Marlin_Firmware/Marlin/src/HAL/HAL_DUE/G2_PWM.cpp
2019-02-26 21:03:13 -06:00

146 lines
7.9 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The PWM module is only used to generate interrupts at specified times. It
* is NOT used to directly toggle pins. The ISR writes to the pin assigned to
* that interrupt.
*
* All PWMs use the same repetition rate. The G2 needs about 10KHz min in order to
* not have obvious ripple on the Vref signals.
*
* The data structures are setup to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 0.8 to 1.1 microseconds.
*
* FIve PWM interrupt sources are used. Channel 0 sets the base period. All Vref
* signals are set active when this counter overflows and resets to zero. The compare
* values in channels 1-4 are set to give the desired duty cycle for that Vref pin.
* When counter 0 matches the compare value then that channel generates an interrupt.
* The ISR checks the source of the interrupt and sets the corresponding pin inactive.
*
* Some jitter in the Vref signal is OK so the interrupt priority is left at its default value.
*/
#include "../../inc/MarlinConfig.h"
#if MB(PRINTRBOARD_G2)
#include "G2_PWM.h"
volatile uint32_t *SODR_A = &PIOA->PIO_SODR,
*SODR_B = &PIOB->PIO_SODR,
*CODR_A = &PIOA->PIO_CODR,
*CODR_B = &PIOB->PIO_CODR;
PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT;
void Stepper::digipot_init() {
OUT_WRITE(MOTOR_CURRENT_PWM_X_PIN, 0); // init pins
OUT_WRITE(MOTOR_CURRENT_PWM_Y_PIN, 0);
OUT_WRITE(MOTOR_CURRENT_PWM_Z_PIN, 0);
OUT_WRITE(MOTOR_CURRENT_PWM_E_PIN, 0);
#define WPKEY (0x50574D << 8) // “PWM” in ASCII
#define WPCMD_DIS_SW 0 // command to disable Write Protect SW
#define WPRG_ALL (PWM_WPCR_WPRG0 | PWM_WPCR_WPRG1 | PWM_WPCR_WPRG2 | PWM_WPCR_WPRG3 | PWM_WPCR_WPRG4 | PWM_WPCR_WPRG5) // all Write Protect Groups
#define PWM_CLOCK_F F_CPU / 1000000UL // set clock to 1MHz
PMC->PMC_PCER1 = PMC_PCER1_PID36; // enable PWM controller clock (disabled on power up)
PWM->PWM_WPCR = WPKEY | WPRG_ALL | WPCMD_DIS_SW; // enable setting of all PWM registers
PWM->PWM_CLK = PWM_CLOCK_F; // enable CLK_A and set it to 1MHz, leave CLK_B disabled
PWM->PWM_CH_NUM[0].PWM_CMR = 0b1011; // set channel 0 to Clock A input & to left aligned
PWM->PWM_CH_NUM[1].PWM_CMR = 0b1011; // set channel 1 to Clock A input & to left aligned
PWM->PWM_CH_NUM[2].PWM_CMR = 0b1011; // set channel 2 to Clock A input & to left aligned
PWM->PWM_CH_NUM[3].PWM_CMR = 0b1011; // set channel 3 to Clock A input & to left aligned
PWM->PWM_CH_NUM[4].PWM_CMR = 0b1011; // set channel 4 to Clock A input & to left aligned
PWM->PWM_CH_NUM[0].PWM_CPRD = PWM_PERIOD_US; // set channel 0 Period
PWM->PWM_IER2 = PWM_IER1_CHID0; // generate interrupt when counter0 overflows
PWM->PWM_IER2 = PWM_IER2_CMPM0 | PWM_IER2_CMPM1 | PWM_IER2_CMPM2 | PWM_IER2_CMPM3 | PWM_IER2_CMPM4; // generate interrupt on compare event
PWM->PWM_CMP[1].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[0])); // interrupt when counter0 == CMPV - used to set Motor 1 PWM inactive
PWM->PWM_CMP[2].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[0])); // interrupt when counter0 == CMPV - used to set Motor 2 PWM inactive
PWM->PWM_CMP[3].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[1])); // interrupt when counter0 == CMPV - used to set Motor 3 PWM inactive
PWM->PWM_CMP[4].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[2])); // interrupt when counter0 == CMPV - used to set Motor 4 PWM inactive
PWM->PWM_CMP[1].PWM_CMPM = 0x0001; // enable compare event
PWM->PWM_CMP[2].PWM_CMPM = 0x0001; // enable compare event
PWM->PWM_CMP[3].PWM_CMPM = 0x0001; // enable compare event
PWM->PWM_CMP[4].PWM_CMPM = 0x0001; // enable compare event
PWM->PWM_SCM = PWM_SCM_UPDM_MODE0 | PWM_SCM_SYNC0 | PWM_SCM_SYNC1 | PWM_SCM_SYNC2 | PWM_SCM_SYNC3 | PWM_SCM_SYNC4; // sync 1-4 with 0, use mode 0 for updates
PWM->PWM_ENA = PWM_ENA_CHID0 | PWM_ENA_CHID1 | PWM_ENA_CHID2 | PWM_ENA_CHID3 | PWM_ENA_CHID4; // enable the channels used by G2
PWM->PWM_IER1 = PWM_IER1_CHID0 | PWM_IER1_CHID1 | PWM_IER1_CHID2 | PWM_IER1_CHID3 | PWM_IER1_CHID4; // enable interrupts for the channels used by G2
NVIC_EnableIRQ(PWM_IRQn); // Enable interrupt handler
NVIC_SetPriority(PWM_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module (can stand some jitter on the Vref signals)
}
void Stepper::digipot_current(const uint8_t driver, const int16_t current) {
if (!(PWM->PWM_CH_NUM[0].PWM_CPRD == PWM_PERIOD_US)) digipot_init(); // Init PWM system if needed
switch (driver) {
case 0: PWM->PWM_CMP[1].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update X & Y
PWM->PWM_CMP[2].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current));
PWM->PWM_CMP[1].PWM_CMPMUPD = 0x0001; // enable compare event
PWM->PWM_CMP[2].PWM_CMPMUPD = 0x0001; // enable compare event
PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle
break;
case 1: PWM->PWM_CMP[3].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update Z
PWM->PWM_CMP[3].PWM_CMPMUPD = 0x0001; // enable compare event
PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle
break;
default:PWM->PWM_CMP[4].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update E
PWM->PWM_CMP[4].PWM_CMPMUPD = 0x0001; // enable compare event
PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle
break;
}
}
volatile uint32_t PWM_ISR1_STATUS, PWM_ISR2_STATUS;
void PWM_Handler() {
PWM_ISR1_STATUS = PWM->PWM_ISR1;
PWM_ISR2_STATUS = PWM->PWM_ISR2;
if (PWM_ISR1_STATUS & PWM_IER1_CHID0) { // CHAN_0 interrupt
*ISR_table[0].set_register = ISR_table[0].write_mask; // set X to active
*ISR_table[1].set_register = ISR_table[1].write_mask; // set Y to active
*ISR_table[2].set_register = ISR_table[2].write_mask; // set Z to active
*ISR_table[3].set_register = ISR_table[3].write_mask; // set E to active
}
else {
if (PWM_ISR2_STATUS & PWM_IER2_CMPM1) *ISR_table[0].clr_register = ISR_table[0].write_mask; // set X to inactive
if (PWM_ISR2_STATUS & PWM_IER2_CMPM2) *ISR_table[1].clr_register = ISR_table[1].write_mask; // set Y to inactive
if (PWM_ISR2_STATUS & PWM_IER2_CMPM3) *ISR_table[2].clr_register = ISR_table[2].write_mask; // set Z to inactive
if (PWM_ISR2_STATUS & PWM_IER2_CMPM4) *ISR_table[3].clr_register = ISR_table[3].write_mask; // set E to inactive
}
return;
}
#endif // PRINTRBOARD_G2