Marlin_Firmware/Marlin/src/module/temperature.cpp

3554 lines
117 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* temperature.cpp - temperature control
*/
// Useful when debugging thermocouples
//#define IGNORE_THERMOCOUPLE_ERRORS
#include "temperature.h"
#include "endstops.h"
#include "../MarlinCore.h"
#include "planner.h"
#include "../HAL/shared/Delay.h"
#include "../lcd/marlinui.h"
#if ENABLED(DWIN_CREALITY_LCD)
#include "../lcd/dwin/e3v2/dwin.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extui/ui_api.h"
#endif
#if MAX6675_0_IS_MAX31865 || MAX6675_1_IS_MAX31865
#include <Adafruit_MAX31865.h>
#if MAX6675_0_IS_MAX31865 && !defined(MAX31865_CS_PIN) && PIN_EXISTS(MAX6675_SS)
#define MAX31865_CS_PIN MAX6675_SS_PIN
#endif
#if MAX6675_1_IS_MAX31865 && !defined(MAX31865_CS2_PIN) && PIN_EXISTS(MAX6675_SS2)
#define MAX31865_CS2_PIN MAX6675_SS2_PIN
#endif
#ifndef MAX31865_MOSI_PIN
#define MAX31865_MOSI_PIN SD_MOSI_PIN
#endif
#ifndef MAX31865_MISO_PIN
#define MAX31865_MISO_PIN MAX6675_DO_PIN
#endif
#ifndef MAX31865_SCK_PIN
#define MAX31865_SCK_PIN MAX6675_SCK_PIN
#endif
#if MAX6675_0_IS_MAX31865 && PIN_EXISTS(MAX31865_CS)
#define HAS_MAX31865 1
Adafruit_MAX31865 max31865_0 = Adafruit_MAX31865(MAX31865_CS_PIN
#if MAX31865_CS_PIN != MAX6675_SS_PIN
, MAX31865_MOSI_PIN, MAX31865_MISO_PIN, MAX31865_SCK_PIN // For software SPI also set MOSI/MISO/SCK
#endif
);
#endif
#if MAX6675_1_IS_MAX31865 && PIN_EXISTS(MAX31865_CS2)
#define HAS_MAX31865 1
Adafruit_MAX31865 max31865_1 = Adafruit_MAX31865(MAX31865_CS2_PIN
#if MAX31865_CS2_PIN != MAX6675_SS2_PIN
, MAX31865_MOSI_PIN, MAX31865_MISO_PIN, MAX31865_SCK_PIN // For software SPI also set MOSI/MISO/SCK
#endif
);
#endif
#endif
#if EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PINS_EXIST(MAX6675_SCK, MAX6675_DO)
#define MAX6675_SEPARATE_SPI 1
#endif
#if MAX6675_SEPARATE_SPI
#include "../libs/private_spi.h"
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
#include "stepper.h"
#endif
#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
#include "../feature/babystep.h"
#endif
#include "printcounter.h"
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#include "../feature/filwidth.h"
#endif
#if HAS_POWER_MONITOR
#include "../feature/power_monitor.h"
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "../feature/e_parser.h"
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
#include "../feature/leds/printer_event_leds.h"
#endif
#if ENABLED(JOYSTICK)
#include "../feature/joystick.h"
#endif
#if ENABLED(SINGLENOZZLE)
#include "tool_change.h"
#endif
#if USE_BEEPER
#include "../libs/buzzer.h"
#endif
#if HAS_SERVOS
#include "./servo.h"
#endif
#if ANY(HEATER_0_USES_THERMISTOR, HEATER_1_USES_THERMISTOR, HEATER_2_USES_THERMISTOR, HEATER_3_USES_THERMISTOR, \
HEATER_4_USES_THERMISTOR, HEATER_5_USES_THERMISTOR, HEATER_6_USES_THERMISTOR, HEATER_7_USES_THERMISTOR )
#define HAS_HOTEND_THERMISTOR 1
#endif
#if HAS_HOTEND_THERMISTOR
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static const temp_entry_t* heater_ttbl_map[2] = { HEATER_0_TEMPTABLE, HEATER_1_TEMPTABLE };
static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
#define NEXT_TEMPTABLE(N) ,HEATER_##N##_TEMPTABLE
#define NEXT_TEMPTABLE_LEN(N) ,HEATER_##N##_TEMPTABLE_LEN
static const temp_entry_t* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE));
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE_LEN));
#endif
#endif
Temperature thermalManager;
const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY,
str_t_heating_failed[] PROGMEM = STR_T_HEATING_FAILED;
/**
* Macros to include the heater id in temp errors. The compiler's dead-code
* elimination should (hopefully) optimize out the unused strings.
*/
#if HAS_HEATED_BED
#define _BED_PSTR(h) (h) == H_BED ? GET_TEXT(MSG_BED) :
#else
#define _BED_PSTR(h)
#endif
#if HAS_HEATED_CHAMBER
#define _CHAMBER_PSTR(h) (h) == H_CHAMBER ? GET_TEXT(MSG_CHAMBER) :
#else
#define _CHAMBER_PSTR(h)
#endif
#define _E_PSTR(h,N) ((HOTENDS) > N && (h) == N) ? PSTR(LCD_STR_E##N) :
#define HEATER_PSTR(h) _BED_PSTR(h) _CHAMBER_PSTR(h) _E_PSTR(h,1) _E_PSTR(h,2) _E_PSTR(h,3) _E_PSTR(h,4) _E_PSTR(h,5) PSTR(LCD_STR_E0)
// public:
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
bool Temperature::adaptive_fan_slowing = true;
#endif
#if HAS_HOTEND
hotend_info_t Temperature::temp_hotend[HOTEND_TEMPS]; // = { 0 }
const uint16_t Temperature::heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP);
#endif
#if ENABLED(AUTO_POWER_E_FANS)
uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
#endif
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
uint8_t Temperature::chamberfan_speed; // = 0
#endif
#if HAS_FAN
uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
#if ENABLED(EXTRA_FAN_SPEED)
uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT];
void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) {
switch (tmp_temp) {
case 1:
set_fan_speed(fan, old_fan_speed[fan]);
break;
case 2:
old_fan_speed[fan] = fan_speed[fan];
set_fan_speed(fan, new_fan_speed[fan]);
break;
default:
new_fan_speed[fan] = _MIN(tmp_temp, 255U);
break;
}
}
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
bool Temperature::fans_paused; // = false;
uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 }
#endif
#if ENABLED(ADAPTIVE_FAN_SLOWING)
uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128, 128, 128);
#endif
/**
* Set the print fan speed for a target extruder
*/
void Temperature::set_fan_speed(uint8_t target, uint16_t speed) {
NOMORE(speed, 255U);
#if ENABLED(SINGLENOZZLE_STANDBY_FAN)
if (target != active_extruder) {
if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed;
return;
}
#endif
TERN_(SINGLENOZZLE, target = 0); // Always use fan index 0 with SINGLENOZZLE
if (target >= FAN_COUNT) return;
fan_speed[target] = speed;
TERN_(REPORT_FAN_CHANGE, report_fan_speed(target));
}
#if ENABLED(REPORT_FAN_CHANGE)
/**
* Report print fan speed for a target extruder
*/
void Temperature::report_fan_speed(const uint8_t target) {
if (target >= FAN_COUNT) return;
PORT_REDIRECT(SERIAL_BOTH);
SERIAL_ECHOLNPAIR("M106 P", target, " S", fan_speed[target]);
}
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
void Temperature::set_fans_paused(const bool p) {
if (p != fans_paused) {
fans_paused = p;
if (p)
FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
else
FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
}
}
#endif
#endif // HAS_FAN
#if WATCH_HOTENDS
hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
#endif
#if HEATER_IDLE_HANDLER
Temperature::heater_idle_t Temperature::heater_idle[NR_HEATER_IDLE]; // = { { 0 } }
#endif
#if HAS_HEATED_BED
bed_info_t Temperature::temp_bed; // = { 0 }
// Init min and max temp with extreme values to prevent false errors during startup
#ifdef BED_MINTEMP
int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP;
#endif
TERN_(WATCH_BED, bed_watch_t Temperature::watch_bed); // = { 0 }
IF_DISABLED(PIDTEMPBED, millis_t Temperature::next_bed_check_ms);
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
chamber_info_t Temperature::temp_chamber; // = { 0 }
#if HAS_HEATED_CHAMBER
int16_t fan_chamber_pwm;
bool flag_chamber_off;
bool flag_chamber_excess_heat = false;
millis_t next_cool_check_ms_2 = 0;
float old_temp = 9999;
#ifdef CHAMBER_MINTEMP
int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP;
#endif
#ifdef CHAMBER_MAXTEMP
int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP;
#endif
#if WATCH_CHAMBER
chamber_watch_t Temperature::watch_chamber{0};
#endif
millis_t Temperature::next_chamber_check_ms;
#endif // HAS_HEATED_CHAMBER
#endif // HAS_TEMP_CHAMBER
#if HAS_TEMP_PROBE
probe_info_t Temperature::temp_probe; // = { 0 }
#endif
// Initialized by settings.load()
#if ENABLED(PIDTEMP)
//hotend_pid_t Temperature::pid[HOTENDS];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
bool Temperature::allow_cold_extrude = false;
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
#endif
// private:
#if EARLY_WATCHDOG
bool Temperature::inited = false;
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
uint16_t Temperature::redundant_temperature_raw = 0;
float Temperature::redundant_temperature = 0.0;
#endif
volatile bool Temperature::raw_temps_ready = false;
#if ENABLED(PID_EXTRUSION_SCALING)
int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
lpq_ptr_t Temperature::lpq_ptr = 0;
#endif
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1)
#if HAS_HOTEND
// Init mintemp and maxtemp with extreme values to prevent false errors during startup
constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 },
sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 },
sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 },
sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 },
sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 },
sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 },
sensor_heater_6 { HEATER_6_RAW_LO_TEMP, HEATER_6_RAW_HI_TEMP, 0, 16383 },
sensor_heater_7 { HEATER_7_RAW_LO_TEMP, HEATER_7_RAW_HI_TEMP, 0, 16383 };
temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7);
#endif
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
#endif
#if HAS_AUTO_FAN
millis_t Temperature::next_auto_fan_check_ms = 0;
#endif
#if ENABLED(FAN_SOFT_PWM)
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
Temperature::soft_pwm_count_fan[FAN_COUNT];
#endif
#if ENABLED(PROBING_HEATERS_OFF)
bool Temperature::paused;
#endif
// public:
#if HAS_ADC_BUTTONS
uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE;
uint16_t Temperature::ADCKey_count = 0;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
int16_t Temperature::lpq_len; // Initialized in settings.cpp
#endif
#if HAS_PID_HEATING
inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
/**
* PID Autotuning (M303)
*
* Alternately heat and cool the nozzle, observing its behavior to
* determine the best PID values to achieve a stable temperature.
* Needs sufficient heater power to make some overshoot at target
* temperature to succeed.
*/
void Temperature::PID_autotune(const float &target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result/*=false*/) {
float current_temp = 0.0;
int cycles = 0;
bool heating = true;
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
long t_high = 0, t_low = 0;
long bias, d;
PID_t tune_pid = { 0, 0, 0 };
float maxT = 0, minT = 10000;
const bool isbed = (heater_id == H_BED);
#if HAS_PID_FOR_BOTH
#define GHV(B,H) (isbed ? (B) : (H))
#define SHV(B,H) do{ if (isbed) temp_bed.soft_pwm_amount = B; else temp_hotend[heater_id].soft_pwm_amount = H; }while(0)
#define ONHEATINGSTART() (isbed ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
#define ONHEATING(S,C,T) (isbed ? printerEventLEDs.onBedHeating(S,C,T) : printerEventLEDs.onHotendHeating(S,C,T))
#elif ENABLED(PIDTEMPBED)
#define GHV(B,H) B
#define SHV(B,H) (temp_bed.soft_pwm_amount = B)
#define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
#define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
#else
#define GHV(B,H) H
#define SHV(B,H) (temp_hotend[heater_id].soft_pwm_amount = H)
#define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
#define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
#endif
#define WATCH_PID BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP)
#if WATCH_PID
#if ALL(THERMAL_PROTECTION_HOTENDS, PIDTEMP, THERMAL_PROTECTION_BED, PIDTEMPBED)
#define GTV(B,H) (isbed ? (B) : (H))
#elif BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP)
#define GTV(B,H) (H)
#else
#define GTV(B,H) (B)
#endif
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period);
float next_watch_temp = 0.0;
bool heated = false;
#endif
TERN_(HAS_AUTO_FAN, next_auto_fan_check_ms = next_temp_ms + 2500UL);
if (target > GHV(BED_MAX_TARGET, temp_range[heater_id].maxtemp - HOTEND_OVERSHOOT)) {
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
return;
}
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START);
disable_all_heaters();
TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = GHV(temp_bed.celsius, temp_hotend[heater_id].celsius);
LEDColor color = ONHEATINGSTART();
#endif
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false);
// PID Tuning loop
wait_for_heatup = true; // Can be interrupted with M108
while (wait_for_heatup) {
const millis_t ms = millis();
if (raw_temps_ready) { // temp sample ready
updateTemperaturesFromRawValues();
// Get the current temperature and constrain it
current_temp = GHV(temp_bed.celsius, temp_hotend[heater_id].celsius);
NOLESS(maxT, current_temp);
NOMORE(minT, current_temp);
#if ENABLED(PRINTER_EVENT_LEDS)
ONHEATING(start_temp, current_temp, target);
#endif
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) {
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
if (heating && current_temp > target) {
if (ELAPSED(ms, t2 + 5000UL)) {
heating = false;
SHV((bias - d) >> 1, (bias - d) >> 1);
t1 = ms;
t_high = t1 - t2;
maxT = target;
}
}
if (!heating && current_temp < target) {
if (ELAPSED(ms, t1 + 5000UL)) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
bias += (d * (t_high - t_low)) / (t_low + t_high);
LIMIT(bias, 20, max_pow - 20);
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT);
if (cycles > 2) {
const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f),
Tu = float(t_low + t_high) * 0.001f,
pf = isbed ? 0.2f : 0.6f,
df = isbed ? 1.0f / 3.0f : 1.0f / 8.0f;
SERIAL_ECHOPAIR(STR_KU, Ku, STR_TU, Tu);
if (isbed) { // Do not remove this otherwise PID autotune won't work right for the bed!
tune_pid.Kp = Ku * 0.2f;
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
tune_pid.Kd = tune_pid.Kp * Tu / 3;
SERIAL_ECHOLNPGM("\n" " No overshoot"); // Works far better for the bed. Classic and some have bad ringing.
SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
}
else {
tune_pid.Kp = Ku * pf;
tune_pid.Kd = tune_pid.Kp * Tu * df;
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
SERIAL_ECHOLNPGM("\n" STR_CLASSIC_PID);
SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
}
/**
tune_pid.Kp = 0.33 * Ku;
tune_pid.Ki = tune_pid.Kp / Tu;
tune_pid.Kd = tune_pid.Kp * Tu / 3;
SERIAL_ECHOLNPGM(" Some overshoot");
SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
tune_pid.Kp = 0.2 * Ku;
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
tune_pid.Kd = tune_pid.Kp * Tu / 3;
SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
*/
}
}
SHV((bias + d) >> 1, (bias + d) >> 1);
cycles++;
minT = target;
}
}
}
// Did the temperature overshoot very far?
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
#define MAX_OVERSHOOT_PID_AUTOTUNE 30
#endif
if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
break;
}
// Report heater states every 2 seconds
if (ELAPSED(ms, next_temp_ms)) {
#if HAS_TEMP_SENSOR
print_heater_states(isbed ? active_extruder : heater_id);
SERIAL_EOL();
#endif
next_temp_ms = ms + 2000UL;
// Make sure heating is actually working
#if WATCH_PID
if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS)) {
if (!heated) { // If not yet reached target...
if (current_temp > next_watch_temp) { // Over the watch temp?
next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for
temp_change_ms = ms + SEC_TO_MS(watch_temp_period); // - move the expiration timer up
if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached
}
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
_temp_error(heater_id, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
}
else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
_temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
}
#endif
} // every 2 seconds
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
#endif
if ((ms - _MIN(t1, t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT));
SERIAL_ECHOLNPGM(STR_PID_TIMEOUT);
break;
}
if (cycles > ncycles && cycles > 2) {
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
#if HAS_PID_FOR_BOTH
const char * const estring = GHV(PSTR("bed"), NUL_STR);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
#elif ENABLED(PIDTEMP)
say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
#else
say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
#endif
#define _SET_BED_PID() do { \
temp_bed.pid.Kp = tune_pid.Kp; \
temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \
temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \
}while(0)
#define _SET_EXTRUDER_PID() do { \
PID_PARAM(Kp, heater_id) = tune_pid.Kp; \
PID_PARAM(Ki, heater_id) = scalePID_i(tune_pid.Ki); \
PID_PARAM(Kd, heater_id) = scalePID_d(tune_pid.Kd); \
updatePID(); }while(0)
// Use the result? (As with "M303 U1")
if (set_result) {
#if HAS_PID_FOR_BOTH
if (isbed) _SET_BED_PID(); else _SET_EXTRUDER_PID();
#elif ENABLED(PIDTEMP)
_SET_EXTRUDER_PID();
#else
_SET_BED_PID();
#endif
}
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
goto EXIT_M303;
}
// Run HAL idle tasks
TERN_(HAL_IDLETASK, HAL_idletask());
// Run UI update
TERN(DWIN_CREALITY_LCD, DWIN_Update(), ui.update());
}
wait_for_heatup = false;
disable_all_heaters();
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
EXIT_M303:
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = true);
return;
}
#endif // HAS_PID_HEATING
/**
* Class and Instance Methods
*/
int16_t Temperature::getHeaterPower(const heater_id_t heater_id) {
switch (heater_id) {
#if HAS_HEATED_BED
case H_BED: return temp_bed.soft_pwm_amount;
#endif
#if HAS_HEATED_CHAMBER
case H_CHAMBER: return temp_chamber.soft_pwm_amount;
#endif
default:
return TERN0(HAS_HOTEND, temp_hotend[heater_id].soft_pwm_amount);
}
}
#define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B)
#if HAS_AUTO_FAN
#define CHAMBER_FAN_INDEX HOTENDS
void Temperature::checkExtruderAutoFans() {
#define _EFAN(B,A) _EFANOVERLAP(A,B) ? B :
static const uint8_t fanBit[] PROGMEM = {
0
#if HAS_MULTI_HOTEND
#define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N
RREPEAT_S(1, HOTENDS, _NEXT_FAN)
#endif
#if HAS_AUTO_CHAMBER_FAN
#define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B :
, REPEAT(HOTENDS,_CFAN) (HOTENDS)
#endif
};
uint8_t fanState = 0;
HOTEND_LOOP()
if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[e]));
#if HAS_AUTO_CHAMBER_FAN
if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX]));
#endif
#define _UPDATE_AUTO_FAN(P,D,A) do{ \
if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
analogWrite(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \
else \
WRITE(P##_AUTO_FAN_PIN, D); \
}while(0)
uint8_t fanDone = 0;
LOOP_L_N(f, COUNT(fanBit)) {
const uint8_t realFan = pgm_read_byte(&fanBit[f]);
if (TEST(fanDone, realFan)) continue;
const bool fan_on = TEST(fanState, realFan);
switch (f) {
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
case CHAMBER_FAN_INDEX:
chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0;
break;
#endif
default:
#if ENABLED(AUTO_POWER_E_FANS)
autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
#endif
break;
}
switch (f) {
#if HAS_AUTO_FAN_0
case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_1
case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_2
case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_3
case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_4
case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_5
case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_6
case 6: _UPDATE_AUTO_FAN(E6, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_FAN_7
case 7: _UPDATE_AUTO_FAN(E7, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
#endif
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break;
#endif
}
SBI(fanDone, realFan);
}
}
#endif // HAS_AUTO_FAN
//
// Temperature Error Handlers
//
inline void loud_kill(PGM_P const lcd_msg, const heater_id_t heater_id) {
marlin_state = MF_KILLED;
#if USE_BEEPER
thermalManager.disable_all_heaters();
for (uint8_t i = 20; i--;) {
WRITE(BEEPER_PIN, HIGH);
delay(25);
watchdog_refresh();
WRITE(BEEPER_PIN, LOW);
delay(40);
watchdog_refresh();
delay(40);
watchdog_refresh();
}
WRITE(BEEPER_PIN, HIGH);
#endif
kill(lcd_msg, HEATER_PSTR(heater_id));
}
void Temperature::_temp_error(const heater_id_t heater_id, PGM_P const serial_msg, PGM_P const lcd_msg) {
static uint8_t killed = 0;
if (IsRunning() && TERN1(BOGUS_TEMPERATURE_GRACE_PERIOD, killed == 2)) {
SERIAL_ERROR_START();
serialprintPGM(serial_msg);
SERIAL_ECHOPGM(STR_STOPPED_HEATER);
if (heater_id >= 0)
SERIAL_ECHO((int)heater_id);
else if (TERN0(HAS_HEATED_CHAMBER, heater_id == H_CHAMBER))
SERIAL_ECHOPGM(STR_HEATER_CHAMBER);
else
SERIAL_ECHOPGM(STR_HEATER_BED);
SERIAL_EOL();
}
disable_all_heaters(); // always disable (even for bogus temp)
watchdog_refresh();
#if BOGUS_TEMPERATURE_GRACE_PERIOD
const millis_t ms = millis();
static millis_t expire_ms;
switch (killed) {
case 0:
expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD;
++killed;
break;
case 1:
if (ELAPSED(ms, expire_ms)) ++killed;
break;
case 2:
loud_kill(lcd_msg, heater_id);
++killed;
break;
}
#elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD)
UNUSED(killed);
#else
if (!killed) { killed = 1; loud_kill(lcd_msg, heater_id); }
#endif
}
void Temperature::max_temp_error(const heater_id_t heater_id) {
#if ENABLED(DWIN_CREALITY_LCD) && (HAS_HOTEND || HAS_HEATED_BED)
DWIN_Popup_Temperature(1);
#endif
_temp_error(heater_id, PSTR(STR_T_MAXTEMP), GET_TEXT(MSG_ERR_MAXTEMP));
}
void Temperature::min_temp_error(const heater_id_t heater_id) {
#if ENABLED(DWIN_CREALITY_LCD) && (HAS_HOTEND || HAS_HEATED_BED)
DWIN_Popup_Temperature(0);
#endif
_temp_error(heater_id, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP));
}
#if HAS_HOTEND
#if ENABLED(PID_DEBUG)
extern bool pid_debug_flag;
#endif
float Temperature::get_pid_output_hotend(const uint8_t E_NAME) {
const uint8_t ee = HOTEND_INDEX;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
static hotend_pid_t work_pid[HOTENDS];
static float temp_iState[HOTENDS] = { 0 },
temp_dState[HOTENDS] = { 0 };
static bool pid_reset[HOTENDS] = { false };
const float pid_error = temp_hotend[ee].target - temp_hotend[ee].celsius;
float pid_output;
if (temp_hotend[ee].target == 0
|| pid_error < -(PID_FUNCTIONAL_RANGE)
|| TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out)
) {
pid_output = 0;
pid_reset[ee] = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[ee] = true;
}
else {
if (pid_reset[ee]) {
temp_iState[ee] = 0.0;
work_pid[ee].Kd = 0.0;
pid_reset[ee] = false;
}
work_pid[ee].Kd = work_pid[ee].Kd + PID_K2 * (PID_PARAM(Kd, ee) * (temp_dState[ee] - temp_hotend[ee].celsius) - work_pid[ee].Kd);
const float max_power_over_i_gain = float(PID_MAX) / PID_PARAM(Ki, ee) - float(MIN_POWER);
temp_iState[ee] = constrain(temp_iState[ee] + pid_error, 0, max_power_over_i_gain);
work_pid[ee].Kp = PID_PARAM(Kp, ee) * pid_error;
work_pid[ee].Ki = PID_PARAM(Ki, ee) * temp_iState[ee];
pid_output = work_pid[ee].Kp + work_pid[ee].Ki + work_pid[ee].Kd + float(MIN_POWER);
#if ENABLED(PID_EXTRUSION_SCALING)
#if HOTENDS == 1
constexpr bool this_hotend = true;
#else
const bool this_hotend = (ee == active_extruder);
#endif
work_pid[ee].Kc = 0;
if (this_hotend) {
const long e_position = stepper.position(E_AXIS);
if (e_position > last_e_position) {
lpq[lpq_ptr] = e_position - last_e_position;
last_e_position = e_position;
}
else
lpq[lpq_ptr] = 0;
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
work_pid[ee].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, ee);
pid_output += work_pid[ee].Kc;
}
#endif // PID_EXTRUSION_SCALING
#if ENABLED(PID_FAN_SCALING)
if (fan_speed[active_extruder] > PID_FAN_SCALING_MIN_SPEED) {
work_pid[ee].Kf = PID_PARAM(Kf, ee) + (PID_FAN_SCALING_LIN_FACTOR) * fan_speed[active_extruder];
pid_output += work_pid[ee].Kf;
}
//pid_output -= work_pid[ee].Ki;
//pid_output += work_pid[ee].Ki * work_pid[ee].Kf
#endif // PID_FAN_SCALING
LIMIT(pid_output, 0, PID_MAX);
}
temp_dState[ee] = temp_hotend[ee].celsius;
#else // PID_OPENLOOP
const float pid_output = constrain(temp_hotend[ee].target, 0, PID_MAX);
#endif // PID_OPENLOOP
#if ENABLED(PID_DEBUG)
if (ee == active_extruder && pid_debug_flag) {
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output);
#if DISABLED(PID_OPENLOOP)
{
SERIAL_ECHOPAIR(
STR_PID_DEBUG_PTERM, work_pid[ee].Kp,
STR_PID_DEBUG_ITERM, work_pid[ee].Ki,
STR_PID_DEBUG_DTERM, work_pid[ee].Kd
#if ENABLED(PID_EXTRUSION_SCALING)
, STR_PID_DEBUG_CTERM, work_pid[ee].Kc
#endif
);
}
#endif
SERIAL_EOL();
}
#endif // PID_DEBUG
#else // No PID enabled
const bool is_idling = TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out);
const float pid_output = (!is_idling && temp_hotend[ee].celsius < temp_hotend[ee].target) ? BANG_MAX : 0;
#endif
return pid_output;
}
#endif // HAS_HOTEND
#if ENABLED(PIDTEMPBED)
float Temperature::get_pid_output_bed() {
#if DISABLED(PID_OPENLOOP)
static PID_t work_pid{0};
static float temp_iState = 0, temp_dState = 0;
static bool pid_reset = true;
float pid_output = 0;
const float max_power_over_i_gain = float(MAX_BED_POWER) / temp_bed.pid.Ki - float(MIN_BED_POWER),
pid_error = temp_bed.target - temp_bed.celsius;
if (!temp_bed.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
pid_output = 0;
pid_reset = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = MAX_BED_POWER;
pid_reset = true;
}
else {
if (pid_reset) {
temp_iState = 0.0;
work_pid.Kd = 0.0;
pid_reset = false;
}
temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
work_pid.Kp = temp_bed.pid.Kp * pid_error;
work_pid.Ki = temp_bed.pid.Ki * temp_iState;
work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.celsius) - work_pid.Kd);
temp_dState = temp_bed.celsius;
pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_BED_POWER), 0, MAX_BED_POWER);
}
#else // PID_OPENLOOP
const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_BED_DEBUG)
{
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(
" PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output,
#if DISABLED(PID_OPENLOOP)
STR_PID_DEBUG_PTERM, work_pid.Kp,
STR_PID_DEBUG_ITERM, work_pid.Ki,
STR_PID_DEBUG_DTERM, work_pid.Kd,
#endif
);
}
#endif
return pid_output;
}
#endif // PIDTEMPBED
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Also resets the watchdog timer
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
void Temperature::manage_heater() {
#if EARLY_WATCHDOG
// If thermal manager is still not running, make sure to at least reset the watchdog!
if (!inited) return watchdog_refresh();
#endif
#if ENABLED(EMERGENCY_PARSER)
if (emergency_parser.killed_by_M112) kill(M112_KILL_STR, nullptr, true);
if (emergency_parser.quickstop_by_M410) {
emergency_parser.quickstop_by_M410 = false; // quickstop_stepper may call idle so clear this now!
quickstop_stepper();
}
#endif
if (!raw_temps_ready) return;
updateTemperaturesFromRawValues(); // also resets the watchdog
#if DISABLED(IGNORE_THERMOCOUPLE_ERRORS)
#if HEATER_0_USES_MAX6675
if (temp_hotend[0].celsius > _MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(H_E0);
if (temp_hotend[0].celsius < _MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(H_E0);
#endif
#if HEATER_1_USES_MAX6675
if (temp_hotend[1].celsius > _MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(H_E1);
if (temp_hotend[1].celsius < _MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(H_E1);
#endif
#endif
millis_t ms = millis();
#if HAS_HOTEND
HOTEND_LOOP() {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
if (degHotend(e) > temp_range[e].maxtemp) max_temp_error((heater_id_t)e);
#endif
TERN_(HEATER_IDLE_HANDLER, heater_idle[e].update(ms));
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
// Check for thermal runaway
tr_state_machine[e].run(temp_hotend[e].celsius, temp_hotend[e].target, (heater_id_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0;
#if WATCH_HOTENDS
// Make sure temperature is increasing
if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder?
if (degHotend(e) < watch_hotend[e].target) { // Failed to increase enough?
TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0));
_temp_error((heater_id_t)e, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
}
else // Start again if the target is still far off
start_watching_hotend(e);
}
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
// Make sure measured temperatures are close together
if (ABS(temp_hotend[0].celsius - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
_temp_error(H_E0, PSTR(STR_REDUNDANCY), GET_TEXT(MSG_ERR_REDUNDANT_TEMP));
#endif
} // HOTEND_LOOP
#endif // HAS_HOTEND
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* Dynamically set the volumetric multiplier based
* on the delayed Filament Width measurement.
*/
filwidth.update_volumetric();
#endif
#if HAS_HEATED_BED
#if ENABLED(THERMAL_PROTECTION_BED)
if (degBed() > BED_MAXTEMP) max_temp_error(H_BED);
#endif
#if WATCH_BED
// Make sure temperature is increasing
if (watch_bed.elapsed(ms)) { // Time to check the bed?
if (degBed() < watch_bed.target) { // Failed to increase enough?
TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0));
_temp_error(H_BED, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
}
else // Start again if the target is still far off
start_watching_bed();
}
#endif // WATCH_BED
#if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
#define PAUSE_CHANGE_REQD 1
#endif
#if PAUSE_CHANGE_REQD
static bool last_pause_state;
#endif
do {
#if DISABLED(PIDTEMPBED)
if (PENDING(ms, next_bed_check_ms)
&& TERN1(PAUSE_CHANGE_REQD, paused == last_pause_state)
) break;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
TERN_(PAUSE_CHANGE_REQD, last_pause_state = paused);
#endif
TERN_(HEATER_IDLE_HANDLER, heater_idle[IDLE_INDEX_BED].update(ms));
#if HAS_THERMALLY_PROTECTED_BED
tr_state_machine[RUNAWAY_IND_BED].run(temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
#if HEATER_IDLE_HANDLER
if (heater_idle[IDLE_INDEX_BED].timed_out) {
temp_bed.soft_pwm_amount = 0;
#if DISABLED(PIDTEMPBED)
WRITE_HEATER_BED(LOW);
#endif
}
else
#endif
{
#if ENABLED(PIDTEMPBED)
temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
#else
// Check if temperature is within the correct band
if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) {
#if ENABLED(BED_LIMIT_SWITCHING)
if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS)
temp_bed.soft_pwm_amount = 0;
else if (temp_bed.celsius <= temp_bed.target - (BED_HYSTERESIS))
temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
temp_bed.soft_pwm_amount = temp_bed.celsius < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
#endif
}
else {
temp_bed.soft_pwm_amount = 0;
WRITE_HEATER_BED(LOW);
}
#endif
}
} while (false);
#endif // HAS_HEATED_BED
#if HAS_HEATED_CHAMBER
#ifndef CHAMBER_CHECK_INTERVAL
#define CHAMBER_CHECK_INTERVAL 1000UL
#endif
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
if (degChamber() > CHAMBER_MAXTEMP) max_temp_error(H_CHAMBER);
#endif
#if WATCH_CHAMBER
// Make sure temperature is increasing
if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
if (degChamber() < watch_chamber.target) // Failed to increase enough?
_temp_error(H_CHAMBER, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
else
start_watching_chamber(); // Start again if the target is still far off
}
#endif
#if EITHER(CHAMBER_FAN, CHAMBER_VENT)
if (temp_chamber.target > CHAMBER_MINTEMP) {
flag_chamber_off = false;
#if ENABLED(CHAMBER_FAN)
#if CHAMBER_FAN_MODE == 0
fan_chamber_pwm = CHAMBER_FAN_BASE;
#elif CHAMBER_FAN_MODE == 1
fan_chamber_pwm = (temp_chamber.celsius > temp_chamber.target) ? (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target) : 0;
#elif CHAMBER_FAN_MODE == 2
fan_chamber_pwm = (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * ABS(temp_chamber.celsius - temp_chamber.target);
if (temp_chamber.soft_pwm_amount)
fan_chamber_pwm += (CHAMBER_FAN_FACTOR) * 2;
#endif
NOMORE(fan_chamber_pwm, 225);
set_fan_speed(2, fan_chamber_pwm); // TODO: instead of fan 2, set to chamber fan
#endif
#if ENABLED(CHAMBER_VENT)
#ifndef MIN_COOLING_SLOPE_TIME_CHAMBER_VENT
#define MIN_COOLING_SLOPE_TIME_CHAMBER_VENT 20
#endif
#ifndef MIN_COOLING_SLOPE_DEG_CHAMBER_VENT
#define MIN_COOLING_SLOPE_DEG_CHAMBER_VENT 1.5
#endif
if (!flag_chamber_excess_heat && temp_chamber.celsius - temp_chamber.target >= HIGH_EXCESS_HEAT_LIMIT) {
// Open vent after MIN_COOLING_SLOPE_TIME_CHAMBER_VENT seconds if the
// temperature didn't drop at least MIN_COOLING_SLOPE_DEG_CHAMBER_VENT
if (next_cool_check_ms_2 == 0 || ELAPSED(ms, next_cool_check_ms_2)) {
if (old_temp - temp_chamber.celsius < float(MIN_COOLING_SLOPE_DEG_CHAMBER_VENT)) flag_chamber_excess_heat = true; //the bed is heating the chamber too much
next_cool_check_ms_2 = ms + 1000UL * MIN_COOLING_SLOPE_TIME_CHAMBER_VENT;
old_temp = temp_chamber.celsius;
}
}
else {
next_cool_check_ms_2 = 0;
old_temp = 9999;
}
if (flag_chamber_excess_heat && (temp_chamber.celsius - temp_chamber.target <= -LOW_EXCESS_HEAT_LIMIT) ) {
flag_chamber_excess_heat = false;
}
#endif
}
else if (!flag_chamber_off) {
#if ENABLED(CHAMBER_FAN)
flag_chamber_off = true;
set_fan_speed(2, 0);
#endif
#if ENABLED(CHAMBER_VENT)
flag_chamber_excess_heat = false;
MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 90);
#endif
}
#endif
if (ELAPSED(ms, next_chamber_check_ms)) {
next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
if (flag_chamber_excess_heat) {
temp_chamber.soft_pwm_amount = 0;
#if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, temp_chamber.celsius <= temp_chamber.target ? 0 : 90);
#endif
}
else {
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
temp_chamber.soft_pwm_amount = 0;
else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1;
#else
temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? (MAX_CHAMBER_POWER) >> 1 : 0;
#endif
#if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 0);
#endif
}
}
else {
temp_chamber.soft_pwm_amount = 0;
WRITE_HEATER_CHAMBER(LOW);
}
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
#endif
}
// TODO: Implement true PID pwm
//temp_bed.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
#endif // HAS_HEATED_CHAMBER
UNUSED(ms);
}
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
/**
* Bisect search for the range of the 'raw' value, then interpolate
* proportionally between the under and over values.
*/
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
uint8_t l = 0, r = LEN, m; \
for (;;) { \
m = (l + r) >> 1; \
if (!m) return int16_t(pgm_read_word(&TBL[0].celsius)); \
if (m == l || m == r) return int16_t(pgm_read_word(&TBL[LEN-1].celsius)); \
int16_t v00 = pgm_read_word(&TBL[m-1].value), \
v10 = pgm_read_word(&TBL[m-0].value); \
if (raw < v00) r = m; \
else if (raw > v10) l = m; \
else { \
const int16_t v01 = int16_t(pgm_read_word(&TBL[m-1].celsius)), \
v11 = int16_t(pgm_read_word(&TBL[m-0].celsius)); \
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
} \
} \
}while(0)
#if HAS_USER_THERMISTORS
user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load()
void Temperature::reset_user_thermistors() {
user_thermistor_t default_user_thermistor[USER_THERMISTORS] = {
#if HEATER_0_USER_THERMISTOR
{ true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 },
#endif
#if HEATER_1_USER_THERMISTOR
{ true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 },
#endif
#if HEATER_2_USER_THERMISTOR
{ true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 },
#endif
#if HEATER_3_USER_THERMISTOR
{ true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 },
#endif
#if HEATER_4_USER_THERMISTOR
{ true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 },
#endif
#if HEATER_5_USER_THERMISTOR
{ true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 },
#endif
#if HEATER_6_USER_THERMISTOR
{ true, 0, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 },
#endif
#if HEATER_7_USER_THERMISTOR
{ true, 0, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 },
#endif
#if HEATER_BED_USER_THERMISTOR
{ true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 },
#endif
#if HEATER_CHAMBER_USER_THERMISTOR
{ true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 }
#endif
};
COPY(user_thermistor, default_user_thermistor);
}
void Temperature::log_user_thermistor(const uint8_t t_index, const bool eprom/*=false*/) {
if (eprom)
SERIAL_ECHOPGM(" M305 ");
else
SERIAL_ECHO_START();
SERIAL_CHAR('P');
SERIAL_CHAR('0' + t_index);
const user_thermistor_t &t = user_thermistor[t_index];
SERIAL_ECHOPAIR_F(" R", t.series_res, 1);
SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1);
SERIAL_ECHOPAIR_F_P(SP_B_STR, t.beta, 1);
SERIAL_ECHOPAIR_F_P(SP_C_STR, t.sh_c_coeff, 9);
SERIAL_ECHOPGM(" ; ");
serialprintPGM(
TERN_(HEATER_0_USER_THERMISTOR, t_index == CTI_HOTEND_0 ? PSTR("HOTEND 0") :)
TERN_(HEATER_1_USER_THERMISTOR, t_index == CTI_HOTEND_1 ? PSTR("HOTEND 1") :)
TERN_(HEATER_2_USER_THERMISTOR, t_index == CTI_HOTEND_2 ? PSTR("HOTEND 2") :)
TERN_(HEATER_3_USER_THERMISTOR, t_index == CTI_HOTEND_3 ? PSTR("HOTEND 3") :)
TERN_(HEATER_4_USER_THERMISTOR, t_index == CTI_HOTEND_4 ? PSTR("HOTEND 4") :)
TERN_(HEATER_5_USER_THERMISTOR, t_index == CTI_HOTEND_5 ? PSTR("HOTEND 5") :)
TERN_(HEATER_6_USER_THERMISTOR, t_index == CTI_HOTEND_6 ? PSTR("HOTEND 6") :)
TERN_(HEATER_7_USER_THERMISTOR, t_index == CTI_HOTEND_7 ? PSTR("HOTEND 7") :)
TERN_(HEATER_BED_USER_THERMISTOR, t_index == CTI_BED ? PSTR("BED") :)
TERN_(HEATER_CHAMBER_USER_THERMISTOR, t_index == CTI_CHAMBER ? PSTR("CHAMBER") :)
nullptr
);
SERIAL_EOL();
}
float Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int raw) {
//#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
// static uint32_t clocks_total = 0;
// static uint32_t calls = 0;
// uint32_t tcnt5 = TCNT5;
//#endif
if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25;
user_thermistor_t &t = user_thermistor[t_index];
if (t.pre_calc) { // pre-calculate some variables
t.pre_calc = false;
t.res_25_recip = 1.0f / t.res_25;
t.res_25_log = logf(t.res_25);
t.beta_recip = 1.0f / t.beta;
t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C))
- (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log));
}
// maximum adc value .. take into account the over sampling
const int adc_max = MAX_RAW_THERMISTOR_VALUE,
adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero
const float adc_inverse = (adc_max - adc_raw) - 0.5f,
resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse,
log_resistance = logf(resistance);
float value = t.sh_alpha;
value += log_resistance * t.beta_recip;
if (t.sh_c_coeff != 0)
value += t.sh_c_coeff * cu(log_resistance);
value = 1.0f / value;
//#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
// int32_t clocks = TCNT5 - tcnt5;
// if (clocks >= 0) {
// clocks_total += clocks;
// calls++;
// }
//#endif
// Return degrees C (up to 999, as the LCD only displays 3 digits)
return _MIN(value + THERMISTOR_ABS_ZERO_C, 999);
}
#endif
#if HAS_HOTEND
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
if (e > HOTENDS - DISABLED(TEMP_SENSOR_1_AS_REDUNDANT)) {
SERIAL_ERROR_START();
SERIAL_ECHO((int)e);
SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM);
kill();
return 0;
}
switch (e) {
case 0:
#if HEATER_0_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_0, raw);
#elif HEATER_0_USES_MAX6675
return TERN(MAX6675_0_IS_MAX31865, max31865_0.temperature(MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0), raw * 0.25);
#elif HEATER_0_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_0_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 1:
#if HEATER_1_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_1, raw);
#elif HEATER_1_USES_MAX6675
return TERN(MAX6675_1_IS_MAX31865, max31865_1.temperature(MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1), raw * 0.25);
#elif HEATER_1_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_1_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 2:
#if HEATER_2_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_2, raw);
#elif HEATER_2_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_2_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 3:
#if HEATER_3_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_3, raw);
#elif HEATER_3_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_3_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 4:
#if HEATER_4_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_4, raw);
#elif HEATER_4_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_4_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 5:
#if HEATER_5_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_5, raw);
#elif HEATER_5_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_5_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 6:
#if HEATER_6_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_6, raw);
#elif HEATER_6_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_6_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 7:
#if HEATER_7_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_HOTEND_7, raw);
#elif HEATER_7_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_7_USES_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
default: break;
}
#if HAS_HOTEND_THERMISTOR
// Thermistor with conversion table?
const temp_entry_t(*tt)[] = (temp_entry_t(*)[])(heater_ttbl_map[e]);
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
#endif
return 0;
}
#endif // HAS_HOTEND
#if HAS_HEATED_BED
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float Temperature::analog_to_celsius_bed(const int raw) {
#if HEATER_BED_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_BED, raw);
#elif HEATER_BED_USES_THERMISTOR
SCAN_THERMISTOR_TABLE(BED_TEMPTABLE, BED_TEMPTABLE_LEN);
#elif HEATER_BED_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_BED_USES_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
// Derived from RepRap FiveD extruder::getTemperature()
// For chamber temperature measurement.
float Temperature::analog_to_celsius_chamber(const int raw) {
#if HEATER_CHAMBER_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_CHAMBER, raw);
#elif HEATER_CHAMBER_USES_THERMISTOR
SCAN_THERMISTOR_TABLE(CHAMBER_TEMPTABLE, CHAMBER_TEMPTABLE_LEN);
#elif HEATER_CHAMBER_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_CHAMBER_USES_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_CHAMBER
#if HAS_TEMP_PROBE
// Derived from RepRap FiveD extruder::getTemperature()
// For probe temperature measurement.
float Temperature::analog_to_celsius_probe(const int raw) {
#if HEATER_PROBE_USER_THERMISTOR
return user_thermistor_to_deg_c(CTI_PROBE, raw);
#elif HEATER_PROBE_USES_THERMISTOR
SCAN_THERMISTOR_TABLE(PROBE_TEMPTABLE, PROBE_TEMPTABLE_LEN);
#elif HEATER_PROBE_USES_AD595
return TEMP_AD595(raw);
#elif HEATER_PROBE_USES_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_PROBE
/**
* Get the raw values into the actual temperatures.
* The raw values are created in interrupt context,
* and this function is called from normal context
* as it would block the stepper routine.
*/
void Temperature::updateTemperaturesFromRawValues() {
TERN_(HEATER_0_USES_MAX6675, temp_hotend[0].raw = READ_MAX6675(0));
TERN_(HEATER_1_USES_MAX6675, temp_hotend[1].raw = READ_MAX6675(1));
#if HAS_HOTEND
HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].raw, e);
#endif
TERN_(HAS_HEATED_BED, temp_bed.celsius = analog_to_celsius_bed(temp_bed.raw));
TERN_(HAS_TEMP_CHAMBER, temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.raw));
TERN_(HAS_TEMP_PROBE, temp_probe.celsius = analog_to_celsius_probe(temp_probe.raw));
TERN_(TEMP_SENSOR_1_AS_REDUNDANT, redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1));
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_measured_mm());
TERN_(HAS_POWER_MONITOR, power_monitor.capture_values());
// Reset the watchdog on good temperature measurement
watchdog_refresh();
raw_temps_ready = false;
}
#if MAX6675_SEPARATE_SPI
template<uint8_t MisoPin, uint8_t MosiPin, uint8_t SckPin> SoftSPI<MisoPin, MosiPin, SckPin> SPIclass<MisoPin, MosiPin, SckPin>::softSPI;
SPIclass<MAX6675_DO_PIN, SD_MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
#endif
// Init fans according to whether they're native PWM or Software PWM
#ifdef ALFAWISE_UX0
#define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH)
#else
#define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
#endif
#if ENABLED(FAN_SOFT_PWM)
#define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
#else
#define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
#endif
#if ENABLED(FAST_PWM_FAN)
#define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
#else
#define SET_FAST_PWM_FREQ(P) NOOP
#endif
#define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
#if EXTRUDER_AUTO_FAN_SPEED != 255
#define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0)
#else
#define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P)
#endif
#if CHAMBER_AUTO_FAN_SPEED != 255
#define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0)
#else
#define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P)
#endif
/**
* Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater()
*/
void Temperature::init() {
TERN_(MAX6675_0_IS_MAX31865, max31865_0.begin(MAX31865_2WIRE)); // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
TERN_(MAX6675_1_IS_MAX31865, max31865_1.begin(MAX31865_2WIRE));
#if EARLY_WATCHDOG
// Flag that the thermalManager should be running
if (inited) return;
inited = true;
#endif
#if MB(RUMBA)
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
#define _AD(N) (HEATER_##N##_USES_AD595 || HEATER_##N##_USES_AD8495)
#if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER)
MCUCR = _BV(JTD);
MCUCR = _BV(JTD);
#endif
#endif
// Thermistor activation by MCU pin
#if PIN_EXISTS(TEMP_0_TR_ENABLE_PIN)
OUT_WRITE(TEMP_0_TR_ENABLE_PIN, ENABLED(HEATER_0_USES_MAX6675));
#endif
#if PIN_EXISTS(TEMP_1_TR_ENABLE_PIN)
OUT_WRITE(TEMP_1_TR_ENABLE_PIN, ENABLED(HEATER_1_USES_MAX6675));
#endif
#if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
#if HAS_HEATER_0
#ifdef ALFAWISE_UX0
OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING);
#else
OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
#endif
#endif
#if HAS_HEATER_1
OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
#endif
#if HAS_HEATER_2
OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
#endif
#if HAS_HEATER_3
OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
#endif
#if HAS_HEATER_4
OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
#endif
#if HAS_HEATER_5
OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
#endif
#if HAS_HEATER_6
OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING);
#endif
#if HAS_HEATER_7
OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING);
#endif
#if HAS_HEATED_BED
#ifdef ALFAWISE_UX0
OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING);
#else
OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
#endif
#endif
#if HAS_HEATED_CHAMBER
OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
#endif
#if HAS_FAN0
INIT_FAN_PIN(FAN_PIN);
#endif
#if HAS_FAN1
INIT_FAN_PIN(FAN1_PIN);
#endif
#if HAS_FAN2
INIT_FAN_PIN(FAN2_PIN);
#endif
#if HAS_FAN3
INIT_FAN_PIN(FAN3_PIN);
#endif
#if HAS_FAN4
INIT_FAN_PIN(FAN4_PIN);
#endif
#if HAS_FAN5
INIT_FAN_PIN(FAN5_PIN);
#endif
#if HAS_FAN6
INIT_FAN_PIN(FAN6_PIN);
#endif
#if HAS_FAN7
INIT_FAN_PIN(FAN7_PIN);
#endif
#if ENABLED(USE_CONTROLLER_FAN)
INIT_FAN_PIN(CONTROLLER_FAN_PIN);
#endif
TERN_(MAX6675_SEPARATE_SPI, max6675_spi.init());
HAL_adc_init();
#if HAS_TEMP_ADC_0
HAL_ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_ADC_1
HAL_ANALOG_SELECT(TEMP_1_PIN);
#endif
#if HAS_TEMP_ADC_2
HAL_ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_ADC_3
HAL_ANALOG_SELECT(TEMP_3_PIN);
#endif
#if HAS_TEMP_ADC_4
HAL_ANALOG_SELECT(TEMP_4_PIN);
#endif
#if HAS_TEMP_ADC_5
HAL_ANALOG_SELECT(TEMP_5_PIN);
#endif
#if HAS_TEMP_ADC_6
HAL_ANALOG_SELECT(TEMP_6_PIN);
#endif
#if HAS_TEMP_ADC_7
HAL_ANALOG_SELECT(TEMP_7_PIN);
#endif
#if HAS_JOY_ADC_X
HAL_ANALOG_SELECT(JOY_X_PIN);
#endif
#if HAS_JOY_ADC_Y
HAL_ANALOG_SELECT(JOY_Y_PIN);
#endif
#if HAS_JOY_ADC_Z
HAL_ANALOG_SELECT(JOY_Z_PIN);
#endif
#if HAS_JOY_ADC_EN
SET_INPUT_PULLUP(JOY_EN_PIN);
#endif
#if HAS_TEMP_ADC_BED
HAL_ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if HAS_TEMP_ADC_CHAMBER
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
#endif
#if HAS_TEMP_ADC_PROBE
HAL_ANALOG_SELECT(TEMP_PROBE_PIN);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
HAL_ANALOG_SELECT(FILWIDTH_PIN);
#endif
#if HAS_ADC_BUTTONS
HAL_ANALOG_SELECT(ADC_KEYPAD_PIN);
#endif
#if ENABLED(POWER_MONITOR_CURRENT)
HAL_ANALOG_SELECT(POWER_MONITOR_CURRENT_PIN);
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
HAL_ANALOG_SELECT(POWER_MONITOR_VOLTAGE_PIN);
#endif
HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
ENABLE_TEMPERATURE_INTERRUPT();
#if HAS_AUTO_FAN_0
INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0)
INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1))
INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2))
INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3))
INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4))
INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5))
INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6))
INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
#endif
// Wait for temperature measurement to settle
delay(250);
#if HAS_HOTEND
#define _TEMP_MIN_E(NR) do{ \
const int16_t tmin = _MAX(HEATER_ ##NR## _MINTEMP, TERN(HEATER_##NR##_USER_THERMISTOR, 0, (int16_t)pgm_read_word(&HEATER_ ##NR## _TEMPTABLE[HEATER_ ##NR## _SENSOR_MINTEMP_IND].celsius))); \
temp_range[NR].mintemp = tmin; \
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < tmin) \
temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
}while(0)
#define _TEMP_MAX_E(NR) do{ \
const int16_t tmax = _MIN(HEATER_ ##NR## _MAXTEMP, TERN(HEATER_##NR##_USER_THERMISTOR, 2000, (int16_t)pgm_read_word(&HEATER_ ##NR## _TEMPTABLE[HEATER_ ##NR## _SENSOR_MAXTEMP_IND].celsius) - 1)); \
temp_range[NR].maxtemp = tmax; \
while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > tmax) \
temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
}while(0)
#define _MINMAX_TEST(N,M) (HOTENDS > N && THERMISTOR_HEATER_##N && THERMISTOR_HEATER_##N != 998 && THERMISTOR_HEATER_##N != 999 && defined(HEATER_##N##_##M##TEMP))
#if _MINMAX_TEST(0, MIN)
_TEMP_MIN_E(0);
#endif
#if _MINMAX_TEST(0, MAX)
_TEMP_MAX_E(0);
#endif
#if _MINMAX_TEST(1, MIN)
_TEMP_MIN_E(1);
#endif
#if _MINMAX_TEST(1, MAX)
_TEMP_MAX_E(1);
#endif
#if _MINMAX_TEST(2, MIN)
_TEMP_MIN_E(2);
#endif
#if _MINMAX_TEST(2, MAX)
_TEMP_MAX_E(2);
#endif
#if _MINMAX_TEST(3, MIN)
_TEMP_MIN_E(3);
#endif
#if _MINMAX_TEST(3, MAX)
_TEMP_MAX_E(3);
#endif
#if _MINMAX_TEST(4, MIN)
_TEMP_MIN_E(4);
#endif
#if _MINMAX_TEST(4, MAX)
_TEMP_MAX_E(4);
#endif
#if _MINMAX_TEST(5, MIN)
_TEMP_MIN_E(5);
#endif
#if _MINMAX_TEST(5, MAX)
_TEMP_MAX_E(5);
#endif
#if _MINMAX_TEST(6, MIN)
_TEMP_MIN_E(6);
#endif
#if _MINMAX_TEST(6, MAX)
_TEMP_MAX_E(6);
#endif
#if _MINMAX_TEST(7, MIN)
_TEMP_MIN_E(7);
#endif
#if _MINMAX_TEST(7, MAX)
_TEMP_MAX_E(7);
#endif
#endif // HAS_HOTEND
#if HAS_HEATED_BED
#ifdef BED_MINTEMP
while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
#endif
#ifdef BED_MAXTEMP
while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
#endif
#endif // HAS_HEATED_BED
#if HAS_HEATED_CHAMBER
#ifdef CHAMBER_MINTEMP
while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
#endif
#ifdef CHAMBER_MAXTEMP
while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
#endif
#endif
TERN_(PROBING_HEATERS_OFF, paused = false);
}
#if WATCH_HOTENDS
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void Temperature::start_watching_hotend(const uint8_t E_NAME) {
const uint8_t ee = HOTEND_INDEX;
watch_hotend[ee].restart(degHotend(ee), degTargetHotend(ee));
}
#endif
#if WATCH_BED
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M140, M190)
*/
void Temperature::start_watching_bed() {
watch_bed.restart(degBed(), degTargetBed());
}
#endif
#if WATCH_CHAMBER
/**
* Start Heating Sanity Check for chamber that is below
* its target temperature by a configurable margin.
* This is called when the temperature is set. (M141, M191)
*/
void Temperature::start_watching_chamber() {
watch_chamber.restart(degChamber(), degTargetChamber());
}
#endif
#if HAS_THERMAL_PROTECTION
Temperature::tr_state_machine_t Temperature::tr_state_machine[NR_HEATER_RUNAWAY]; // = { { TRInactive, 0 } };
/**
* @brief Thermal Runaway state machine for a single heater
* @param current current measured temperature
* @param target current target temperature
* @param heater_id extruder index
* @param period_seconds missed temperature allowed time
* @param hysteresis_degc allowed distance from target
*
* TODO: Embed the last 3 parameters during init, if not less optimal
*/
void Temperature::tr_state_machine_t::run(const float &current, const float &target, const heater_id_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
#if HEATER_IDLE_HANDLER
// Convert the given heater_id_t to an idle array index
const IdleIndex idle_index = idle_index_for_id(heater_id);
#endif
/**
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Thermal Runaway Running. Heater ID: ");
switch (heater_id) {
case H_BED: SERIAL_ECHOPGM("bed"); break;
case H_CHAMBER: SERIAL_ECHOPGM("chamber"); break;
default: SERIAL_ECHO(heater_id);
}
SERIAL_ECHOLNPAIR(
" ; sizeof(running_temp):", sizeof(running_temp),
" ; State:", state, " ; Timer:", timer, " ; Temperature:", current, " ; Target Temp:", target
#if HEATER_IDLE_HANDLER
, " ; Idle Timeout:", heater_idle[idle_index].timed_out
#endif
);
//*/
#if HEATER_IDLE_HANDLER
// If the heater idle timeout expires, restart
if (heater_idle[idle_index].timed_out) {
state = TRInactive;
running_temp = 0;
}
else
#endif
{
// If the target temperature changes, restart
if (running_temp != target) {
running_temp = target;
state = target > 0 ? TRFirstHeating : TRInactive;
}
}
switch (state) {
// Inactive state waits for a target temperature to be set
case TRInactive: break;
// When first heating, wait for the temperature to be reached then go to Stable state
case TRFirstHeating:
if (current < running_temp) break;
state = TRStable;
// While the temperature is stable watch for a bad temperature
case TRStable:
#if ENABLED(ADAPTIVE_FAN_SLOWING)
if (adaptive_fan_slowing && heater_id >= 0) {
const int fan_index = _MIN(heater_id, FAN_COUNT - 1);
if (fan_speed[fan_index] == 0 || current >= running_temp - (hysteresis_degc * 0.25f))
fan_speed_scaler[fan_index] = 128;
else if (current >= running_temp - (hysteresis_degc * 0.3335f))
fan_speed_scaler[fan_index] = 96;
else if (current >= running_temp - (hysteresis_degc * 0.5f))
fan_speed_scaler[fan_index] = 64;
else if (current >= running_temp - (hysteresis_degc * 0.8f))
fan_speed_scaler[fan_index] = 32;
else
fan_speed_scaler[fan_index] = 0;
}
#endif
if (current >= running_temp - hysteresis_degc) {
timer = millis() + SEC_TO_MS(period_seconds);
break;
}
else if (PENDING(millis(), timer)) break;
state = TRRunaway;
case TRRunaway:
TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0));
_temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
}
}
#endif // HAS_THERMAL_PROTECTION
void Temperature::disable_all_heaters() {
TERN_(AUTOTEMP, planner.autotemp_enabled = false);
// Unpause and reset everything
TERN_(PROBING_HEATERS_OFF, pause(false));
#if HAS_HOTEND
HOTEND_LOOP() {
setTargetHotend(0, e);
temp_hotend[e].soft_pwm_amount = 0;
}
#endif
#if HAS_TEMP_HOTEND
#define DISABLE_HEATER(N) WRITE_HEATER_##N(LOW);
REPEAT(HOTENDS, DISABLE_HEATER);
#endif
#if HAS_HEATED_BED
setTargetBed(0);
temp_bed.soft_pwm_amount = 0;
WRITE_HEATER_BED(LOW);
#endif
#if HAS_HEATED_CHAMBER
setTargetChamber(0);
temp_chamber.soft_pwm_amount = 0;
WRITE_HEATER_CHAMBER(LOW);
#endif
}
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
bool Temperature::auto_job_over_threshold() {
#if HAS_HOTEND
HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true;
#endif
return TERN0(HAS_HEATED_BED, degTargetBed() > BED_MINTEMP)
|| TERN0(HAS_HEATED_CHAMBER, degTargetChamber() > CHAMBER_MINTEMP);
}
void Temperature::auto_job_check_timer(const bool can_start, const bool can_stop) {
if (auto_job_over_threshold()) {
if (can_start) startOrResumeJob();
}
else if (can_stop) {
print_job_timer.stop();
ui.reset_status();
}
}
#endif
#if ENABLED(PROBING_HEATERS_OFF)
void Temperature::pause(const bool p) {
if (p != paused) {
paused = p;
if (p) {
HOTEND_LOOP() heater_idle[e].expire(); // Timeout immediately
TERN_(HAS_HEATED_BED, heater_idle[IDLE_INDEX_BED].expire()); // Timeout immediately
}
else {
HOTEND_LOOP() reset_hotend_idle_timer(e);
TERN_(HAS_HEATED_BED, reset_bed_idle_timer());
}
}
}
#endif // PROBING_HEATERS_OFF
#if HAS_MAX6675
#ifndef THERMOCOUPLE_MAX_ERRORS
#define THERMOCOUPLE_MAX_ERRORS 15
#endif
int Temperature::read_max6675(TERN_(HAS_MULTI_6675, const uint8_t hindex/*=0*/)) {
#define MAX6675_HEAT_INTERVAL 250UL
#if MAX6675_0_IS_MAX31855 || MAX6675_1_IS_MAX31855
static uint32_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 7
#define MAX6675_DISCARD_BITS 18
#define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
#elif HAS_MAX31865
static uint16_t max6675_temp = 2000; // From datasheet 16 bits D15-D0
#define MAX6675_ERROR_MASK 1 // D0 Bit not used
#define MAX6675_DISCARD_BITS 1 // Data is in D15-D1
#define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
#else
static uint16_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 4
#define MAX6675_DISCARD_BITS 3
#define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
#endif
#if HAS_MULTI_6675
// Needed to return the correct temp when this is called between readings
static uint16_t max6675_temp_previous[COUNT_6675] = { 0 };
#define MAX6675_TEMP(I) max6675_temp_previous[I]
#define MAX6675_SEL(A,B) (hindex ? (B) : (A))
#define MAX6675_WRITE(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0)
#define MAX6675_SET_OUTPUT() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0)
#else
constexpr uint8_t hindex = 0;
#define MAX6675_TEMP(I) max6675_temp
#if MAX6675_1_IS_MAX31865
#define MAX6675_SEL(A,B) B
#else
#define MAX6675_SEL(A,B) A
#endif
#if HEATER_0_USES_MAX6675
#define MAX6675_WRITE(V) WRITE(MAX6675_SS_PIN, V)
#define MAX6675_SET_OUTPUT() SET_OUTPUT(MAX6675_SS_PIN)
#else
#define MAX6675_WRITE(V) WRITE(MAX6675_SS2_PIN, V)
#define MAX6675_SET_OUTPUT() SET_OUTPUT(MAX6675_SS2_PIN)
#endif
#endif
static uint8_t max6675_errors[COUNT_6675] = { 0 };
// Return last-read value between readings
static millis_t next_max6675_ms[COUNT_6675] = { 0 };
millis_t ms = millis();
if (PENDING(ms, next_max6675_ms[hindex])) return int(MAX6675_TEMP(hindex));
next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL;
#if HAS_MAX31865
Adafruit_MAX31865 &maxref = MAX6675_SEL(max31865_0, max31865_1);
const uint16_t max31865_ohms = (uint32_t(maxref.readRTD()) * MAX6675_SEL(MAX31865_CALIBRATION_OHMS_0, MAX31865_CALIBRATION_OHMS_1)) >> 16;
#endif
//
// TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
//
#if !MAX6675_SEPARATE_SPI
spiBegin();
spiInit(MAX6675_SPEED_BITS);
#endif
MAX6675_WRITE(LOW); // enable TT_MAX6675
DELAY_NS(100); // Ensure 100ns delay
// Read a big-endian temperature value
max6675_temp = 0;
for (uint8_t i = sizeof(max6675_temp); i--;) {
max6675_temp |= TERN(MAX6675_SEPARATE_SPI, max6675_spi.receive(), spiRec());
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
}
MAX6675_WRITE(HIGH); // disable TT_MAX6675
const uint8_t fault_31865 = TERN1(HAS_MAX31865, maxref.readFault());
if (DISABLED(IGNORE_THERMOCOUPLE_ERRORS) && (max6675_temp & MAX6675_ERROR_MASK) && fault_31865) {
max6675_errors[hindex]++;
if (max6675_errors[hindex] > THERMOCOUPLE_MAX_ERRORS) {
SERIAL_ERROR_START();
SERIAL_ECHOPGM("Temp measurement error! ");
#if MAX6675_ERROR_MASK == 7
SERIAL_ECHOPGM("MAX31855 ");
if (max6675_temp & 1)
SERIAL_ECHOLNPGM("Open Circuit");
else if (max6675_temp & 2)
SERIAL_ECHOLNPGM("Short to GND");
else if (max6675_temp & 4)
SERIAL_ECHOLNPGM("Short to VCC");
#elif HAS_MAX31865
if (fault_31865) {
maxref.clearFault();
SERIAL_ECHOPAIR("MAX31865 Fault :(", fault_31865, ") >>");
if (fault_31865 & MAX31865_FAULT_HIGHTHRESH)
SERIAL_ECHOLNPGM("RTD High Threshold");
else if (fault_31865 & MAX31865_FAULT_LOWTHRESH)
SERIAL_ECHOLNPGM("RTD Low Threshold");
else if (fault_31865 & MAX31865_FAULT_REFINLOW)
SERIAL_ECHOLNPGM("REFIN- > 0.85 x Bias");
else if (fault_31865 & MAX31865_FAULT_REFINHIGH)
SERIAL_ECHOLNPGM("REFIN- < 0.85 x Bias - FORCE- open");
else if (fault_31865 & MAX31865_FAULT_RTDINLOW)
SERIAL_ECHOLNPGM("REFIN- < 0.85 x Bias - FORCE- open");
else if (fault_31865 & MAX31865_FAULT_OVUV)
SERIAL_ECHOLNPGM("Under/Over voltage");
}
#else
SERIAL_ECHOLNPGM("MAX6675");
#endif
// Thermocouple open
max6675_temp = 4 * MAX6675_SEL(HEATER_0_MAX6675_TMAX, HEATER_1_MAX6675_TMAX);
}
else
max6675_temp >>= MAX6675_DISCARD_BITS;
}
else {
max6675_temp >>= MAX6675_DISCARD_BITS;
max6675_errors[hindex] = 0;
}
#if MAX6675_0_IS_MAX31855 || MAX6675_1_IS_MAX31855
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature
#endif
// Return the RTD resistance for MAX31865 for display in SHOW_TEMP_ADC_VALUES
TERN_(HAS_MAX31865, max6675_temp = max31865_ohms);
MAX6675_TEMP(hindex) = max6675_temp;
return int(max6675_temp);
}
#endif // HAS_MAX6675
/**
* Update raw temperatures
*/
void Temperature::update_raw_temperatures() {
#if HAS_TEMP_ADC_0 && !HEATER_0_USES_MAX6675
temp_hotend[0].update();
#endif
#if HAS_TEMP_ADC_1
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature_raw = temp_hotend[1].acc;
#elif !HEATER_1_USES_MAX6675
temp_hotend[1].update();
#endif
#endif
TERN_(HAS_TEMP_ADC_2, temp_hotend[2].update());
TERN_(HAS_TEMP_ADC_3, temp_hotend[3].update());
TERN_(HAS_TEMP_ADC_4, temp_hotend[4].update());
TERN_(HAS_TEMP_ADC_5, temp_hotend[5].update());
TERN_(HAS_TEMP_ADC_6, temp_hotend[6].update());
TERN_(HAS_TEMP_ADC_7, temp_hotend[7].update());
TERN_(HAS_TEMP_ADC_BED, temp_bed.update());
TERN_(HAS_TEMP_ADC_CHAMBER, temp_chamber.update());
TERN_(HAS_TEMP_ADC_PROBE, temp_probe.update());
TERN_(HAS_JOY_ADC_X, joystick.x.update());
TERN_(HAS_JOY_ADC_Y, joystick.y.update());
TERN_(HAS_JOY_ADC_Z, joystick.z.update());
raw_temps_ready = true;
}
void Temperature::readings_ready() {
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!raw_temps_ready) update_raw_temperatures();
// Filament Sensor - can be read any time since IIR filtering is used
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.reading_ready());
#if HAS_HOTEND
HOTEND_LOOP() temp_hotend[e].reset();
TERN_(TEMP_SENSOR_1_AS_REDUNDANT, temp_hotend[1].reset());
#endif
TERN_(HAS_HEATED_BED, temp_bed.reset());
TERN_(HAS_TEMP_CHAMBER, temp_chamber.reset());
TERN_(HAS_TEMP_PROBE, temp_probe.reset());
TERN_(HAS_JOY_ADC_X, joystick.x.reset());
TERN_(HAS_JOY_ADC_Y, joystick.y.reset());
TERN_(HAS_JOY_ADC_Z, joystick.z.reset());
#if HAS_HOTEND
static constexpr int8_t temp_dir[] = {
TERN(HEATER_0_USES_MAX6675, 0, TEMPDIR(0))
#if HAS_MULTI_HOTEND
, TERN(HEATER_1_USES_MAX6675, 0, TEMPDIR(1))
#if HOTENDS > 2
#define _TEMPDIR(N) , TEMPDIR(N)
REPEAT_S(2, HOTENDS, _TEMPDIR)
#endif
#endif
};
LOOP_L_N(e, COUNT(temp_dir)) {
const int8_t tdir = temp_dir[e];
if (tdir) {
const int16_t rawtemp = temp_hotend[e].raw * tdir; // normal direction, +rawtemp, else -rawtemp
const bool heater_on = (temp_hotend[e].target > 0
|| TERN0(PIDTEMP, temp_hotend[e].soft_pwm_amount) > 0
);
if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error((heater_id_t)e);
if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error((heater_id_t)e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[e] = 0;
#endif
}
}
#endif // HAS_HOTEND
#if ENABLED(THERMAL_PROTECTION_BED)
#if TEMPDIR(BED) < 0
#define BEDCMP(A,B) ((A)<(B))
#else
#define BEDCMP(A,B) ((A)>(B))
#endif
const bool bed_on = (temp_bed.target > 0) || TERN0(PIDTEMPBED, temp_bed.soft_pwm_amount > 0);
if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(H_BED);
if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(H_BED);
#endif
#if BOTH(HAS_HEATED_CHAMBER, THERMAL_PROTECTION_CHAMBER)
#if TEMPDIR(CHAMBER) < 0
#define CHAMBERCMP(A,B) ((A)<(B))
#else
#define CHAMBERCMP(A,B) ((A)>(B))
#endif
const bool chamber_on = (temp_chamber.target > 0);
if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER);
if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(H_CHAMBER);
#endif
}
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
* On AVR this ISR uses the compare method so it runs at the base
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs).
*
* - Manage PWM to all the heaters and fan
* - Prepare or Measure one of the raw ADC sensor values
* - Check new temperature values for MIN/MAX errors (kill on error)
* - Step the babysteps value for each axis towards 0
* - For PINS_DEBUGGING, monitor and report endstop pins
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
* - Call planner.tick to count down its "ignore" time
*/
HAL_TEMP_TIMER_ISR() {
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
Temperature::tick();
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
}
#if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
class SoftPWM {
public:
uint8_t count;
inline bool add(const uint8_t mask, const uint8_t amount) {
count = (count & mask) + amount; return (count > mask);
}
#if ENABLED(SLOW_PWM_HEATERS)
bool state_heater;
uint8_t state_timer_heater;
inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
inline bool ready(const bool v) {
const bool rdy = !state_timer_heater;
if (rdy && state_heater != v) {
state_heater = v;
state_timer_heater = MIN_STATE_TIME;
}
return rdy;
}
#endif
};
/**
* Handle various ~1KHz tasks associated with temperature
* - Heater PWM (~1KHz with scaler)
* - LCD Button polling (~500Hz)
* - Start / Read one ADC sensor
* - Advance Babysteps
* - Endstop polling
* - Planner clean buffer
*/
void Temperature::tick() {
static int8_t temp_count = -1;
static ADCSensorState adc_sensor_state = StartupDelay;
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
// avoid multiple loads of pwm_count
uint8_t pwm_count_tmp = pwm_count;
#if HAS_ADC_BUTTONS
static unsigned int raw_ADCKey_value = 0;
static bool ADCKey_pressed = false;
#endif
#if HAS_HOTEND
static SoftPWM soft_pwm_hotend[HOTENDS];
#endif
#if HAS_HEATED_BED
static SoftPWM soft_pwm_bed;
#endif
#if HAS_HEATED_CHAMBER
static SoftPWM soft_pwm_chamber;
#endif
#if DISABLED(SLOW_PWM_HEATERS)
#if ANY(HAS_HOTEND, HAS_HEATED_BED, HAS_HEATED_CHAMBER, FAN_SOFT_PWM)
constexpr uint8_t pwm_mask = TERN0(SOFT_PWM_DITHER, _BV(SOFT_PWM_SCALE) - 1);
#define _PWM_MOD(N,S,T) do{ \
const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
WRITE_HEATER_##N(on); \
}while(0)
#endif
/**
* Standard heater PWM modulation
*/
if (pwm_count_tmp >= 127) {
pwm_count_tmp -= 127;
#if HAS_HOTEND
#define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]);
REPEAT(HOTENDS, _PWM_MOD_E);
#endif
#if HAS_HEATED_BED
_PWM_MOD(BED,soft_pwm_bed,temp_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber);
#endif
#if ENABLED(FAN_SOFT_PWM)
#define _FAN_PWM(N) do{ \
uint8_t &spcf = soft_pwm_count_fan[N]; \
spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \
}while(0)
#if HAS_FAN0
_FAN_PWM(0);
#endif
#if HAS_FAN1
_FAN_PWM(1);
#endif
#if HAS_FAN2
_FAN_PWM(2);
#endif
#if HAS_FAN3
_FAN_PWM(3);
#endif
#if HAS_FAN4
_FAN_PWM(4);
#endif
#if HAS_FAN5
_FAN_PWM(5);
#endif
#if HAS_FAN6
_FAN_PWM(6);
#endif
#if HAS_FAN7
_FAN_PWM(7);
#endif
#endif
}
else {
#define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
#if HAS_HOTEND
#define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]);
REPEAT(HOTENDS, _PWM_LOW_E);
#endif
#if HAS_HEATED_BED
_PWM_LOW(BED, soft_pwm_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_LOW(CHAMBER, soft_pwm_chamber);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
#endif
#if HAS_FAN3
if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
#endif
#if HAS_FAN4
if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
#endif
#if HAS_FAN5
if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
#endif
#if HAS_FAN6
if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
#endif
#if HAS_FAN7
if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
#endif
#endif
}
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
#else // SLOW_PWM_HEATERS
/**
* SLOW PWM HEATERS
*
* For relay-driven heaters
*/
#define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
#define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
#define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
static uint8_t slow_pwm_count = 0;
if (slow_pwm_count == 0) {
#if HAS_HOTEND
#define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]);
REPEAT(HOTENDS, _SLOW_PWM_E);
#endif
#if HAS_HEATED_BED
_SLOW_PWM(BED, soft_pwm_bed, temp_bed);
#endif
#if HAS_HEATED_CHAMBER
_SLOW_PWM(CHAMBER, soft_pwm_chamber, temp_chamber);
#endif
} // slow_pwm_count == 0
#if HAS_HOTEND
#define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
REPEAT(HOTENDS, _PWM_OFF_E);
#endif
#if HAS_HEATED_BED
_PWM_OFF(BED, soft_pwm_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_OFF(CHAMBER, soft_pwm_chamber);
#endif
#if ENABLED(FAN_SOFT_PWM)
if (pwm_count_tmp >= 127) {
pwm_count_tmp = 0;
#define _PWM_FAN(N) do{ \
soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \
WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \
}while(0)
#if HAS_FAN0
_PWM_FAN(0);
#endif
#if HAS_FAN1
_PWM_FAN(1);
#endif
#if HAS_FAN2
_PWM_FAN(2);
#endif
#if HAS_FAN3
_FAN_PWM(3);
#endif
#if HAS_FAN4
_FAN_PWM(4);
#endif
#if HAS_FAN5
_FAN_PWM(5);
#endif
#if HAS_FAN6
_FAN_PWM(6);
#endif
#if HAS_FAN7
_FAN_PWM(7);
#endif
}
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
#endif
#if HAS_FAN3
if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
#endif
#if HAS_FAN4
if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
#endif
#if HAS_FAN5
if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
#endif
#if HAS_FAN6
if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
#endif
#if HAS_FAN7
if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
#endif
#endif // FAN_SOFT_PWM
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
// increment slow_pwm_count only every 64th pwm_count,
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7F;
#if HAS_HOTEND
HOTEND_LOOP() soft_pwm_hotend[e].dec();
#endif
TERN_(HAS_HEATED_BED, soft_pwm_bed.dec());
TERN_(HAS_HEATED_CHAMBER, soft_pwm_chamber.dec());
}
#endif // SLOW_PWM_HEATERS
//
// Update lcd buttons 488 times per second
//
static bool do_buttons;
if ((do_buttons ^= true)) ui.update_buttons();
/**
* One sensor is sampled on every other call of the ISR.
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
*
* On each Prepare pass, ADC is started for a sensor pin.
* On the next pass, the ADC value is read and accumulated.
*
* This gives each ADC 0.9765ms to charge up.
*/
#define ACCUMULATE_ADC(obj) do{ \
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
else obj.sample(HAL_READ_ADC()); \
}while(0)
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
switch (adc_sensor_state) {
case SensorsReady: {
// All sensors have been read. Stay in this state for a few
// ISRs to save on calls to temp update/checking code below.
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
break;
}
else {
adc_sensor_state = StartSampling; // Fall-through to start sampling
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
}
}
case StartSampling: // Start of sampling loops. Do updates/checks.
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
readings_ready();
}
break;
#if HAS_TEMP_ADC_0
case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break;
case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break;
#endif
#if HAS_TEMP_ADC_BED
case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break;
case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break;
#endif
#if HAS_TEMP_ADC_CHAMBER
case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break;
case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break;
#endif
#if HAS_TEMP_ADC_PROBE
case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break;
case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break;
#endif
#if HAS_TEMP_ADC_1
case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break;
case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break;
#endif
#if HAS_TEMP_ADC_2
case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break;
case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break;
#endif
#if HAS_TEMP_ADC_3
case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break;
case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break;
#endif
#if HAS_TEMP_ADC_4
case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break;
case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break;
#endif
#if HAS_TEMP_ADC_5
case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break;
case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break;
#endif
#if HAS_TEMP_ADC_6
case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break;
case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break;
#endif
#if HAS_TEMP_ADC_7
case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break;
case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break;
case Measure_FILWIDTH:
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
else filwidth.accumulate(HAL_READ_ADC());
break;
#endif
#if ENABLED(POWER_MONITOR_CURRENT)
case Prepare_POWER_MONITOR_CURRENT:
HAL_START_ADC(POWER_MONITOR_CURRENT_PIN);
break;
case Measure_POWER_MONITOR_CURRENT:
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
else power_monitor.add_current_sample(HAL_READ_ADC());
break;
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
case Prepare_POWER_MONITOR_VOLTAGE:
HAL_START_ADC(POWER_MONITOR_VOLTAGE_PIN);
break;
case Measure_POWER_MONITOR_VOLTAGE:
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
else power_monitor.add_voltage_sample(HAL_READ_ADC());
break;
#endif
#if HAS_JOY_ADC_X
case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break;
case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break;
#endif
#if HAS_JOY_ADC_Y
case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break;
case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break;
#endif
#if HAS_JOY_ADC_Z
case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break;
case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break;
#endif
#if HAS_ADC_BUTTONS
#ifndef ADC_BUTTON_DEBOUNCE_DELAY
#define ADC_BUTTON_DEBOUNCE_DELAY 16
#endif
case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break;
case Measure_ADC_KEY:
if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) {
raw_ADCKey_value = HAL_READ_ADC();
if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) {
NOMORE(current_ADCKey_raw, raw_ADCKey_value);
ADCKey_count++;
}
else { //ADC Key release
if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
if (ADCKey_pressed) {
ADCKey_count = 0;
current_ADCKey_raw = HAL_ADC_RANGE;
}
}
}
if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true;
break;
#endif // HAS_ADC_BUTTONS
case StartupDelay: break;
} // switch(adc_sensor_state)
// Go to the next state
adc_sensor_state = next_sensor_state;
//
// Additional ~1KHz Tasks
//
#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
babystep.task();
#endif
// Poll endstops state, if required
endstops.poll();
// Periodically call the planner timer
planner.tick();
}
#if HAS_TEMP_SENSOR
#include "../gcode/gcode.h"
static void print_heater_state(const float &c, const float &t
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, const float r
#endif
, const heater_id_t e=INDEX_NONE
) {
char k;
switch (e) {
#if HAS_TEMP_CHAMBER
case H_CHAMBER: k = 'C'; break;
#endif
#if HAS_TEMP_PROBE
case H_PROBE: k = 'P'; break;
#endif
#if HAS_TEMP_HOTEND
default: k = 'T'; break;
#if HAS_HEATED_BED
case H_BED: k = 'B'; break;
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
case H_REDUNDANT: k = 'R'; break;
#endif
#elif HAS_HEATED_BED
default: k = 'B'; break;
#endif
}
SERIAL_CHAR(' ');
SERIAL_CHAR(k);
#if HAS_MULTI_HOTEND
if (e >= 0) SERIAL_CHAR('0' + e);
#endif
SERIAL_CHAR(':');
SERIAL_ECHO(c);
SERIAL_ECHOPAIR(" /" , t);
#if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_ECHOPAIR(" (", r * RECIPROCAL(OVERSAMPLENR));
SERIAL_CHAR(')');
#endif
delay(2);
}
void Temperature::print_heater_states(const uint8_t target_extruder
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
, const bool include_r/*=false*/
#endif
) {
#if HAS_TEMP_HOTEND
print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawHotendTemp(target_extruder)
#endif
);
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (include_r) print_heater_state(redundant_temperature, degTargetHotend(target_extruder)
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, redundant_temperature_raw
#endif
, H_REDUNDANT
);
#endif
#endif
#if HAS_HEATED_BED
print_heater_state(degBed(), degTargetBed()
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawBedTemp()
#endif
, H_BED
);
#endif
#if HAS_TEMP_CHAMBER
print_heater_state(degChamber()
#if HAS_HEATED_CHAMBER
, degTargetChamber()
#else
, 0
#endif
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawChamberTemp()
#endif
, H_CHAMBER
);
#endif // HAS_TEMP_CHAMBER
#if HAS_TEMP_PROBE
print_heater_state(degProbe(), 0
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawProbeTemp()
#endif
, H_PROBE
);
#endif // HAS_TEMP_PROBE
#if HAS_MULTI_HOTEND
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawHotendTemp(e)
#endif
, (heater_id_t)e
);
#endif
SERIAL_ECHOPAIR(" @:", getHeaterPower((heater_id_t)target_extruder));
#if HAS_HEATED_BED
SERIAL_ECHOPAIR(" B@:", getHeaterPower(H_BED));
#endif
#if HAS_HEATED_CHAMBER
SERIAL_ECHOPAIR(" C@:", getHeaterPower(H_CHAMBER));
#endif
#if HAS_MULTI_HOTEND
HOTEND_LOOP() {
SERIAL_ECHOPAIR(" @", e);
SERIAL_CHAR(':');
SERIAL_ECHO(getHeaterPower((heater_id_t)e));
}
#endif
}
#if ENABLED(AUTO_REPORT_TEMPERATURES)
uint8_t Temperature::auto_report_temp_interval;
millis_t Temperature::next_temp_report_ms;
void Temperature::auto_report_temperatures() {
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
PORT_REDIRECT(SERIAL_BOTH);
print_heater_states(active_extruder);
SERIAL_EOL();
}
}
#endif // AUTO_REPORT_TEMPERATURES
#if HAS_HOTEND && HAS_DISPLAY
void Temperature::set_heating_message(const uint8_t e) {
const bool heating = isHeatingHotend(e);
ui.status_printf_P(0,
#if HAS_MULTI_HOTEND
PSTR("E%c " S_FMT), '1' + e
#else
PSTR("E " S_FMT)
#endif
, heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING)
);
}
#endif
#if HAS_TEMP_HOTEND
#ifndef MIN_COOLING_SLOPE_DEG
#define MIN_COOLING_SLOPE_DEG 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME
#define MIN_COOLING_SLOPE_TIME 60
#endif
bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel/*=false*/
#endif
) {
#if ENABLED(AUTOTEMP)
REMEMBER(1, planner.autotemp_enabled, false);
#endif
#if TEMP_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = degHotend(target_extruder);
printerEventLEDs.onHotendHeatingStart();
#endif
bool wants_to_cool = false;
float target_temp = -1.0, old_temp = 9999.0;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetHotend(target_extruder)) {
wants_to_cool = isCoolingHotend(target_extruder);
target_temp = degTargetHotend(target_extruder);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL;
print_heater_states(target_extruder);
#if TEMP_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const float temp = degHotend(target_extruder);
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from violet to red as nozzle heats up
if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
#endif
#if TEMP_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
first_loop = false;
#endif
// Prevent a wait-forever situation if R is misused i.e. M109 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
old_temp = temp;
}
}
#if G26_CLICK_CAN_CANCEL
if (click_to_cancel && ui.use_click()) {
wait_for_heatup = false;
ui.quick_feedback();
}
#endif
} while (wait_for_heatup && TEMP_CONDITIONS);
if (wait_for_heatup) {
wait_for_heatup = false;
#if ENABLED(DWIN_CREALITY_LCD)
HMI_flag.heat_flag = 0;
duration_t elapsed = print_job_timer.duration(); // print timer
dwin_heat_time = elapsed.value;
#else
ui.reset_status();
#endif
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onHeatingDone());
return true;
}
return false;
}
#endif // HAS_TEMP_HOTEND
#if HAS_HEATED_BED
#ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.00
#endif
#ifndef MIN_COOLING_SLOPE_TIME_BED
#define MIN_COOLING_SLOPE_TIME_BED 60
#endif
bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel/*=false*/
#endif
) {
#if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_BED_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = degBed();
printerEventLEDs.onBedHeatingStart();
#endif
bool wants_to_cool = false;
float target_temp = -1, old_temp = 9999;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetBed()) {
wants_to_cool = isCoolingBed();
target_temp = degTargetBed();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heater_states(active_extruder);
#if TEMP_BED_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const float temp = degBed();
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from blue to violet as bed heats up
if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_BED_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_BED_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
#endif // TEMP_BED_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M190 R0
if (wants_to_cool) {
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
old_temp = temp;
}
}
#if G26_CLICK_CAN_CANCEL
if (click_to_cancel && ui.use_click()) {
wait_for_heatup = false;
ui.quick_feedback();
}
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
first_loop = false;
#endif
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
return false;
}
void Temperature::wait_for_bed_heating() {
if (isHeatingBed()) {
SERIAL_ECHOLNPGM("Wait for bed heating...");
LCD_MESSAGEPGM(MSG_BED_HEATING);
wait_for_bed();
ui.reset_status();
}
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_PROBE
#ifndef MIN_DELTA_SLOPE_DEG_PROBE
#define MIN_DELTA_SLOPE_DEG_PROBE 1.0
#endif
#ifndef MIN_DELTA_SLOPE_TIME_PROBE
#define MIN_DELTA_SLOPE_TIME_PROBE 600
#endif
bool Temperature::wait_for_probe(const float target_temp, bool no_wait_for_cooling/*=true*/) {
const bool wants_to_cool = isProbeAboveTemp(target_temp);
const bool will_wait = !(wants_to_cool && no_wait_for_cooling);
if (will_wait)
SERIAL_ECHOLNPAIR("Waiting for probe to ", (wants_to_cool ? PSTR("cool down") : PSTR("heat up")), " to ", target_temp, " degrees.");
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
float old_temp = 9999;
millis_t next_temp_ms = 0, next_delta_check_ms = 0;
wait_for_heatup = true;
while (will_wait && wait_for_heatup) {
// Print Temp Reading every 10 seconds while heating up.
millis_t now = millis();
if (!next_temp_ms || ELAPSED(now, next_temp_ms)) {
next_temp_ms = now + 10000UL;
print_heater_states(active_extruder);
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
// Break after MIN_DELTA_SLOPE_TIME_PROBE seconds if the temperature
// did not drop at least MIN_DELTA_SLOPE_DEG_PROBE. This avoids waiting
// forever as the probe is not actively heated.
if (!next_delta_check_ms || ELAPSED(now, next_delta_check_ms)) {
const float temp = degProbe(),
delta_temp = old_temp > temp ? old_temp - temp : temp - old_temp;
if (delta_temp < float(MIN_DELTA_SLOPE_DEG_PROBE)) {
SERIAL_ECHOLNPGM("Timed out waiting for probe temperature.");
break;
}
next_delta_check_ms = now + 1000UL * MIN_DELTA_SLOPE_TIME_PROBE;
old_temp = temp;
}
// Loop until the temperature is very close target
if (!(wants_to_cool ? isProbeAboveTemp(target_temp) : isProbeBelowTemp(target_temp))) {
SERIAL_ECHOLN(wants_to_cool ? PSTR("Cooldown") : PSTR("Heatup"));
SERIAL_ECHOLNPGM(" complete, target probe temperature reached.");
break;
}
}
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
else if (will_wait)
SERIAL_ECHOLNPGM("Canceled wait for probe temperature.");
return false;
}
#endif // HAS_TEMP_PROBE
#if HAS_HEATED_CHAMBER
#ifndef MIN_COOLING_SLOPE_DEG_CHAMBER
#define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME_CHAMBER
#define MIN_COOLING_SLOPE_TIME_CHAMBER 120
#endif
bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) {
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber())
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
bool wants_to_cool = false;
float target_temp = -1, old_temp = 9999;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetChamber()) {
wants_to_cool = isCoolingChamber();
target_temp = degTargetChamber();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heater_states(active_extruder);
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const float temp = degChamber();
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_CHAMBER_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
first_loop = false;
#endif // TEMP_CHAMBER_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M191 R0
if (wants_to_cool) {
// Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_CHAMBER;
old_temp = temp;
}
}
} while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS);
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
return false;
}
#endif // HAS_HEATED_CHAMBER
#endif // HAS_TEMP_SENSOR