_setting = (F_CPU / 4 / DGUS_BAUDRATE - 1) / 2;
DGUS_UBRRxH = baud_setting >> 8;
DGUS_UBRRxL = baud_setting;
DGUS_UCSRxC = 0x06;
DGUS_UCSRxB = 1 << RXCIEx | 1 << TXENx | 1 << RXENx; // Enable TX,RX and the RX interrupts.
}
DGUSSerial::~DGUSSerial() { DGUS_UCSRxB = 0; }
// "Atomically" read the RX head index value without disabling interrupts:
// This MUST be called with RX interrupts enabled, and CAN'T be called
// from the RX ISR itself!
FORCE_INLINE r_ring_buffer_pos_t DGUSSerial::atomic_read_rx_head() {
#if RX_BUFFER_SIZE > 256
// Keep reading until 2 consecutive reads return the same value,
// meaning there was no update in-between caused by an interrupt.
// This works because serial RX interrupts happen at a slower rate
// than successive reads of a variable, so 2 consecutive reads with
// the same value means no interrupt updated it.
r_ring_buffer_pos_t vold, vnew = rx_buffer.head;
sw_barrier();
do {
vold = vnew;
vnew = rx_buffer.head;
sw_barrier();
} while (vold != vnew);
return vnew;
#else
// With an 8bit index, reads are always atomic. No need for special handling
return rx_buffer.head;
#endif
}
// Set RX tail index, taking into account the RX ISR could interrupt
// the write to this variable in the middle - So a backup strategy
// is used to ensure reads of the correct values.
// -Must NOT be called from the RX ISR -
FORCE_INLINE void DGUSSerial::atomic_set_rx_tail(r_ring_buffer_pos_t value) {
#if RX_BUFFER_SIZE > 256
// Store the new value in the backup
rx_tail_value_backup = value;
sw_barrier();
// Flag we are about to change the true value
rx_tail_value_not_stable = true;
sw_barrier();
// Store the new value
rx_buffer.tail = value;
sw_barrier();
// Signal the new value is completely stored into the value
rx_tail_value_not_stable = false;
sw_barrier();
#else
rx_buffer.tail = value;
#endif
}
// Get the RX tail index, taking into account the read could be
// interrupting in the middle of the update of that index value
// -Called from the RX ISR -
FORCE_INLINE r_ring_buffer_pos_t DGUSSerial::atomic_read_rx_tail() {
#if RX_BUFFER_SIZE > 256
// If the true index is being modified, return the backup value
if (rx_tail_value_not_stable) return rx_tail_value_backup;
#endif
// The true index is stable, return it
return rx_buffer.tail;
}
// (called with RX interrupts disabled)
FORCE_INLINE void DGUSSerial::store_rxd_char() {
// Get the tail - Nothing can alter its value while this ISR is executing, but there's
// a chance that this ISR interrupted the main process while it was updating the index.
// The backup mechanism ensures the correct value is always returned.
const r_ring_buffer_pos_t t = atomic_read_rx_tail();
// Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here
r_ring_buffer_pos_t h = rx_buffer.head;
// Get the next element
r_ring_buffer_pos_t i = (r_ring_buffer_pos_t) (h + 1) & (r_ring_buffer_pos_t) (DGUS_RX_BUFFER_SIZE - 1);
// Read the character from the USART
uint8_t c = DGUS_UDRx;
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else
dgus_rx_overrun = true;
// Store the new head value - The main loop will retry until the value is stable
rx_buffer.head = h;
}
// (called with TX irqs disabled)
FORCE_INLINE void DGUSSerial::tx_udr_empty_irq(void) {
// Read positions
uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head;
// If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX
// interrupts that could end reenabling TX interrupts as a side effect.
if (h == t) {
CBI(DGUS_UCSRxB, UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return;
}
// There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (DGUS_TX_BUFFER_SIZE - 1);
DGUS_UDRx = c;
tx_buffer.tail = t;
// Clear the TXC bit (by writing a one to its bit location).
// Ensures flush() won't return until the bytes are actually written/
SBI(DGUS_UCSRxA, TXCx);
// Disable interrupts if there is nothing to transmit following this byte
if (h == t) CBI(DGUS_UCSRxB, UDRIEx);
}
r_ring_buffer_pos_t DGUSSerial::available(void) {
const r_ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return (r_ring_buffer_pos_t) (DGUS_RX_BUFFER_SIZE + h - t) & (DGUS_RX_BUFFER_SIZE - 1);
}
int DGUSSerial::read() {
const r_ring_buffer_pos_t h = atomic_read_rx_head();
// Read the tail. Main thread owns it, so it is safe to directly read it
r_ring_buffer_pos_t t = rx_buffer.tail;
// If nothing to read, return now
if (h == t) return -1;
// Get the next char
const int v = rx_buffer.buffer[t];
t = (r_ring_buffer_pos_t) (t + 1) & (DGUS_RX_BUFFER_SIZE - 1);
// Advance tail - Making sure the RX ISR will always get an stable value, even
// if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(t);
return v;
}
void DGUSSerial::write(const uint8_t c) {
// are we currently tranmitting? If not, we can just place the byte in UDR.
if (!TEST(DGUS_UCSRxB, UDRIEx) && TEST(DGUS_UCSRxA, UDREx)) {
DGUS_UDRx = c;
SBI(DGUS_UCSRxA, TXCx);
return;
}
const uint8_t i = (tx_buffer.head + 1) & (DGUS_TX_BUFFER_SIZE - 1);
while (i == tx_buffer.tail) sw_barrier();
// Store new char. head is always safe to move
tx_buffer.buffer[tx_buffer.head] = c;
tx_buffer.head = i;
SBI(DGUS_UCSRxB, UDRIEx); // Enable Interrupts to finish off.
}
t_ring_buffer_pos_t DGUSSerial::GetTxBufferFree() {
const t_ring_buffer_pos_t t = tx_buffer.tail, // next byte to send.
h = tx_buffer.head; // next pos for queue.
int ret = t - h - 1;
if (ret < 0) ret += DGUS_TX_BUFFER_SIZE + 1;
return ret;
}
ISR(DGUS_SERIAL_UDRE_VECT) { dgusserial.tx_udr_empty_irq(); }
ISR(DGUS_SERIAL_RX_VECT) { dgusserial.store_rxd_char(); }
#endif // DGUS_LCD