/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /* DGUS implementation written by coldtobi in 2019 for Marlin */ #include "../../../../inc/MarlinConfigPre.h" #if ENABLED(DGUS_LCD) #include "DGUSDisplay.h" #include "DGUSVPVariable.h" #include "DGUSDisplayDefinition.h" #include "../../ui_api.h" #include "../../../../Marlin.h" #include "../../../../module/temperature.h" #include "../../../../module/motion.h" #include "../../../../gcode/queue.h" #include "../../../../module/planner.h" #include "../../../../sd/cardreader.h" #include "../../../../libs/duration_t.h" #include "../../../../module/printcounter.h" // Preamble... 2 Bytes, usually 0x5A 0xA5, but configurable constexpr uint8_t DGUS_HEADER1 = 0x5A; constexpr uint8_t DGUS_HEADER2 = 0xA5; constexpr uint8_t DGUS_CMD_WRITEVAR = 0x82; constexpr uint8_t DGUS_CMD_READVAR = 0x83; #if ENABLED(DEBUG_DGUSLCD) bool dguslcd_local_debug; // = false; #endif uint16_t DGUSScreenVariableHandler::ConfirmVP; #if ENABLED(SDSUPPORT) int16_t DGUSScreenVariableHandler::top_file = 0; int16_t DGUSScreenVariableHandler::file_to_print = 0; static ExtUI::FileList filelist; #endif void (*DGUSScreenVariableHandler::confirm_action_cb)() = nullptr; //DGUSScreenVariableHandler ScreenHandler; DGUSLCD_Screens DGUSScreenVariableHandler::current_screen; DGUSLCD_Screens DGUSScreenVariableHandler::past_screens[NUM_PAST_SCREENS]; uint8_t DGUSScreenVariableHandler::update_ptr; uint16_t DGUSScreenVariableHandler::skipVP; bool DGUSScreenVariableHandler::ScreenComplete; //DGUSDisplay dgusdisplay; rx_datagram_state_t DGUSDisplay::rx_datagram_state = DGUS_IDLE; uint8_t DGUSDisplay::rx_datagram_len = 0; bool DGUSDisplay::Initialized = false; bool DGUSDisplay::no_reentrance = false; #if DGUS_RX_BUFFER_SIZE > 256 typedef uint16_t r_ring_buffer_pos_t; #else typedef uint8_t r_ring_buffer_pos_t; #endif #if DGUS_TX_BUFFER_SIZE > 256 typedef uint16_t t_ring_buffer_pos_t; #else typedef uint8_t t_ring_buffer_pos_t; #endif class DGUSSerial { public: DGUSSerial(); ~DGUSSerial(); r_ring_buffer_pos_t available(); t_ring_buffer_pos_t GetTxBufferFree(); void write(const uint8_t c); int read(); // ISR for Rx void store_rxd_char(); // ISR for Tx (UDRE vector) void tx_udr_empty_irq(void); inline volatile bool is_rx_overrun() { return dgus_rx_overrun; } inline void reset_rx_overun() { dgus_rx_overrun = false; } private: r_ring_buffer_pos_t atomic_read_rx_head(); void atomic_set_rx_tail(r_ring_buffer_pos_t value); r_ring_buffer_pos_t atomic_read_rx_tail(); volatile bool dgus_rx_overrun = false; struct ring_buffer_r { volatile r_ring_buffer_pos_t head, tail; unsigned char buffer[DGUS_RX_BUFFER_SIZE]; } rx_buffer = { 0, 0, { 0 } }; struct ring_buffer_t { volatile t_ring_buffer_pos_t head, tail; unsigned char buffer[DGUS_TX_BUFFER_SIZE]; } tx_buffer = { 0, 0, { 0 } }; #if DGUS_RX_BUFFER_SIZE > 256 volatile bool rx_tail_value_not_stable = false; volatile uint16_t rx_tail_value_backup = 0; #endif }; static DGUSSerial dgusserial; // endianness swap uint16_t swap16(const uint16_t value) { return (value & 0xffU) << 8U | (value >> 8U); } bool populate_VPVar(const uint16_t VP, DGUS_VP_Variable * const ramcopy) { // DEBUG_ECHOPAIR("populate_VPVar ", VP); const DGUS_VP_Variable *pvp = DGUSLCD_FindVPVar(VP); // DEBUG_ECHOLNPAIR(" pvp ", (uint16_t )pvp); if (!pvp) return false; memcpy_P(ramcopy, pvp, sizeof(DGUS_VP_Variable)); return true; } void DGUSScreenVariableHandler::sendinfoscreen(const char* line1, const char* line2, const char* line3, const char* line4, bool l1inflash, bool l2inflash, bool l3inflash, bool l4inflash) { DGUS_VP_Variable ramcopy; if (populate_VPVar(VP_MSGSTR1, &ramcopy)) { ramcopy.memadr = (void*) line1; l1inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy); } if (populate_VPVar(VP_MSGSTR2, &ramcopy)) { ramcopy.memadr = (void*) line2; l2inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy); } if (populate_VPVar(VP_MSGSTR3, &ramcopy)) { ramcopy.memadr = (void*) line3; l3inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy); } if (populate_VPVar(VP_MSGSTR4, &ramcopy)) { ramcopy.memadr = (void*) line4; l4inflash ? DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(ramcopy) : DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(ramcopy); } } void DGUSScreenVariableHandler::HandleUserConfirmationPopUp(uint16_t VP, const char* line1, const char* line2, const char* line3, const char* line4, bool l1, bool l2, bool l3, bool l4) { if (current_screen == DGUSLCD_SCREEN_CONFIRM) { // Already showing a pop up, so we need to cancel that first. PopToOldScreen(); } ConfirmVP = VP; sendinfoscreen(line1, line2, line3, line4, l1, l2, l3, l4); ScreenHandler.GotoScreen(DGUSLCD_SCREEN_CONFIRM); } void DGUSScreenVariableHandler::setstatusmessage(const char *msg) { DGUS_VP_Variable ramcopy; if (populate_VPVar(VP_M117, &ramcopy)) { ramcopy.memadr = (void*) msg; DGUSLCD_SendStringToDisplay(ramcopy); } } void DGUSScreenVariableHandler::setstatusmessagePGM(PGM_P const msg) { DGUS_VP_Variable ramcopy; if (populate_VPVar(VP_M117, &ramcopy)) { ramcopy.memadr = (void*) msg; DGUSLCD_SendStringToDisplayPGM(ramcopy); } } // Send an 8 bit or 16 bit value to the display. void DGUSScreenVariableHandler::DGUSLCD_SendWordValueToDisplay(DGUS_VP_Variable &var) { if (var.memadr) { //DEBUG_ECHOPAIR(" DGUS_LCD_SendWordValueToDisplay ", var.VP); //DEBUG_ECHOLNPAIR(" data ", *(uint16_t *)var.memadr); uint8_t *tmp = (uint8_t *) var.memadr; uint16_t data_to_send = (tmp[0] << 8); if (var.size >= 1) data_to_send |= tmp[1]; dgusdisplay.WriteVariable(var.VP, data_to_send); } } // Send an uint8_t between 0 and 255 to the display, but scale to a percentage (0..100) void DGUSScreenVariableHandler::DGUSLCD_SendPercentageToDisplay(DGUS_VP_Variable &var) { if (var.memadr) { //DEBUG_ECHOPAIR(" DGUS_LCD_SendWordValueToDisplay ", var.VP); //DEBUG_ECHOLNPAIR(" data ", *(uint16_t *)var.memadr); uint16_t tmp = *(uint8_t *) var.memadr +1 ; // +1 -> avoid rounding issues for the display. tmp = map(tmp, 0, 255, 0, 100); uint16_t data_to_send = swap16(tmp); dgusdisplay.WriteVariable(var.VP, data_to_send); } } // Send the current print time to the display. // It is using a hex display for that: It expects BSD coded data in the format xxyyzz void DGUSScreenVariableHandler::DGUSLCD_SendPrintTimeToDisplay(DGUS_VP_Variable &var) { duration_t elapsed = print_job_timer.duration(); uint8_t days = elapsed.day(), hours = elapsed.hour() % 24, minutes = elapsed.minute() % 60, seconds = elapsed.second() % 60; char buf[14], *p = buf; // that two extra bytes saves us some flash... if (days) { *p++ = days / 10 + '0'; *p++ = days % 10 + '0'; *p++ = 'd'; } *p++ = hours / 10 + '0'; *p++ = hours % 10 + '0'; *p++ = 'h'; *p++ = minutes / 10 + '0'; *p++ = minutes % 10 + '0'; *p++ = 'm'; *p++ = seconds / 10 + '0'; *p++ = seconds % 10 + '0'; *p++ = 's'; *p = '\0'; dgusdisplay.WriteVariable(VP_PrintTime, buf, var.size, true); } // Send an uint8_t between 0 and 100 to a variable scale to 0..255 void DGUSScreenVariableHandler::DGUSLCD_PercentageToUint8(DGUS_VP_Variable &var, void *val_ptr) { if (var.memadr) { uint16_t value = swap16(*(uint16_t*)val_ptr); *(uint8_t*)var.memadr = map(constrain(value, 0, 100), 0, 100, 0, 255); } } // Sends a (RAM located) string to the DGUS Display // (Note: The DGUS Display does not clear after the \0, you have to // overwrite the remainings with spaces.// var.size has the display buffer size! void DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplay(DGUS_VP_Variable &var) { char *tmp = (char*) var.memadr; dgusdisplay.WriteVariable(var.VP, tmp, var.size, true); } // Sends a (flash located) string to the DGUS Display // (Note: The DGUS Display does not clear after the \0, you have to // overwrite the remainings with spaces.// var.size has the display buffer size! void DGUSScreenVariableHandler::DGUSLCD_SendStringToDisplayPGM(DGUS_VP_Variable &var) { char *tmp = (char*) var.memadr; dgusdisplay.WriteVariablePGM(var.VP, tmp, var.size, true); } #if ENABLED(SDSUPPORT) void DGUSScreenVariableHandler::ScreenChangeHookIfSD(DGUS_VP_Variable &var, void *val_ptr) { // default action executed when there is a SD card, but not printing if (ExtUI::isMediaInserted() && !ExtUI::isPrintingFromMedia()) { ScreenChangeHook(var, val_ptr); dgusdisplay.RequestScreen(current_screen); return; } // if we are printing, we jump to two screens after the requested one. // This should host e.g a print pause / print abort / print resume dialog. // This concept allows to recycle this hook for other file if (ExtUI::isPrintingFromMedia() && !card.flag.abort_sd_printing) { GotoScreen(DGUSLCD_SCREEN_SDPRINTMANIPULATION); return; } // Don't let the user in the dark why there is no reaction. if (!ExtUI::isMediaInserted()) { setstatusmessagePGM(PSTR("No SD Card")); return; } if (card.flag.abort_sd_printing) { setstatusmessagePGM(PSTR("Aborting...")); return; } } void DGUSScreenVariableHandler::DGUSLCD_SD_ScrollFilelist(DGUS_VP_Variable& var, void *val_ptr) { auto old_top = top_file; int16_t scroll = (int16_t)swap16(*(uint16_t*)val_ptr); if (scroll == 0) { if (!filelist.isAtRootDir()) { filelist.upDir(); top_file = 0; ForceCompleteUpdate(); } } else { top_file += scroll; DEBUG_ECHOPAIR("new topfile calculated:", top_file); if (top_file < 0) { top_file = 0; DEBUG_ECHOLN("Top of filelist reached"); } else { int16_t max_top = filelist.count() - DGUS_SD_FILESPERSCREEN; NOLESS(max_top, 0); NOMORE(top_file, max_top); } DEBUG_ECHOPAIR("new topfile adjusted:", top_file); } if (old_top != top_file) ForceCompleteUpdate(); } void DGUSScreenVariableHandler::DGUSLCD_SD_FileSelected(DGUS_VP_Variable &var, void *val_ptr) { uint16_t touched_nr = (int16_t)swap16(*(uint16_t*)val_ptr) + top_file; if (touched_nr > filelist.count()) return; if (!filelist.seek(touched_nr)) return; if (filelist.isDir()) { filelist.changeDir(filelist.filename()); top_file = 0; ForceCompleteUpdate(); return; } // Setup Confirmation screen file_to_print = touched_nr; HandleUserConfirmationPopUp(VP_SD_FileSelectConfirm, nullptr, PSTR("Print file"), filelist.filename(), PSTR("from SD Card?"), true, true, false, true); } void DGUSScreenVariableHandler::DGUSLCD_SD_StartPrint(DGUS_VP_Variable &var, void *val_ptr) { if(!filelist.seek(file_to_print)) return; ExtUI::printFile(filelist.filename()); ScreenHandler.GotoScreen(DGUSLCD_SCREEN_STATUS); } void DGUSScreenVariableHandler::DGUSLCD_SD_ResumePauseAbort(DGUS_VP_Variable &var, void *val_ptr) { if (!ExtUI::isPrintingFromMedia()) return; // avoid race condition when user stays in this menu and printer finishes. switch (swap16(*(uint16_t*)val_ptr)) { case 0: // Resume if (ExtUI::isPrintingFromMediaPaused()) ExtUI::resumePrint(); break; case 1: // Pause if (!ExtUI::isPrintingFromMediaPaused()) ExtUI::pausePrint(); break; case 2: // Abort ScreenHandler.HandleUserConfirmationPopUp(VP_SD_AbortPrintConfirmed, nullptr, PSTR("Abort printing"), filelist.filename(), PSTR("?"), true, true, false, true); break; } } void DGUSScreenVariableHandler::DGUSLCD_SD_ReallyAbort(DGUS_VP_Variable &var, void *val_ptr) { ExtUI::stopPrint(); GotoScreen(DGUSLCD_SCREEN_MAIN); } void DGUSScreenVariableHandler::DGUSLCD_SD_SendFilename(DGUS_VP_Variable& var) { uint16_t target_line = (var.VP - VP_SD_FileName0) / VP_SD_FileName_LEN; if (target_line > DGUS_SD_FILESPERSCREEN) return; char tmpfilename[VP_SD_FileName_LEN + 1] = ""; var.memadr = (void*)tmpfilename; if (filelist.seek(top_file + target_line)) snprintf_P(tmpfilename, VP_SD_FileName_LEN, PSTR("%s%c"), filelist.filename(), filelist.isDir() ? '/' : 0); DGUSLCD_SendStringToDisplay(var); } void DGUSScreenVariableHandler::SDCardInserted() { top_file = 0; auto cs = ScreenHandler.getCurrentScreen(); if (cs == DGUSLCD_SCREEN_MAIN || cs == DGUSLCD_SCREEN_STATUS) ScreenHandler.GotoScreen(DGUSLCD_SCREEN_SDFILELIST); } void DGUSScreenVariableHandler::SDCardRemoved() { if (current_screen == DGUSLCD_SCREEN_SDFILELIST || (current_screen == DGUSLCD_SCREEN_CONFIRM && (ConfirmVP == VP_SD_AbortPrintConfirmed || ConfirmVP == VP_SD_FileSelectConfirm)) || current_screen == DGUSLCD_SCREEN_SDPRINTMANIPULATION ) ScreenHandler.GotoScreen(DGUSLCD_SCREEN_MAIN); } void DGUSScreenVariableHandler::SDCardError() { DGUSScreenVariableHandler::SDCardRemoved(); ScreenHandler.sendinfoscreen(PSTR("NOTICE"), nullptr, PSTR("SD card error"), nullptr, true, true, true, true); ScreenHandler.SetupConfirmAction(nullptr); ScreenHandler.GotoScreen(DGUSLCD_SCREEN_POPUP); } #endif // SDSUPPORT void DGUSScreenVariableHandler::ScreenConfirmedOK(DGUS_VP_Variable &var, void *val_ptr) { DGUS_VP_Variable ramcopy; if (!populate_VPVar(ConfirmVP, &ramcopy)) return; if (ramcopy.set_by_display_handler) ramcopy.set_by_display_handler(ramcopy, val_ptr); } const uint16_t* DGUSLCD_FindScreenVPMapList(uint8_t screen) { const uint16_t *ret; const struct VPMapping *map = VPMap; while (ret = (uint16_t*) pgm_read_word(&(map->VPList))) { if (pgm_read_byte(&(map->screen)) == screen) return ret; map++; } return nullptr; } const DGUS_VP_Variable* DGUSLCD_FindVPVar(const uint16_t vp) { const DGUS_VP_Variable *ret = ListOfVP; do { const uint16_t vpcheck = pgm_read_word(&(ret->VP)); if (vpcheck == 0) break; if (vpcheck == vp) return ret; ++ret; } while (1); DEBUG_ECHOLNPAIR("FindVPVar NOT FOUND ", vp); return nullptr; } void DGUSScreenVariableHandler::ScreenChangeHookIfIdle(DGUS_VP_Variable &var, void *val_ptr) { if (!ExtUI::isPrinting()) { ScreenChangeHook(var, val_ptr); dgusdisplay.RequestScreen(current_screen); } } void DGUSScreenVariableHandler::ScreenChangeHook(DGUS_VP_Variable &var, void *val_ptr) { uint8_t *tmp = (uint8_t*)val_ptr; // The keycode in target is coded as , so 0x0100A means // from screen 1 (main) to 10 (temperature). DGUSLCD_SCREEN_POPUP is special, // meaning "return to previous screen" DGUSLCD_Screens target = (DGUSLCD_Screens)tmp[1]; if (target == DGUSLCD_SCREEN_POPUP) { // special handling for popup is to return to previous menu if (current_screen == DGUSLCD_SCREEN_POPUP && confirm_action_cb) confirm_action_cb(); PopToOldScreen(); return; } UpdateNewScreen(target); #ifdef DEBUG_DGUSLCD if (!DGUSLCD_FindScreenVPMapList(target)) DEBUG_ECHOLNPAIR("WARNING: No screen Mapping found for ", x); #endif } void DGUSScreenVariableHandler::HandleAllHeatersOff(DGUS_VP_Variable &var, void *val_ptr) { thermalManager.disable_all_heaters(); ScreenHandler.ForceCompleteUpdate(); // hint to send all data. } void DGUSScreenVariableHandler::HandleTemperatureChanged(DGUS_VP_Variable &var, void *val_ptr) { uint16_t newvalue = swap16(*(uint16_t*)val_ptr); uint16_t acceptedvalue; switch (var.VP) { default: return; #if HOTENDS >= 1 case VP_T_E1_Set: thermalManager.setTargetHotend(newvalue, 0); acceptedvalue = thermalManager.temp_hotend[0].target; break; #endif #if HOTENDS >= 2 case VP_T_E2_Set: thermalManager.setTargetHotend(newvalue, 1); acceptedvalue = thermalManager.temp_hotend[1].target; break; #endif #if HAS_HEATED_BED case VP_T_Bed_Set: thermalManager.setTargetBed(newvalue); acceptedvalue = thermalManager.temp_bed.target; break; #endif } // reply to display the new value to update the view if the new value was rejected by the Thermal Manager. if (newvalue != acceptedvalue && var.send_to_display_handler) var.send_to_display_handler(var); ScreenHandler.skipVP = var.VP; // don't overwrite value the next update time as the display might autoincrement in parallel } void DGUSScreenVariableHandler::HandleFlowRateChanged(DGUS_VP_Variable &var, void *val_ptr) { uint16_t newvalue = swap16(*(uint16_t*)val_ptr); uint8_t target_extruder; switch (var.VP) { default: return; #if (HOTENDS >= 1) case VP_Flowrate_E1: target_extruder = 0; break; #endif #if (HOTENDS >= 2) case VP_Flowrate_E2: target_extruder = 1; break; #endif } planner.flow_percentage[target_extruder] = newvalue; planner.refresh_e_factor(target_extruder); ScreenHandler.skipVP = var.VP; // don't overwrite value the next update time as the display might autoincrement in parallel } void DGUSScreenVariableHandler::HandleManualExtrude(DGUS_VP_Variable &var, void *val_ptr) { DEBUG_ECHOLNPGM("HandleManualMove"); int16_t movevalue = swap16(*(uint16_t*)val_ptr); float target = movevalue * 0.01f; ExtUI::extruder_t target_extruder; switch (var.VP) { #if HOTENDS >=1 case VP_MOVE_E1: target_extruder = ExtUI::extruder_t::E0; break; #endif #if HOTENDS >=2 case VP_MOVE_E2: target_extruder = ExtUI::extruder_t::E1; break #endif default: return; } target += ExtUI::getAxisPosition_mm(target_extruder); ExtUI::setAxisPosition_mm(target, target_extruder); skipVP = var.VP; } void DGUSScreenVariableHandler::HandleManualMove(DGUS_VP_Variable &var, void *val_ptr) { DEBUG_ECHOLNPGM("HandleManualMove"); int16_t movevalue = swap16(*(uint16_t*)val_ptr); char axiscode; unsigned int speed = 1500; //FIXME: get default feedrate for manual moves, dont hardcode. switch (var.VP) { case VP_MOVE_X: axiscode = 'X'; if (!ExtUI::canMove(ExtUI::axis_t::X)) goto cannotmove; break; case VP_MOVE_Y: axiscode = 'Y'; if (!ExtUI::canMove(ExtUI::axis_t::Y)) goto cannotmove; break; case VP_MOVE_Z: axiscode = 'Z'; speed = 300; // default to 5mm/s if (!ExtUI::canMove(ExtUI::axis_t::Z)) goto cannotmove; break; case VP_HOME_ALL: // only used for homing axiscode = '\0'; movevalue = 0; // ignore value sent from display, this VP is _ONLY_ for homing. break; default: return; } if (!movevalue) { // homing DEBUG_ECHOPAIR(" homing ", axiscode); char buf[6] = "G28 X"; buf[4] = axiscode; //DEBUG_ECHOPAIR(" ", buf); while (!enqueue_and_echo_command(buf)) idle(); //DEBUG_ECHOLN(" ✓"); ScreenHandler.ForceCompleteUpdate(); return; } else { //movement DEBUG_ECHOPAIR(" move ", axiscode); bool old_relative_mode = relative_mode; if (!relative_mode) { //DEBUG_ECHO(" G91"); while (!enqueue_and_echo_command("G91")) idle(); //DEBUG_ECHOPGM(" ✓ "); } char buf[32]; // G1 X9999.99 F12345 unsigned int backup_speed = MMS_TO_MMM(feedrate_mm_s); char sign[]="\0"; int16_t value = movevalue / 100; if (movevalue < 0) { value = -value; sign[0] = '-'; } int16_t fraction = ABS(movevalue) % 100; snprintf_P(buf, 32, PSTR("G0 %c%s%d.%02d F%d"), axiscode, sign, value, fraction, speed); //DEBUG_ECHOPAIR(" ", buf); while (!enqueue_and_echo_command(buf)) idle(); //DEBUG_ECHOLN(" ✓ "); if (backup_speed != speed) { snprintf_P(buf, 32, PSTR("G0 F%d"), backup_speed); while (!enqueue_and_echo_command(buf)) idle(); //DEBUG_ECHOPAIR(" ", buf); } //while (!enqueue_and_echo_command(buf)) idle(); //DEBUG_ECHOLN(" ✓ "); if (!old_relative_mode) { //DEBUG_ECHO("G90"); while (!enqueue_and_echo_command("G90")) idle(); //DEBUG_ECHO(" ✓ "); } } ScreenHandler.ForceCompleteUpdate(); DEBUG_ECHOLNPGM("manmv done."); return; cannotmove: DEBUG_ECHOLNPAIR(" cannot move ", axiscode); return; } void DGUSScreenVariableHandler::UpdateNewScreen(DGUSLCD_Screens newscreen, bool popup) { DEBUG_ECHOLNPAIR("SetNewScreen: ", newscreen); if (!popup) { memmove(&past_screens[1], &past_screens[0], sizeof(past_screens) - 1); past_screens[0] = current_screen; } current_screen = newscreen; skipVP = 0; ForceCompleteUpdate(); } void DGUSScreenVariableHandler::PopToOldScreen() { DEBUG_ECHOLNPAIR("PopToOldScreen s=", past_screens[0]); GotoScreen(past_screens[0], true); memmove(&past_screens[0], &past_screens[1], sizeof(past_screens) - 1); past_screens[sizeof(past_screens) - 1] = DGUSLCD_SCREEN_MAIN; } void DGUSScreenVariableHandler::UpdateScreenVPData() { DEBUG_ECHOPAIR(" UpdateScreenVPData Screen: ", current_screen); const uint16_t *VPList = DGUSLCD_FindScreenVPMapList(current_screen); if (!VPList) { DEBUG_ECHOLNPAIR(" NO SCREEN FOR: ", current_screen); ScreenComplete = true; return; // nothing to do, likely a bug or boring screen. } // Round-Robbin updating of all VPs. VPList += update_ptr; bool sent_one = false; do { uint16_t VP = pgm_read_word(VPList); DEBUG_ECHOPAIR(" VP: ", VP); if (!VP) { update_ptr = 0; DEBUG_ECHOLNPGM(" UpdateScreenVPData done"); ScreenComplete = true; return; // Screen completed. } if (VP == skipVP) { skipVP = 0; continue; } DGUS_VP_Variable rcpy; if (populate_VPVar(VP, &rcpy)) { uint8_t expected_tx = 6 + rcpy.size; // expected overhead is 6 bytes + payload. // Send the VP to the display, but try to avoid overruning the Tx Buffer. // But send at least one VP, to avoid getting stalled. if (rcpy.send_to_display_handler && (!sent_one || expected_tx <= dgusdisplay.GetFreeTxBuffer())) { //DEBUG_ECHOPAIR(" calling handler for ", rcpy.VP); sent_one = true; rcpy.send_to_display_handler(rcpy); } else { //auto x=dgusdisplay.GetFreeTxBuffer(); //DEBUG_ECHOLNPAIR(" tx almost full: ", x); //DEBUG_ECHOPAIR(" update_ptr ", update_ptr); ScreenComplete = false; return; // please call again! } } } while (++update_ptr, ++VPList, true); } void DGUSDisplay::loop() { // protection against recursion… ProcessRx() might call indirectly idle() when trying to injecting gcode commands if the queue is full. if (!no_reentrance) { no_reentrance = true; ProcessRx(); no_reentrance = false; } } void DGUSDisplay::InitDisplay() { RequestScreen( #if ENABLED(SHOW_BOOTSCREEN) DGUSLCD_SCREEN_BOOT #else DGUSLCD_SCREEN_MAIN #endif ); } void DGUSDisplay::WriteVariable(uint16_t adr, const void* values, uint8_t valueslen, bool isstr) { const char* myvalues = static_cast(values); bool strend = myvalues ? false : true; WriteHeader(adr, DGUS_CMD_WRITEVAR, valueslen); while (valueslen--) { char x; if (!strend) x = *myvalues++; if ((isstr && !x) || strend) { strend = true; x = ' '; } dgusserial.write(x); } } void DGUSDisplay::WriteVariablePGM(uint16_t adr, const void* values, uint8_t valueslen, bool isstr) { const char* myvalues = static_cast(values); bool strend = myvalues ? false : true; WriteHeader(adr, DGUS_CMD_WRITEVAR, valueslen); while (valueslen--) { char x; if (!strend) x = pgm_read_byte(myvalues++); if ((isstr && !x) || strend) { strend = true; x = ' '; } dgusserial.write(x); } } void DGUSScreenVariableHandler::GotoScreen(DGUSLCD_Screens screen, bool ispopup) { dgusdisplay.RequestScreen(screen); UpdateNewScreen(screen, ispopup); } bool DGUSScreenVariableHandler::loop() { dgusdisplay.loop(); const millis_t ms = millis(); static millis_t next_event_ms = 0; if (!IsScreenComplete() || ELAPSED(ms, next_event_ms)) { next_event_ms = ms + DGUS_UPDATE_INTERVAL_MS; UpdateScreenVPData(); } #if ENABLED(SHOW_BOOTSCREEN) static bool booted = false; if (!booted && ELAPSED(ms, BOOTSCREEN_TIMEOUT)) { booted = true; GotoScreen(DGUSLCD_SCREEN_MAIN); } #endif return IsScreenComplete(); } void DGUSDisplay::RequestScreen(DGUSLCD_Screens screen) { DEBUG_ECHOLNPAIR("GotoScreen ", screen); const unsigned char gotoscreen[] = { 0x5A, 0x01, (unsigned char) (screen >> 8U), (unsigned char) (screen & 0xFFU) }; WriteVariable(0x84, gotoscreen, sizeof(gotoscreen)); } void DGUSDisplay::ProcessRx() { if (!dgusserial.available() && dgusserial.is_rx_overrun()) { // if we've got an overrun, but reset the flag only when we've emptied the buffer // We want to extract as many as valid datagrams possible... DEBUG_ECHOPGM("OVFL"); rx_datagram_state = DGUS_IDLE; dgusserial.reset_rx_overun(); } uint8_t receivedbyte; while (dgusserial.available()) { switch (rx_datagram_state) { case DGUS_IDLE: // Waiting for the first header byte receivedbyte = dgusserial.read(); //DEBUG_ECHOPAIR("< ",x); if (DGUS_HEADER1 == receivedbyte) rx_datagram_state = DGUS_HEADER1_SEEN; break; case DGUS_HEADER1_SEEN: // Waiting for the second header byte receivedbyte = dgusserial.read(); //DEBUG_ECHOPAIR(" ",x); rx_datagram_state = (DGUS_HEADER2 == receivedbyte) ? DGUS_HEADER2_SEEN : DGUS_IDLE; break; case DGUS_HEADER2_SEEN: // Waiting for the length byte rx_datagram_len = dgusserial.read(); DEBUG_ECHOPAIR(" (", rx_datagram_len); DEBUG_ECHOPGM(") "); // Telegram min len is 3 (command and one word of payload) rx_datagram_state = WITHIN(rx_datagram_len, 3, DGUS_RX_BUFFER_SIZE) ? DGUS_WAIT_TELEGRAM : DGUS_IDLE; break; case DGUS_WAIT_TELEGRAM: // wait for complete datagram to arrive. if (dgusserial.available() < rx_datagram_len) return; Initialized = true; // We've talked to it, so we defined it as initialized. uint8_t command = dgusserial.read(); DEBUG_ECHOPAIR("# ", command); uint8_t readlen = rx_datagram_len - 1; // command is part of len. unsigned char tmp[rx_datagram_len - 1]; unsigned char *ptmp = tmp; while (readlen--) { receivedbyte = dgusserial.read(); DEBUG_ECHOPAIR(" ", receivedbyte); *ptmp++ = receivedbyte; } DEBUG_ECHOPGM(" # "); // mostly we'll get this: 5A A5 03 82 4F 4B -- ACK on 0x82, so discard it. if (command == DGUS_CMD_WRITEVAR && 'O' == tmp[0] && 'K' == tmp[1]) { DEBUG_ECHOLNPGM(">"); rx_datagram_state = DGUS_IDLE; break; } /* AutoUpload, (and answer to) Command 0x83 : | tmp[0 1 2 3 4 ... ] | Example 5A A5 06 83 20 01 01 78 01 …… | / / | | \ / | \ \ | Header | | | | \_____\_ DATA (Words!) | DatagramLen / VPAdr | | Command DataLen (in Words) */ if (command == DGUS_CMD_READVAR) { const uint16_t vp = tmp[0] << 8 | tmp[1]; const uint8_t dlen = tmp[2] << 1; // Convert to Bytes. (Display works with words) //DEBUG_ECHOPAIR(" vp=", vp, " dlen=", dlen); DGUS_VP_Variable ramcopy; if (populate_VPVar(vp, &ramcopy)) { if (!(dlen == ramcopy.size || (dlen == 2 && ramcopy.size == 1))) DEBUG_ECHOLNPGM("SIZE MISMATCH"); else if (ramcopy.set_by_display_handler) { ramcopy.set_by_display_handler(ramcopy, &tmp[3]); } else DEBUG_ECHOLNPGM(" VPVar found, no handler."); } else DEBUG_ECHOLNPAIR(" VPVar not found:", vp); rx_datagram_state = DGUS_IDLE; break; } // discard what we do not understand. rx_datagram_state = DGUS_IDLE; } } } size_t DGUSDisplay::GetFreeTxBuffer() { return dgusserial.GetTxBufferFree(); } void DGUSDisplay::WriteHeader(uint16_t adr, uint8_t cmd, uint8_t payloadlen) { dgusserial.write(DGUS_HEADER1); dgusserial.write(DGUS_HEADER2); dgusserial.write(payloadlen + 3); dgusserial.write(cmd); dgusserial.write(adr >> 8); dgusserial.write(adr & 0xFF); } void DGUSDisplay::WritePGM(const char str[], uint8_t len) { while (len--) dgusserial.write(pgm_read_byte(str++)); } // Serial implementation stolen from MarlinSerial.cpp -- but functinality reduced to our use case // (no XON/XOFF, no Emergency Parser, no error statistics, no support to send from interrupts ...) // Define all UART registers #define _TNAME(X,Y,Z) X##Y##Z #define TNAME(X,Y,Z) _TNAME(X,Y,Z) #define DGUS_SERIAL_RX_VECT TNAME(USART,DGUS_SER_PORT,_RX_vect) #define DGUS_SERIAL_UDRE_VECT TNAME(USART,DGUS_SER_PORT,_UDRE_vect) #define DGUS_UCSRxA TNAME(UCSR,DGUS_SER_PORT,A) #define DGUS_UCSRxB TNAME(UCSR,DGUS_SER_PORT,B) #define DGUS_UCSRxC TNAME(UCSR,DGUS_SER_PORT,C) #define DGUS_UBRRxH TNAME(UBRR,DGUS_SER_PORT,H) #define DGUS_UBRRxL TNAME(UBRR,DGUS_SER_PORT,L) #define DGUS_UDRx TNAME(UDR,DGUS_SER_PORT,) #define U2Xx TNAME(U2X,DGUS_SER_PORT,) #define RXENx TNAME(RXEN,DGUS_SER_PORT,) #define TXENx TNAME(TXEN,DGUS_SER_PORT,) #define TXCx TNAME(TXC,DGUS_SER_PORT,) #define RXCIEx TNAME(RXCIE,DGUS_SER_PORT,) #define UDRIEx TNAME(UDRIE,DGUS_SER_PORT,) #define UDREx TNAME(UDRE,DGUS_SER_PORT,) // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); DGUSSerial::DGUSSerial() { // Initialize UART DGUS_UCSRxA = 1 << U2Xx; const uint16_t baud_setting = (F_CPU / 4 / DGUS_BAUDRATE - 1) / 2; DGUS_UBRRxH = baud_setting >> 8; DGUS_UBRRxL = baud_setting; DGUS_UCSRxC = 0x06; DGUS_UCSRxB = 1 << RXCIEx | 1 << TXENx | 1 << RXENx; // Enable TX,RX and the RX interrupts. } DGUSSerial::~DGUSSerial() { DGUS_UCSRxB = 0; } // "Atomically" read the RX head index value without disabling interrupts: // This MUST be called with RX interrupts enabled, and CAN'T be called // from the RX ISR itself! FORCE_INLINE r_ring_buffer_pos_t DGUSSerial::atomic_read_rx_head() { #if RX_BUFFER_SIZE > 256 // Keep reading until 2 consecutive reads return the same value, // meaning there was no update in-between caused by an interrupt. // This works because serial RX interrupts happen at a slower rate // than successive reads of a variable, so 2 consecutive reads with // the same value means no interrupt updated it. r_ring_buffer_pos_t vold, vnew = rx_buffer.head; sw_barrier(); do { vold = vnew; vnew = rx_buffer.head; sw_barrier(); } while (vold != vnew); return vnew; #else // With an 8bit index, reads are always atomic. No need for special handling return rx_buffer.head; #endif } // Set RX tail index, taking into account the RX ISR could interrupt // the write to this variable in the middle - So a backup strategy // is used to ensure reads of the correct values. // -Must NOT be called from the RX ISR - FORCE_INLINE void DGUSSerial::atomic_set_rx_tail(r_ring_buffer_pos_t value) { #if RX_BUFFER_SIZE > 256 // Store the new value in the backup rx_tail_value_backup = value; sw_barrier(); // Flag we are about to change the true value rx_tail_value_not_stable = true; sw_barrier(); // Store the new value rx_buffer.tail = value; sw_barrier(); // Signal the new value is completely stored into the value rx_tail_value_not_stable = false; sw_barrier(); #else rx_buffer.tail = value; #endif } // Get the RX tail index, taking into account the read could be // interrupting in the middle of the update of that index value // -Called from the RX ISR - FORCE_INLINE r_ring_buffer_pos_t DGUSSerial::atomic_read_rx_tail() { #if RX_BUFFER_SIZE > 256 // If the true index is being modified, return the backup value if (rx_tail_value_not_stable) return rx_tail_value_backup; #endif // The true index is stable, return it return rx_buffer.tail; } // (called with RX interrupts disabled) FORCE_INLINE void DGUSSerial::store_rxd_char() { // Get the tail - Nothing can alter its value while this ISR is executing, but there's // a chance that this ISR interrupted the main process while it was updating the index. // The backup mechanism ensures the correct value is always returned. const r_ring_buffer_pos_t t = atomic_read_rx_tail(); // Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here r_ring_buffer_pos_t h = rx_buffer.head; // Get the next element r_ring_buffer_pos_t i = (r_ring_buffer_pos_t) (h + 1) & (r_ring_buffer_pos_t) (DGUS_RX_BUFFER_SIZE - 1); // Read the character from the USART uint8_t c = DGUS_UDRx; // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the RX FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else dgus_rx_overrun = true; // Store the new head value - The main loop will retry until the value is stable rx_buffer.head = h; } // (called with TX irqs disabled) FORCE_INLINE void DGUSSerial::tx_udr_empty_irq(void) { // Read positions uint8_t t = tx_buffer.tail; const uint8_t h = tx_buffer.head; // If nothing to transmit, just disable TX interrupts. This could // happen as the result of the non atomicity of the disabling of RX // interrupts that could end reenabling TX interrupts as a side effect. if (h == t) { CBI(DGUS_UCSRxB, UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } // There is something to TX, Send the next byte const uint8_t c = tx_buffer.buffer[t]; t = (t + 1) & (DGUS_TX_BUFFER_SIZE - 1); DGUS_UDRx = c; tx_buffer.tail = t; // Clear the TXC bit (by writing a one to its bit location). // Ensures flush() won't return until the bytes are actually written/ SBI(DGUS_UCSRxA, TXCx); // Disable interrupts if there is nothing to transmit following this byte if (h == t) CBI(DGUS_UCSRxB, UDRIEx); } r_ring_buffer_pos_t DGUSSerial::available(void) { const r_ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; return (r_ring_buffer_pos_t) (DGUS_RX_BUFFER_SIZE + h - t) & (DGUS_RX_BUFFER_SIZE - 1); } int DGUSSerial::read() { const r_ring_buffer_pos_t h = atomic_read_rx_head(); // Read the tail. Main thread owns it, so it is safe to directly read it r_ring_buffer_pos_t t = rx_buffer.tail; // If nothing to read, return now if (h == t) return -1; // Get the next char const int v = rx_buffer.buffer[t]; t = (r_ring_buffer_pos_t) (t + 1) & (DGUS_RX_BUFFER_SIZE - 1); // Advance tail - Making sure the RX ISR will always get an stable value, even // if it interrupts the writing of the value of that variable in the middle. atomic_set_rx_tail(t); return v; } void DGUSSerial::write(const uint8_t c) { // are we currently tranmitting? If not, we can just place the byte in UDR. if (!TEST(DGUS_UCSRxB, UDRIEx) && TEST(DGUS_UCSRxA, UDREx)) { DGUS_UDRx = c; SBI(DGUS_UCSRxA, TXCx); return; } const uint8_t i = (tx_buffer.head + 1) & (DGUS_TX_BUFFER_SIZE - 1); while (i == tx_buffer.tail) sw_barrier(); // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; SBI(DGUS_UCSRxB, UDRIEx); // Enable Interrupts to finish off. } t_ring_buffer_pos_t DGUSSerial::GetTxBufferFree() { const t_ring_buffer_pos_t t = tx_buffer.tail, // next byte to send. h = tx_buffer.head; // next pos for queue. int ret = t - h - 1; if (ret < 0) ret += DGUS_TX_BUFFER_SIZE + 1; return ret; } ISR(DGUS_SERIAL_UDRE_VECT) { dgusserial.tx_udr_empty_irq(); } ISR(DGUS_SERIAL_RX_VECT) { dgusserial.store_rxd_char(); } #endif // DGUS_LCD