701 lines
22 KiB
C++
701 lines
22 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* This module is off by default, but can be enabled to facilitate the display of
|
|
* extra debug information during code development.
|
|
*
|
|
* Just connect up 5V and GND to give it power, then connect up the pins assigned
|
|
* in Configuration_adv.h. For example, on the Re-ARM you could use:
|
|
*
|
|
* #define MAX7219_CLK_PIN 77
|
|
* #define MAX7219_DIN_PIN 78
|
|
* #define MAX7219_LOAD_PIN 79
|
|
*
|
|
* send() is called automatically at startup, and then there are a number of
|
|
* support functions available to control the LEDs in the 8x8 grid.
|
|
*/
|
|
|
|
#include "../inc/MarlinConfigPre.h"
|
|
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
|
|
#define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory
|
|
|
|
#include "max7219.h"
|
|
|
|
#include "../module/planner.h"
|
|
#include "../module/stepper.h"
|
|
#include "../MarlinCore.h"
|
|
#include "../HAL/shared/Delay.h"
|
|
|
|
#if ENABLED(MAX7219_SIDE_BY_SIDE) && MAX7219_NUMBER_UNITS > 1
|
|
#define HAS_SIDE_BY_SIDE 1
|
|
#endif
|
|
|
|
#if _ROT == 0 || _ROT == 180
|
|
#define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES)
|
|
#define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8)
|
|
#elif _ROT == 90 || _ROT == 270
|
|
#define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8)
|
|
#define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES)
|
|
#else
|
|
#error "MAX7219_ROTATE must be a multiple of +/- 90°."
|
|
#endif
|
|
|
|
Max7219 max7219;
|
|
|
|
uint8_t Max7219::led_line[MAX7219_LINES]; // = { 0 };
|
|
uint8_t Max7219::suspended; // = 0;
|
|
|
|
#define LINE_REG(Q) (max7219_reg_digit0 + ((Q) & 0x7))
|
|
|
|
#if _ROT == 0 || _ROT == 270
|
|
#define _LED_BIT(Q) (7 - ((Q) & 0x7))
|
|
#else
|
|
#define _LED_BIT(Q) ((Q) & 0x7)
|
|
#endif
|
|
#if _ROT == 0 || _ROT == 180
|
|
#define LED_BIT(X,Y) _LED_BIT(X)
|
|
#else
|
|
#define LED_BIT(X,Y) _LED_BIT(Y)
|
|
#endif
|
|
#if _ROT == 0 || _ROT == 90
|
|
#define _LED_IND(P,Q) (_LED_TOP(P) + ((Q) & 0x7))
|
|
#else
|
|
#define _LED_IND(P,Q) (_LED_TOP(P) + (7 - ((Q) & 0x7)))
|
|
#endif
|
|
|
|
#if HAS_SIDE_BY_SIDE
|
|
#if (_ROT == 0 || _ROT == 90) == DISABLED(MAX7219_REVERSE_ORDER)
|
|
#define _LED_TOP(Q) ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3)
|
|
#else
|
|
#define _LED_TOP(Q) ((Q) & ~0x7)
|
|
#endif
|
|
#if _ROT == 0 || _ROT == 180
|
|
#define LED_IND(X,Y) _LED_IND(Y,Y)
|
|
#elif _ROT == 90 || _ROT == 270
|
|
#define LED_IND(X,Y) _LED_IND(X,X)
|
|
#endif
|
|
#else
|
|
#if (_ROT == 0 || _ROT == 270) == DISABLED(MAX7219_REVERSE_ORDER)
|
|
#define _LED_TOP(Q) ((Q) & ~0x7)
|
|
#else
|
|
#define _LED_TOP(Q) ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3)
|
|
#endif
|
|
#if _ROT == 0 || _ROT == 180
|
|
#define LED_IND(X,Y) _LED_IND(X,Y)
|
|
#elif _ROT == 90 || _ROT == 270
|
|
#define LED_IND(X,Y) _LED_IND(Y,X)
|
|
#endif
|
|
#endif
|
|
|
|
#define XOR_7219(X,Y) do{ led_line[LED_IND(X,Y)] ^= _BV(LED_BIT(X,Y)); }while(0)
|
|
#define SET_7219(X,Y) do{ led_line[LED_IND(X,Y)] |= _BV(LED_BIT(X,Y)); }while(0)
|
|
#define CLR_7219(X,Y) do{ led_line[LED_IND(X,Y)] &= ~_BV(LED_BIT(X,Y)); }while(0)
|
|
#define BIT_7219(X,Y) TEST(led_line[LED_IND(X,Y)], LED_BIT(X,Y))
|
|
|
|
#ifdef CPU_32_BIT
|
|
#define SIG_DELAY() DELAY_US(1) // Approximate a 1µs delay on 32-bit ARM
|
|
#undef CRITICAL_SECTION_START
|
|
#undef CRITICAL_SECTION_END
|
|
#define CRITICAL_SECTION_START() NOOP
|
|
#define CRITICAL_SECTION_END() NOOP
|
|
#else
|
|
#define SIG_DELAY() DELAY_NS(250)
|
|
#endif
|
|
|
|
void Max7219::error(const char * const func, const int32_t v1, const int32_t v2/*=-1*/) {
|
|
#if ENABLED(MAX7219_ERRORS)
|
|
SERIAL_ECHOPGM("??? Max7219::");
|
|
SERIAL_ECHOPGM_P(func);
|
|
SERIAL_CHAR('(');
|
|
SERIAL_ECHO(v1);
|
|
if (v2 > 0) SERIAL_ECHOPGM(", ", v2);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
#else
|
|
UNUSED(func); UNUSED(v1); UNUSED(v2);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Flip the lowest n_bytes of the supplied bits:
|
|
* flipped(x, 1) flips the low 8 bits of x.
|
|
* flipped(x, 2) flips the low 16 bits of x.
|
|
* flipped(x, 3) flips the low 24 bits of x.
|
|
* flipped(x, 4) flips the low 32 bits of x.
|
|
*/
|
|
inline uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) {
|
|
uint32_t mask = 1, outbits = 0;
|
|
LOOP_L_N(b, n_bytes * 8) {
|
|
outbits <<= 1;
|
|
if (bits & mask) outbits |= 1;
|
|
mask <<= 1;
|
|
}
|
|
return outbits;
|
|
}
|
|
|
|
void Max7219::noop() {
|
|
CRITICAL_SECTION_START();
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_DIN_PIN, LOW);
|
|
for (uint8_t i = 16; i--;) {
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_CLK_PIN, LOW);
|
|
SIG_DELAY();
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_CLK_PIN, HIGH);
|
|
SIG_DELAY();
|
|
}
|
|
CRITICAL_SECTION_END();
|
|
}
|
|
|
|
void Max7219::putbyte(uint8_t data) {
|
|
CRITICAL_SECTION_START();
|
|
for (uint8_t i = 8; i--;) {
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_CLK_PIN, LOW); // tick
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW); // send 1 or 0 based on data bit
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_CLK_PIN, HIGH); // tock
|
|
SIG_DELAY();
|
|
data <<= 1;
|
|
}
|
|
CRITICAL_SECTION_END();
|
|
}
|
|
|
|
void Max7219::pulse_load() {
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_LOAD_PIN, LOW); // tell the chip to load the data
|
|
SIG_DELAY();
|
|
WRITE(MAX7219_LOAD_PIN, HIGH);
|
|
SIG_DELAY();
|
|
}
|
|
|
|
void Max7219::send(const uint8_t reg, const uint8_t data) {
|
|
SIG_DELAY();
|
|
CRITICAL_SECTION_START();
|
|
SIG_DELAY();
|
|
putbyte(reg); // specify register
|
|
SIG_DELAY();
|
|
putbyte(data); // put data
|
|
CRITICAL_SECTION_END();
|
|
}
|
|
|
|
// Send out a single native row of bits to just one unit
|
|
void Max7219::refresh_unit_line(const uint8_t line) {
|
|
if (suspended) return;
|
|
#if MAX7219_NUMBER_UNITS == 1
|
|
send(LINE_REG(line), led_line[line]);
|
|
#else
|
|
for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)
|
|
if (u == (line >> 3)) send(LINE_REG(line), led_line[line]); else noop();
|
|
#endif
|
|
pulse_load();
|
|
}
|
|
|
|
// Send out a single native row of bits to all units
|
|
void Max7219::refresh_line(const uint8_t line) {
|
|
if (suspended) return;
|
|
#if MAX7219_NUMBER_UNITS == 1
|
|
refresh_unit_line(line);
|
|
#else
|
|
for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)
|
|
send(LINE_REG(line), led_line[(u << 3) | (line & 0x7)]);
|
|
#endif
|
|
pulse_load();
|
|
}
|
|
|
|
void Max7219::set(const uint8_t line, const uint8_t bits) {
|
|
led_line[line] = bits;
|
|
refresh_unit_line(line);
|
|
}
|
|
|
|
#if ENABLED(MAX7219_NUMERIC)
|
|
|
|
// Draw an integer with optional leading zeros and optional decimal point
|
|
void Max7219::print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) {
|
|
if (suspended) return;
|
|
constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A },
|
|
led_decimal = 0x80, led_minus = 0x01;
|
|
bool blank = false, neg = value < 0;
|
|
if (neg) value *= -1;
|
|
while (size--) {
|
|
const bool minus = neg && blank;
|
|
if (minus) neg = false;
|
|
send(
|
|
max7219_reg_digit0 + start + size,
|
|
minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00)
|
|
);
|
|
pulse_load(); // tell the chips to load the clocked out data
|
|
value /= 10;
|
|
if (!value && !leadzero) blank = true;
|
|
dec = false;
|
|
}
|
|
}
|
|
|
|
// Draw a float with a decimal point and optional digits
|
|
void Max7219::print(const uint8_t start, const_float_t value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {
|
|
if (pre_size) print(start, value, pre_size, leadzero, !!post_size);
|
|
if (post_size) {
|
|
const int16_t after = ABS(value) * (10 ^ post_size);
|
|
print(start + pre_size, after, post_size, true);
|
|
}
|
|
}
|
|
|
|
#endif // MAX7219_NUMERIC
|
|
|
|
// Modify a single LED bit and send the changed line
|
|
void Max7219::led_set(const uint8_t x, const uint8_t y, const bool on) {
|
|
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_set"), x, y);
|
|
if (BIT_7219(x, y) == on) return;
|
|
XOR_7219(x, y);
|
|
refresh_unit_line(LED_IND(x, y));
|
|
}
|
|
|
|
void Max7219::led_on(const uint8_t x, const uint8_t y) {
|
|
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_on"), x, y);
|
|
led_set(x, y, true);
|
|
}
|
|
|
|
void Max7219::led_off(const uint8_t x, const uint8_t y) {
|
|
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_off"), x, y);
|
|
led_set(x, y, false);
|
|
}
|
|
|
|
void Max7219::led_toggle(const uint8_t x, const uint8_t y) {
|
|
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(PSTR("led_toggle"), x, y);
|
|
led_set(x, y, !BIT_7219(x, y));
|
|
}
|
|
|
|
void Max7219::send_row(const uint8_t row) {
|
|
if (suspended) return;
|
|
#if _ROT == 0 || _ROT == 180 // Native Lines are horizontal too
|
|
#if MAX7219_X_LEDS <= 8
|
|
refresh_unit_line(LED_IND(0, row)); // A single unit line
|
|
#else
|
|
refresh_line(LED_IND(0, row)); // Same line, all units
|
|
#endif
|
|
#else // Native lines are vertical
|
|
UNUSED(row);
|
|
refresh(); // Actually a column
|
|
#endif
|
|
}
|
|
|
|
void Max7219::send_column(const uint8_t col) {
|
|
if (suspended) return;
|
|
#if _ROT == 90 || _ROT == 270 // Native Lines are vertical too
|
|
#if MAX7219_Y_LEDS <= 8
|
|
refresh_unit_line(LED_IND(col, 0)); // A single unit line
|
|
#else
|
|
refresh_line(LED_IND(col, 0)); // Same line, all units
|
|
#endif
|
|
#else // Native lines are horizontal
|
|
UNUSED(col);
|
|
refresh(); // Actually a row
|
|
#endif
|
|
}
|
|
|
|
void Max7219::clear() {
|
|
ZERO(led_line);
|
|
refresh();
|
|
}
|
|
|
|
void Max7219::fill() {
|
|
memset(led_line, 0xFF, sizeof(led_line));
|
|
refresh();
|
|
}
|
|
|
|
void Max7219::clear_row(const uint8_t row) {
|
|
if (row >= MAX7219_Y_LEDS) return error(PSTR("clear_row"), row);
|
|
LOOP_L_N(x, MAX7219_X_LEDS) CLR_7219(x, row);
|
|
send_row(row);
|
|
}
|
|
|
|
void Max7219::clear_column(const uint8_t col) {
|
|
if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);
|
|
LOOP_L_N(y, MAX7219_Y_LEDS) CLR_7219(col, y);
|
|
send_column(col);
|
|
}
|
|
|
|
/**
|
|
* Plot the low order bits of val to the specified row of the matrix.
|
|
* With 4 Max7219 units in the chain, it's possible to set 32 bits at
|
|
* once with a single call to the function (if rotated 90° or 270°).
|
|
*/
|
|
void Max7219::set_row(const uint8_t row, const uint32_t val) {
|
|
if (row >= MAX7219_Y_LEDS) return error(PSTR("set_row"), row);
|
|
uint32_t mask = _BV32(MAX7219_X_LEDS - 1);
|
|
LOOP_L_N(x, MAX7219_X_LEDS) {
|
|
if (val & mask) SET_7219(x, row); else CLR_7219(x, row);
|
|
mask >>= 1;
|
|
}
|
|
send_row(row);
|
|
}
|
|
|
|
/**
|
|
* Plot the low order bits of val to the specified column of the matrix.
|
|
* With 4 Max7219 units in the chain, it's possible to set 32 bits at
|
|
* once with a single call to the function (if rotated 0° or 180°).
|
|
*/
|
|
void Max7219::set_column(const uint8_t col, const uint32_t val) {
|
|
if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);
|
|
uint32_t mask = _BV32(MAX7219_Y_LEDS - 1);
|
|
LOOP_L_N(y, MAX7219_Y_LEDS) {
|
|
if (val & mask) SET_7219(col, y); else CLR_7219(col, y);
|
|
mask >>= 1;
|
|
}
|
|
send_column(col);
|
|
}
|
|
|
|
void Max7219::set_rows_16bits(const uint8_t y, uint32_t val) {
|
|
#if MAX7219_X_LEDS == 8
|
|
if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_16bits"), y, val);
|
|
set_row(y + 1, val); val >>= 8;
|
|
set_row(y + 0, val);
|
|
#else // at least 16 bits on each row
|
|
if (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_16bits"), y, val);
|
|
set_row(y, val);
|
|
#endif
|
|
}
|
|
|
|
void Max7219::set_rows_32bits(const uint8_t y, uint32_t val) {
|
|
#if MAX7219_X_LEDS == 8
|
|
if (y > MAX7219_Y_LEDS - 4) return error(PSTR("set_rows_32bits"), y, val);
|
|
set_row(y + 3, val); val >>= 8;
|
|
set_row(y + 2, val); val >>= 8;
|
|
set_row(y + 1, val); val >>= 8;
|
|
set_row(y + 0, val);
|
|
#elif MAX7219_X_LEDS == 16
|
|
if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_32bits"), y, val);
|
|
set_row(y + 1, val); val >>= 16;
|
|
set_row(y + 0, val);
|
|
#else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits
|
|
if (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_32bits"), y, val);
|
|
set_row(y, val);
|
|
#endif
|
|
}
|
|
|
|
void Max7219::set_columns_16bits(const uint8_t x, uint32_t val) {
|
|
#if MAX7219_Y_LEDS == 8
|
|
if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_columns_16bits"), x, val);
|
|
set_column(x + 0, val); val >>= 8;
|
|
set_column(x + 1, val);
|
|
#else // at least 16 bits in each column
|
|
if (x > MAX7219_X_LEDS - 1) return error(PSTR("set_columns_16bits"), x, val);
|
|
set_column(x, val);
|
|
#endif
|
|
}
|
|
|
|
void Max7219::set_columns_32bits(const uint8_t x, uint32_t val) {
|
|
#if MAX7219_Y_LEDS == 8
|
|
if (x > MAX7219_X_LEDS - 4) return error(PSTR("set_rows_32bits"), x, val);
|
|
set_column(x + 3, val); val >>= 8;
|
|
set_column(x + 2, val); val >>= 8;
|
|
set_column(x + 1, val); val >>= 8;
|
|
set_column(x + 0, val);
|
|
#elif MAX7219_Y_LEDS == 16
|
|
if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_rows_32bits"), x, val);
|
|
set_column(x + 1, val); val >>= 16;
|
|
set_column(x + 0, val);
|
|
#else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits
|
|
if (x > MAX7219_X_LEDS - 1) return error(PSTR("set_rows_32bits"), x, val);
|
|
set_column(x, val);
|
|
#endif
|
|
}
|
|
|
|
// Initialize the Max7219
|
|
void Max7219::register_setup() {
|
|
LOOP_L_N(i, MAX7219_NUMBER_UNITS)
|
|
send(max7219_reg_scanLimit, 0x07);
|
|
pulse_load(); // Tell the chips to load the clocked out data
|
|
|
|
LOOP_L_N(i, MAX7219_NUMBER_UNITS)
|
|
send(max7219_reg_decodeMode, 0x00); // Using an led matrix (not digits)
|
|
pulse_load(); // Tell the chips to load the clocked out data
|
|
|
|
LOOP_L_N(i, MAX7219_NUMBER_UNITS)
|
|
send(max7219_reg_shutdown, 0x01); // Not in shutdown mode
|
|
pulse_load(); // Tell the chips to load the clocked out data
|
|
|
|
LOOP_L_N(i, MAX7219_NUMBER_UNITS)
|
|
send(max7219_reg_displayTest, 0x00); // No display test
|
|
pulse_load(); // Tell the chips to load the clocked out data
|
|
|
|
LOOP_L_N(i, MAX7219_NUMBER_UNITS)
|
|
send(max7219_reg_intensity, 0x01 & 0x0F); // The first 0x0F is the value you can set
|
|
// Range: 0x00 to 0x0F
|
|
pulse_load(); // Tell the chips to load the clocked out data
|
|
}
|
|
|
|
#ifdef MAX7219_INIT_TEST
|
|
|
|
uint8_t test_mode = 0;
|
|
millis_t next_patt_ms;
|
|
bool patt_on;
|
|
|
|
#if MAX7219_INIT_TEST == 2
|
|
|
|
#define MAX7219_LEDS (MAX7219_X_LEDS * MAX7219_Y_LEDS)
|
|
|
|
constexpr millis_t pattern_delay = 4;
|
|
|
|
int8_t spiralx, spiraly, spiral_dir;
|
|
IF<(MAX7219_LEDS > 255), uint16_t, uint8_t>::type spiral_count;
|
|
|
|
void Max7219::test_pattern() {
|
|
constexpr int8_t way[][2] = { { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -1 } };
|
|
led_set(spiralx, spiraly, patt_on);
|
|
const int8_t x = spiralx + way[spiral_dir][0], y = spiraly + way[spiral_dir][1];
|
|
if (!WITHIN(x, 0, MAX7219_X_LEDS - 1) || !WITHIN(y, 0, MAX7219_Y_LEDS - 1) || BIT_7219(x, y) == patt_on)
|
|
spiral_dir = (spiral_dir + 1) & 0x3;
|
|
spiralx += way[spiral_dir][0];
|
|
spiraly += way[spiral_dir][1];
|
|
if (!spiral_count--) {
|
|
if (!patt_on)
|
|
test_mode = 0;
|
|
else {
|
|
spiral_count = MAX7219_LEDS;
|
|
spiralx = spiraly = spiral_dir = 0;
|
|
patt_on = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
constexpr millis_t pattern_delay = 20;
|
|
int8_t sweep_count, sweepx, sweep_dir;
|
|
|
|
void Max7219::test_pattern() {
|
|
set_column(sweepx, patt_on ? 0xFFFFFFFF : 0x00000000);
|
|
sweepx += sweep_dir;
|
|
if (!WITHIN(sweepx, 0, MAX7219_X_LEDS - 1)) {
|
|
if (!patt_on) {
|
|
sweep_dir *= -1;
|
|
sweepx += sweep_dir;
|
|
}
|
|
else
|
|
sweepx -= MAX7219_X_LEDS * sweep_dir;
|
|
patt_on ^= true;
|
|
next_patt_ms += 100;
|
|
if (++test_mode > 4) test_mode = 0;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void Max7219::run_test_pattern() {
|
|
const millis_t ms = millis();
|
|
if (PENDING(ms, next_patt_ms)) return;
|
|
next_patt_ms = ms + pattern_delay;
|
|
test_pattern();
|
|
}
|
|
|
|
void Max7219::start_test_pattern() {
|
|
clear();
|
|
test_mode = 1;
|
|
patt_on = true;
|
|
#if MAX7219_INIT_TEST == 2
|
|
spiralx = spiraly = spiral_dir = 0;
|
|
spiral_count = MAX7219_LEDS;
|
|
#else
|
|
sweep_dir = 1;
|
|
sweepx = 0;
|
|
sweep_count = MAX7219_X_LEDS;
|
|
#endif
|
|
}
|
|
|
|
#endif // MAX7219_INIT_TEST
|
|
|
|
void Max7219::init() {
|
|
SET_OUTPUT(MAX7219_DIN_PIN);
|
|
SET_OUTPUT(MAX7219_CLK_PIN);
|
|
OUT_WRITE(MAX7219_LOAD_PIN, HIGH);
|
|
delay(1);
|
|
|
|
register_setup();
|
|
|
|
LOOP_LE_N(i, 7) { // Empty registers to turn all LEDs off
|
|
led_line[i] = 0x00;
|
|
send(max7219_reg_digit0 + i, 0);
|
|
pulse_load(); // Tell the chips to load the clocked out data
|
|
}
|
|
|
|
#ifdef MAX7219_INIT_TEST
|
|
start_test_pattern();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could
|
|
* benefit from matrix display, add its code here. Very little processing is required, so the 7219 is
|
|
* ideal for debugging when realtime feedback is important but serial output can't be used.
|
|
*/
|
|
|
|
// Apply changes to update a marker
|
|
void Max7219::mark16(const uint8_t pos, const uint8_t v1, const uint8_t v2) {
|
|
#if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line.
|
|
led_off(v1 & 0xF, pos);
|
|
led_on(v2 & 0xF, pos);
|
|
#elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column.
|
|
led_off(pos, v1 & 0xF);
|
|
led_on(pos, v2 & 0xF);
|
|
#else // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
|
|
led_off(v1 & 0x7, pos + (v1 >= 8));
|
|
led_on(v2 & 0x7, pos + (v2 >= 8));
|
|
#endif
|
|
}
|
|
|
|
// Apply changes to update a tail-to-head range
|
|
void Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) {
|
|
#if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line.
|
|
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
|
|
led_off(n & 0xF, y);
|
|
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
|
|
led_on(n & 0xF, y);
|
|
#elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column.
|
|
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
|
|
led_off(y, n & 0xF);
|
|
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
|
|
led_on(y, n & 0xF);
|
|
#else // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
|
|
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
|
|
led_off(n & 0x7, y + (n >= 8));
|
|
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
|
|
led_on(n & 0x7, y + (n >= 8));
|
|
#endif
|
|
}
|
|
|
|
// Apply changes to update a quantity
|
|
void Max7219::quantity16(const uint8_t pos, const uint8_t ov, const uint8_t nv) {
|
|
for (uint8_t i = _MIN(nv, ov); i < _MAX(nv, ov); i++)
|
|
led_set(
|
|
#if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line.
|
|
i, pos
|
|
#elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column.
|
|
pos, i
|
|
#else // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
|
|
i >> 1, pos + (i & 1)
|
|
#endif
|
|
, nv >= ov
|
|
);
|
|
}
|
|
|
|
void Max7219::idle_tasks() {
|
|
#define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
|
|
#define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
|
|
#if MAX7219_USE_HEAD || MAX7219_USE_TAIL
|
|
CRITICAL_SECTION_START();
|
|
#if MAX7219_USE_HEAD
|
|
const uint8_t head = planner.block_buffer_head;
|
|
#endif
|
|
#if MAX7219_USE_TAIL
|
|
const uint8_t tail = planner.block_buffer_tail;
|
|
#endif
|
|
CRITICAL_SECTION_END();
|
|
#endif
|
|
|
|
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
|
|
static uint8_t refresh_cnt; // = 0
|
|
constexpr uint16_t refresh_limit = 5;
|
|
static millis_t next_blink = 0;
|
|
const millis_t ms = millis();
|
|
const bool do_blink = ELAPSED(ms, next_blink);
|
|
#else
|
|
static uint16_t refresh_cnt; // = 0
|
|
constexpr bool do_blink = true;
|
|
constexpr uint16_t refresh_limit = 50000;
|
|
#endif
|
|
|
|
// Some Max7219 units are vulnerable to electrical noise, especially
|
|
// with long wires next to high current wires. If the display becomes
|
|
// corrupted, this will fix it within a couple seconds.
|
|
if (do_blink && ++refresh_cnt >= refresh_limit) {
|
|
refresh_cnt = 0;
|
|
register_setup();
|
|
}
|
|
|
|
#ifdef MAX7219_INIT_TEST
|
|
if (test_mode) {
|
|
run_test_pattern();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
|
|
if (do_blink) {
|
|
led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1);
|
|
next_blink = ms + 1000;
|
|
}
|
|
#endif
|
|
|
|
#if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAIL
|
|
|
|
static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF;
|
|
|
|
if (last_head_cnt != head || last_tail_cnt != tail) {
|
|
range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head);
|
|
last_head_cnt = head;
|
|
last_tail_cnt = tail;
|
|
}
|
|
|
|
#else
|
|
|
|
#ifdef MAX7219_DEBUG_PLANNER_HEAD
|
|
static int16_t last_head_cnt = 0x1;
|
|
if (last_head_cnt != head) {
|
|
mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head);
|
|
last_head_cnt = head;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MAX7219_DEBUG_PLANNER_TAIL
|
|
static int16_t last_tail_cnt = 0x1;
|
|
if (last_tail_cnt != tail) {
|
|
mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail);
|
|
last_tail_cnt = tail;
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef MAX7219_DEBUG_PLANNER_QUEUE
|
|
static int16_t last_depth = 0;
|
|
const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF;
|
|
if (current_depth != last_depth) {
|
|
quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth);
|
|
last_depth = current_depth;
|
|
}
|
|
#endif
|
|
|
|
// After resume() automatically do a refresh()
|
|
if (suspended == 0x80) {
|
|
suspended = 0;
|
|
refresh();
|
|
}
|
|
}
|
|
|
|
#endif // MAX7219_DEBUG
|