Marlin_Firmware/Marlin/src/gcode/config/M200-M205.cpp
2020-07-22 22:20:14 -05:00

192 lines
6.5 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../MarlinCore.h"
#include "../../module/planner.h"
#if DISABLED(NO_VOLUMETRICS)
/**
* M200: Set filament diameter and set E axis units to cubic units
*
* T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Set filament diameter and enable. D0 disables volumetric.
* S<bool> - Turn volumetric ON or OFF.
* L<float> - Volumetric extruder limit (in mm^3/sec). L0 disables the limit.
*/
void GcodeSuite::M200() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
bool vol_enable = parser.volumetric_enabled,
can_enable = true;
if (parser.seenval('D')) {
const float dval = parser.value_linear_units();
if (dval) { // Set filament size for volumetric calculation
planner.set_filament_size(target_extruder, dval);
vol_enable = true; // Dn = enable for compatibility
}
else
can_enable = false; // D0 = disable for compatibility
}
// Enable or disable with S1 / S0
parser.volumetric_enabled = can_enable && parser.boolval('S', vol_enable);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
if (parser.seenval('L')) {
// Set volumetric limit (in mm^3/sec)
const float lval = parser.value_float();
if (WITHIN(lval, 0, 20))
planner.set_volumetric_extruder_limit(target_extruder, lval);
else
SERIAL_ECHOLNPGM("?L value out of range (0-20).");
}
#endif
planner.calculate_volumetric_multipliers();
}
#endif // !NO_VOLUMETRICS
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*
* With multiple extruders use T to specify which one.
*/
void GcodeSuite::M201() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
#ifdef XY_FREQUENCY_LIMIT
if (parser.seenval('F')) planner.set_frequency_limit(parser.value_byte());
if (parser.seenval('G')) planner.xy_freq_min_speed_factor = constrain(parser.value_float(), 1, 100) / 100;
#endif
LOOP_XYZE(i) {
if (parser.seen(axis_codes[i])) {
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a));
}
}
}
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
*
* With multiple extruders use T to specify which one.
*/
void GcodeSuite::M203() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
LOOP_XYZE(i)
if (parser.seen(axis_codes[i])) {
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a));
}
}
/**
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
*
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
*/
void GcodeSuite::M204() {
if (!parser.seen("PRST")) {
SERIAL_ECHOPAIR("Acceleration: P", planner.settings.acceleration);
SERIAL_ECHOPAIR(" R", planner.settings.retract_acceleration);
SERIAL_ECHOLNPAIR_P(SP_T_STR, planner.settings.travel_acceleration);
}
else {
//planner.synchronize();
// 'S' for legacy compatibility. Should NOT BE USED for new development
if (parser.seenval('S')) planner.settings.travel_acceleration = planner.settings.acceleration = parser.value_linear_units();
if (parser.seenval('P')) planner.settings.acceleration = parser.value_linear_units();
if (parser.seenval('R')) planner.settings.retract_acceleration = parser.value_linear_units();
if (parser.seenval('T')) planner.settings.travel_acceleration = parser.value_linear_units();
}
}
/**
* M205: Set Advanced Settings
*
* B = Min Segment Time (µs)
* S = Min Feed Rate (units/s)
* T = Min Travel Feed Rate (units/s)
* X = Max X Jerk (units/sec^2)
* Y = Max Y Jerk (units/sec^2)
* Z = Max Z Jerk (units/sec^2)
* E = Max E Jerk (units/sec^2)
* J = Junction Deviation (mm) (If not using CLASSIC_JERK)
*/
void GcodeSuite::M205() {
#if HAS_JUNCTION_DEVIATION
#define J_PARAM "J"
#else
#define J_PARAM
#endif
#if HAS_CLASSIC_JERK
#define XYZE_PARAM "XYZE"
#else
#define XYZE_PARAM
#endif
if (!parser.seen("BST" J_PARAM XYZE_PARAM)) return;
//planner.synchronize();
if (parser.seen('B')) planner.settings.min_segment_time_us = parser.value_ulong();
if (parser.seen('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units();
if (parser.seen('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units();
#if HAS_JUNCTION_DEVIATION
if (parser.seen('J')) {
const float junc_dev = parser.value_linear_units();
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
planner.junction_deviation_mm = junc_dev;
TERN_(LIN_ADVANCE, planner.recalculate_max_e_jerk());
}
else
SERIAL_ERROR_MSG("?J out of range (0.01 to 0.3)");
}
#endif
#if HAS_CLASSIC_JERK
if (parser.seen('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units());
if (parser.seen('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units());
if (parser.seen('Z')) {
planner.set_max_jerk(Z_AXIS, parser.value_linear_units());
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
if (planner.max_jerk.z <= 0.1f)
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
#endif
}
#if HAS_CLASSIC_E_JERK
if (parser.seen('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units());
#endif
#endif
}