Marlin_Firmware/Marlin/src/libs/MAX31865.cpp
John Lagonikas c076094fa9 🐛 Fix MAX31865 PT1000 normalization (#24407)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-06-30 22:10:26 -05:00

639 lines
19 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Based on Based on Adafruit MAX31865 library:
*
* This is a library for the Adafruit PT100/P1000 RTD Sensor w/MAX31865
* Designed specifically to work with the Adafruit RTD Sensor
* https://www.adafruit.com/products/3328
*
* This sensor uses SPI to communicate, 4 pins are required to interface.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Limor Fried/Ladyada for Adafruit Industries.
*
* Modifications by JoAnn Manges (@GadgetAngel)
* Copyright (c) 2020, JoAnn Manges
* All rights reserved.
*/
#include "../inc/MarlinConfig.h"
#if HAS_MAX31865 && !USE_ADAFRUIT_MAX31865
#include "MAX31865.h"
#ifndef MAX31865_MIN_SAMPLING_TIME_MSEC
#define MAX31865_MIN_SAMPLING_TIME_MSEC 0
#endif
#define DEBUG_OUT ENABLED(DEBUG_MAX31865)
#include "../core/debug_out.h"
// The maximum speed the MAX31865 can do is 5 MHz
SPISettings MAX31865::spiConfig = SPISettings(
TERN(TARGET_LPC1768, SPI_QUARTER_SPEED, TERN(ARDUINO_ARCH_STM32, SPI_CLOCK_DIV4, 500000)),
MSBFIRST,
SPI_MODE1 // CPOL0 CPHA1
);
#if DISABLED(LARGE_PINMAP)
/**
* Create the interface object using software (bitbang) SPI for PIN values
* less than or equal to 127.
*
* @param spi_cs the SPI CS pin to use
* @param spi_mosi the SPI MOSI pin to use
* @param spi_miso the SPI MISO pin to use
* @param spi_clk the SPI clock pin to use
*/
MAX31865::MAX31865(int8_t spi_cs, int8_t spi_mosi, int8_t spi_miso, int8_t spi_clk) {
cselPin = spi_cs;
mosiPin = spi_mosi;
misoPin = spi_miso;
sclkPin = spi_clk;
}
/**
* Create the interface object using hardware SPI for PIN for PIN values less
* than or equal to 127.
*
* @param spi_cs the SPI CS pin to use along with the default SPI device
*/
MAX31865::MAX31865(int8_t spi_cs) {
cselPin = spi_cs;
sclkPin = misoPin = mosiPin = -1;
}
#else // LARGE_PINMAP
/**
* Create the interface object using software (bitbang) SPI for PIN values
* which are larger than 127. If you have PIN values less than or equal to
* 127 use the other call for SW SPI.
*
* @param spi_cs the SPI CS pin to use
* @param spi_mosi the SPI MOSI pin to use
* @param spi_miso the SPI MISO pin to use
* @param spi_clk the SPI clock pin to use
* @param pin_mapping set to 1 for positive pin values
*/
MAX31865::MAX31865(uint32_t spi_cs, uint32_t spi_mosi, uint32_t spi_miso, uint32_t spi_clk, uint8_t pin_mapping) {
cselPin = spi_cs;
mosiPin = spi_mosi;
misoPin = spi_miso;
sclkPin = spi_clk;
}
/**
* Create the interface object using hardware SPI for PIN values which are
* larger than 127. If you have PIN values less than or equal to 127 use
* the other call for HW SPI.
*
* @param spi_cs the SPI CS pin to use along with the default SPI device
* @param pin_mapping set to 1 for positive pin values
*/
MAX31865::MAX31865(uint32_t spi_cs, uint8_t pin_mapping) {
cselPin = spi_cs;
sclkPin = misoPin = mosiPin = -1UL; //-1UL or 0xFFFFFFFF or 4294967295
}
#endif // LARGE_PINMAP
/**
*
* Instance & Class methods
*
*/
/**
* Initialize the SPI interface and set the number of RTD wires used
*
* @param wires The number of wires as an enum: MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE.
* @param zero_res The resistance of the RTD at 0°C, in ohms.
* @param ref_res The resistance of the reference resistor, in ohms.
* @param wire_res The resistance of the wire connecting the sensor to the RTD, in ohms.
*/
void MAX31865::begin(max31865_numwires_t wires, const_float_t zero_res, const_float_t ref_res, const_float_t wire_res) {
resNormalizer = 100.0f / zero_res; // reciprocal of resistance, scaled by 100
refRes = ref_res;
wireRes = wire_res;
pinMode(cselPin, OUTPUT);
digitalWrite(cselPin, HIGH);
if (sclkPin != TERN(LARGE_PINMAP, -1UL, 255))
softSpiInit(); // Define pin modes for Software SPI
else {
DEBUG_ECHOLNPGM("Init MAX31865 Hardware SPI");
SPI.begin(); // Start and configure hardware SPI
}
initFixedFlags(wires);
DEBUG_ECHOLNPGM("MAX31865 Regs: CFG ", readRegister8(MAX31865_CONFIG_REG),
"|RTD ", readRegister16(MAX31865_RTDMSB_REG),
"|HTHRS ", readRegister16(MAX31865_HFAULTMSB_REG),
"|LTHRS ", readRegister16(MAX31865_LFAULTMSB_REG),
"|FLT ", readRegister8(MAX31865_FAULTSTAT_REG));
// fault detection cycle seems to initialize the sensor better
runAutoFaultDetectionCycle(); // also initializes flags
if (lastFault)
SERIAL_ECHOLNPGM("MAX31865 init fault ", lastFault);
writeRegister16(MAX31865_HFAULTMSB_REG, 0xFFFF);
writeRegister16(MAX31865_LFAULTMSB_REG, 0);
#if ENABLED(MAX31865_USE_AUTO_MODE) // make a proper first read to initialize _lastRead
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
rtd = fixFault(rtd);
#endif
if (rtd & 1) {
lastRead = 0xFFFF; // some invalid value
lastFault = readRegister8(MAX31865_FAULTSTAT_REG);
clearFault(); // also clears the bias voltage flag, so no further action is required
DEBUG_ECHOLNPGM("MAX31865 read fault: ", rtd);
}
else {
DEBUG_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF));
lastRead = rtd;
TERN_(MAX31865_USE_READ_ERROR_DETECTION, lastReadStamp = millis());
}
#else
enableBias();
DELAY_US(2000); // according to the datasheet, 10.5τ+1msec (see below)
oneShot();
DELAY_US(63000);
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
rtd = fixFault(rtd);
#endif
if (rtd & 1) {
lastRead = 0xFFFF; // some invalid value
lastFault = readRegister8(MAX31865_FAULTSTAT_REG);
clearFault(); // also clears the bias voltage flag, so no further action is required
DEBUG_ECHOLNPGM("MAX31865 read fault: ", rtd);
}
else {
DEBUG_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF));
resetFlags();
lastRead = rtd;
nextEvent = SETUP_BIAS_VOLTAGE;
millis_t now = millis();
nextEventStamp = now + MAX31865_MIN_SAMPLING_TIME_MSEC;
TERN_(MAX31865_USE_READ_ERROR_DETECTION, lastReadStamp = now);
}
#endif // MAX31865_USE_AUTO_MODE
DEBUG_ECHOLNPGM(
TERN(LARGE_PINMAP, "LARGE_PINMAP", "Regular")
" begin call with cselPin: ", cselPin,
" misoPin: ", misoPin,
" sclkPin: ", sclkPin,
" mosiPin: ", mosiPin,
" config: ", readRegister8(MAX31865_CONFIG_REG)
);
}
/**
* Return and clear the last fault value
*
* @return The raw unsigned 8-bit FAULT status register or spike fault
*/
uint8_t MAX31865::readFault() {
uint8_t r = lastFault;
lastFault = 0;
return r;
}
/**
* Clear last fault
*/
void MAX31865::clearFault() {
setConfig(MAX31865_CONFIG_FAULTSTAT, 1);
}
/**
* Reset flags
*/
void MAX31865::resetFlags() {
writeRegister8(MAX31865_CONFIG_REG, stdFlags);
}
/**
* Enable the bias voltage on the RTD sensor
*/
void MAX31865::enableBias() {
setConfig(MAX31865_CONFIG_BIAS, 1);
}
/**
* Start a one-shot temperature reading.
*/
void MAX31865::oneShot() {
setConfig(MAX31865_CONFIG_1SHOT | MAX31865_CONFIG_BIAS, 1);
}
void MAX31865::runAutoFaultDetectionCycle() {
writeRegister8(MAX31865_CONFIG_REG, (stdFlags & 0x11) | 0x84 ); // cfg reg = 100X010Xb
DELAY_US(600);
for (int i = 0; i < 10 && (readRegister8(MAX31865_CONFIG_REG) & 0xC) > 0; i++) DELAY_US(100); // Fault det completes when bits 2 and 3 are zero (or after 10 tries)
readFault();
clearFault();
}
/**
* Set a value in the configuration register.
*
* @param config 8-bit value for the config item
* @param enable whether to enable or disable the value
*/
void MAX31865::setConfig(uint8_t config, bool enable) {
uint8_t t = stdFlags;
if (enable)
t |= config;
else
t &= ~config;
writeRegister8(MAX31865_CONFIG_REG, t);
}
/**
* Initialize standard flags with flags that will not change during operation (Hz, polling mode and no. of wires)
*
* @param wires The number of wires in enum format
*/
void MAX31865::initFixedFlags(max31865_numwires_t wires) {
// set config-defined flags (same for all sensors)
stdFlags = TERN(MAX31865_50HZ_FILTER, MAX31865_CONFIG_FILT50HZ, MAX31865_CONFIG_FILT60HZ) |
TERN(MAX31865_USE_AUTO_MODE, MAX31865_CONFIG_MODEAUTO | MAX31865_CONFIG_BIAS, MAX31865_CONFIG_MODEOFF);
if (wires == MAX31865_3WIRE)
stdFlags |= MAX31865_CONFIG_3WIRE; // 3 wire
else
stdFlags &= ~MAX31865_CONFIG_3WIRE; // 2 or 4 wire
}
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
inline uint16_t MAX31865::fixFault(uint16_t rtd) {
if (!ignore_faults || !(rtd & 1))
return rtd;
ignore_faults--;
clearFault();
DEBUG_ECHOLNPGM("MAX31865 ignoring fault ", (MAX31865_IGNORE_INITIAL_FAULTY_READS) - ignore_faults);
return rtd & ~1; // 0xFFFE
}
#endif
inline uint16_t MAX31865::readRawImmediate() {
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
DEBUG_ECHOLNPGM("MAX31865 RTD MSB:", (rtd >> 8), " LSB:", (rtd & 0x00FF));
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
rtd = fixFault(rtd);
#endif
if (rtd & 1) {
lastFault = readRegister8(MAX31865_FAULTSTAT_REG);
lastRead |= 1;
clearFault(); // also clears the bias voltage flag, so no further action is required
DEBUG_ECHOLNPGM("MAX31865 read fault: ", lastFault);
}
else {
TERN_(MAX31865_USE_READ_ERROR_DETECTION, const millis_t ms = millis());
if (TERN0(MAX31865_USE_READ_ERROR_DETECTION, ABS((int)(lastRead - rtd)) > 500 && PENDING(ms, lastReadStamp + 1000))) {
// If 2 readings within 1s differ too much (~20°C) it's a read error.
lastFault = 0x01;
lastRead |= 1;
DEBUG_ECHOLNPGM("MAX31865 read error: ", rtd);
}
else {
lastRead = rtd;
TERN_(MAX31865_USE_READ_ERROR_DETECTION, lastReadStamp = ms);
}
}
return rtd;
}
/**
* Read the raw 16-bit value from the RTD_REG in one shot mode. This will include
* the fault bit, D0.
*
* @return The raw unsigned 16-bit register value with ERROR bit attached, NOT temperature!
*/
uint16_t MAX31865::readRaw() {
#if ENABLED(MAX31865_USE_AUTO_MODE)
readRawImmediate();
#else
const millis_t ms = millis();
if (PENDING(ms, nextEventStamp)) {
DEBUG_ECHOLNPGM("MAX31865 waiting for event ", nextEvent);
return lastRead;
}
switch (nextEvent) {
case SETUP_BIAS_VOLTAGE:
enableBias();
nextEventStamp = ms + 2; // wait at least 10.5*τ (τ = 100nF*430Ω max for PT100 / 10nF*4.3ΚΩ for PT1000 = 43μsec) + 1msec
nextEvent = SETUP_1_SHOT_MODE;
DEBUG_ECHOLNPGM("MAX31865 bias voltage enabled");
break;
case SETUP_1_SHOT_MODE:
oneShot();
nextEventStamp = ms + TERN(MAX31865_50HZ_FILTER, 63, 52); // wait at least 52msec for 60Hz (63msec for 50Hz) before reading RTD register
nextEvent = READ_RTD_REG;
DEBUG_ECHOLNPGM("MAX31865 1 shot mode enabled");
break;
case READ_RTD_REG:
if (!(readRawImmediate() & 1)) // if clearFault() was not invoked, need to clear the bias voltage and 1-shot flags
resetFlags();
nextEvent = SETUP_BIAS_VOLTAGE;
nextEventStamp = ms + (MAX31865_MIN_SAMPLING_TIME_MSEC); // next step should not occur within less than MAX31865_MIN_SAMPLING_TIME_MSEC from the last one
break;
}
#endif
return lastRead;
}
/**
* Calculate and return the resistance value of the connected RTD.
*
* @return The raw RTD resistance value, NOT temperature!
*/
float MAX31865::readResistance() {
// Strip the error bit (D0) and convert to a float ratio.
// less precise method: (readRaw() * refRes) >> 16
return ((readRaw() * RECIPROCAL(65536.0f)) * refRes - wireRes);
}
/**
* Read the RTD and pass it to temperature(float) for calculation.
*
* @return Temperature in C
*/
float MAX31865::temperature() {
return temperature(readResistance());
}
/**
* Given the 15-bit ADC value, calculate the resistance and pass it to temperature(float) for calculation.
*
* @return Temperature in C
*/
float MAX31865::temperature(const uint16_t adc_val) {
return temperature(((adc_val) * RECIPROCAL(32768.0f)) * refRes - wireRes);
}
/**
* Calculate the temperature in C from the RTD resistance.
*
* @param rtd_res the resistance value in ohms
* @return the temperature in °C
*/
float MAX31865::temperature(float rtd_res) {
rtd_res *= resNormalizer; // normalize to 100 ohm
// Constants for calculating temperature from the measured RTD resistance.
// http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
constexpr float RTD_Z1 = -0.0039083,
RTD_Z2 = +1.758480889e-5,
RTD_Z3 = -2.31e-8,
RTD_Z4 = -1.155e-6;
// Callender-Van Dusen equation
float temp = (RTD_Z1 + sqrt(RTD_Z2 + (RTD_Z3 * rtd_res))) * RECIPROCAL(RTD_Z4);
//
// The previous equation is valid only for temperatures of 0°C and above.
// The equation for RRTD(t) that defines negative temperature behavior is a
// fourth-order polynomial (after expanding the third term) and is quite
// impractical to solve for a single expression of temperature as a function
// of resistance. So here we use a Linear Approximation instead.
//
if (temp < 0) {
#ifndef MAX31865_APPROX
#define MAX31865_APPROX 5
#endif
constexpr float RTD_C[] = {
#if MAX31865_APPROX == 5
-242.02, +2.2228, +2.5859e-3, -4.8260e-6, -2.8183e-8, +1.5243e-10
#elif MAX31865_APPROX == 4
-241.96, +2.2163, +2.8541e-3, -9.9121e-6, -1.7152e-8
#elif MAX31865_APPROX == 3
-242.09, +2.2276, +2.5178e-3, -5.8620e-6
#else
-242.97, +2.2838, +1.4727e-3
#endif
};
float rpoly = rtd_res;
temp = RTD_C[0];
temp += rpoly * RTD_C[1];
rpoly *= rtd_res; temp += rpoly * RTD_C[2];
if (MAX31865_APPROX >= 3) rpoly *= rtd_res; temp += rpoly * RTD_C[3];
if (MAX31865_APPROX >= 4) rpoly *= rtd_res; temp += rpoly * RTD_C[4];
if (MAX31865_APPROX >= 5) rpoly *= rtd_res; temp += rpoly * RTD_C[5];
}
return temp;
}
/**
* MAX31865 SPI Timing constants
* See MAX31865 datasheet (https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf)
* All timings in nsec, minimum values.
*/
#define MAX31865_SPI_TIMING_TCC 400 // CS to SCLK setup
#define MAX31865_SPI_TIMING_TDC 35 // Data to SCLK setup
#define MAX31865_SPI_TIMING_TCL 100 // SCK half period
#define MAX31865_SPI_TIMING_TCCH 100 // SCK to CS hold
#define MAX31865_SPI_TIMING_TCWH 400 // CS inactive time (min)
/**
* Read a single byte from the specified register address.
*
* @param addr the register address
* @return the register contents
*/
uint8_t MAX31865::readRegister8(uint8_t addr) {
uint8_t ret = 0;
readRegisterN(addr, &ret, 1);
return ret;
}
/**
* Read two bytes: 1 from the specified register address, and 1 from the next address.
*
* @param addr the first register address
* @return both register contents as a single 16-bit int
*/
uint16_t MAX31865::readRegister16(uint8_t addr) {
uint8_t buffer[2] = { 0 };
readRegisterN(addr, buffer, 2);
return uint16_t(buffer[0]) << 8 | buffer[1];
}
/**
* Read +n+ bytes from a specified address into +buffer+. Set D7 to 0 to specify a read.
*
* @param addr the first register address
* @param buffer storage for the read bytes
* @param n the number of bytes to read
*/
void MAX31865::readRegisterN(uint8_t addr, uint8_t buffer[], uint8_t n) {
addr &= 0x7F; // make sure top bit is not set
spiBeginTransaction();
spiTransfer(addr);
while (n--) {
buffer[0] = spiTransfer(0xFF);
buffer++;
}
spiEndTransaction();
}
void MAX31865::writeRegister16(uint8_t addr, uint16_t data) {
spiBeginTransaction();
spiTransfer(addr | 0x80); // make sure top bit is set
spiTransfer(data >> 8);
spiTransfer(data & 0xFF);
spiEndTransaction();
}
/**
* Write an 8-bit value to a register. Set D7 to 1 to specify a write.
*
* @param addr the address to write to
* @param data the data to write
*/
void MAX31865::writeRegister8(uint8_t addr, uint8_t data) {
spiBeginTransaction();
spiTransfer(addr | 0x80); // make sure top bit is set
spiTransfer(data);
spiEndTransaction();
}
void MAX31865::spiBeginTransaction() {
digitalWrite(sclkPin, LOW); // ensure CPOL0
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCWH); // ensure minimum time of CS inactivity after previous operation
digitalWrite(cselPin, LOW);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCC);
if (sclkPin == TERN(LARGE_PINMAP, -1UL, 255))
SPI.beginTransaction(spiConfig);
else
digitalWrite(sclkPin, HIGH);
}
void MAX31865::spiEndTransaction() {
if (sclkPin == TERN(LARGE_PINMAP, -1UL, 255))
SPI.endTransaction();
else
digitalWrite(sclkPin, LOW);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCCH);
digitalWrite(cselPin, HIGH);
}
/**
* Transfer SPI data +x+ and read the response. From the datasheet...
* Input data (SDI) is latched on the internal strobe edge and output data (SDO) is
* shifted out on the shift edge. There is one clock for each bit transferred.
* Address and data bits are transferred in groups of eight, MSB first.
*
* @param x an 8-bit chunk of data to write
* @return the 8-bit response
*/
uint8_t MAX31865::spiTransfer(uint8_t x) {
if (sclkPin == TERN(LARGE_PINMAP, -1UL, 255))
return SPI.transfer(x);
uint8_t reply = 0;
for (int i = 7; i >= 0; i--) {
digitalWrite(mosiPin, x & _BV(i));
DELAY_NS_VAR(MAX31865_SPI_TIMING_TDC);
digitalWrite(sclkPin, LOW);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCL - MAX31865_SPI_TIMING_TDC);
reply <<= 1;
if (digitalRead(misoPin)) reply |= 1;
DELAY_NS_VAR(MAX31865_SPI_TIMING_TDC);
digitalWrite(sclkPin, HIGH);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCL - MAX31865_SPI_TIMING_TDC);
}
return reply;
}
void MAX31865::softSpiInit() {
DEBUG_ECHOLNPGM("Initializing MAX31865 Software SPI");
pinMode(sclkPin, OUTPUT);
digitalWrite(sclkPin, LOW);
pinMode(mosiPin, OUTPUT);
pinMode(misoPin, INPUT);
}
#endif // HAS_MAX31865 && !USE_ADAFRUIT_MAX31865