Marlin_Firmware/Marlin/src/module/temperature.h
2021-12-25 00:46:48 -06:00

1017 lines
33 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* temperature.h - temperature controller
*/
#include "thermistor/thermistors.h"
#include "../inc/MarlinConfig.h"
#if ENABLED(AUTO_POWER_CONTROL)
#include "../feature/power.h"
#endif
#if ENABLED(AUTO_REPORT_TEMPERATURES)
#include "../libs/autoreport.h"
#endif
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
#define HOTEND_INDEX TERN(HAS_MULTI_HOTEND, e, 0)
#define E_NAME TERN_(HAS_MULTI_HOTEND, e)
// Element identifiers. Positive values are hotends. Negative values are other heaters or coolers.
typedef enum : int8_t {
H_REDUNDANT = HID_REDUNDANT,
H_COOLER = HID_COOLER,
H_PROBE = HID_PROBE,
H_BOARD = HID_BOARD,
H_CHAMBER = HID_CHAMBER,
H_BED = HID_BED,
H_E0 = HID_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7
} heater_id_t;
// PID storage
typedef struct { float Kp, Ki, Kd; } PID_t;
typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
typedef
#if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
PIDCF_t
#elif ENABLED(PID_EXTRUSION_SCALING)
PIDC_t
#elif ENABLED(PID_FAN_SCALING)
PIDF_t
#else
PID_t
#endif
hotend_pid_t;
#if ENABLED(PID_EXTRUSION_SCALING)
typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
#endif
#define PID_PARAM(F,H) _PID_##F(TERN(PID_PARAMS_PER_HOTEND, H, 0 & H)) // Always use 'H' to suppress warning
#define _PID_Kp(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Kp, NAN)
#define _PID_Ki(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Ki, NAN)
#define _PID_Kd(H) TERN(PIDTEMP, Temperature::temp_hotend[H].pid.Kd, NAN)
#if ENABLED(PIDTEMP)
#define _PID_Kc(H) TERN(PID_EXTRUSION_SCALING, Temperature::temp_hotend[H].pid.Kc, 1)
#define _PID_Kf(H) TERN(PID_FAN_SCALING, Temperature::temp_hotend[H].pid.Kf, 0)
#else
#define _PID_Kc(H) 1
#define _PID_Kf(H) 0
#endif
/**
* States for ADC reading in the ISR
*/
enum ADCSensorState : char {
StartSampling,
#if HAS_TEMP_ADC_0
PrepareTemp_0, MeasureTemp_0,
#endif
#if HAS_TEMP_ADC_BED
PrepareTemp_BED, MeasureTemp_BED,
#endif
#if HAS_TEMP_ADC_CHAMBER
PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
#endif
#if HAS_TEMP_ADC_COOLER
PrepareTemp_COOLER, MeasureTemp_COOLER,
#endif
#if HAS_TEMP_ADC_PROBE
PrepareTemp_PROBE, MeasureTemp_PROBE,
#endif
#if HAS_TEMP_ADC_BOARD
PrepareTemp_BOARD, MeasureTemp_BOARD,
#endif
#if HAS_TEMP_ADC_REDUNDANT
PrepareTemp_REDUNDANT, MeasureTemp_REDUNDANT,
#endif
#if HAS_TEMP_ADC_1
PrepareTemp_1, MeasureTemp_1,
#endif
#if HAS_TEMP_ADC_2
PrepareTemp_2, MeasureTemp_2,
#endif
#if HAS_TEMP_ADC_3
PrepareTemp_3, MeasureTemp_3,
#endif
#if HAS_TEMP_ADC_4
PrepareTemp_4, MeasureTemp_4,
#endif
#if HAS_TEMP_ADC_5
PrepareTemp_5, MeasureTemp_5,
#endif
#if HAS_TEMP_ADC_6
PrepareTemp_6, MeasureTemp_6,
#endif
#if HAS_TEMP_ADC_7
PrepareTemp_7, MeasureTemp_7,
#endif
#if HAS_JOY_ADC_X
PrepareJoy_X, MeasureJoy_X,
#endif
#if HAS_JOY_ADC_Y
PrepareJoy_Y, MeasureJoy_Y,
#endif
#if HAS_JOY_ADC_Z
PrepareJoy_Z, MeasureJoy_Z,
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
Prepare_FILWIDTH, Measure_FILWIDTH,
#endif
#if ENABLED(POWER_MONITOR_CURRENT)
Prepare_POWER_MONITOR_CURRENT,
Measure_POWER_MONITOR_CURRENT,
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
Prepare_POWER_MONITOR_VOLTAGE,
Measure_POWER_MONITOR_VOLTAGE,
#endif
#if HAS_ADC_BUTTONS
Prepare_ADC_KEY, Measure_ADC_KEY,
#endif
SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
// Minimum number of Temperature::ISR loops between sensor readings.
// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
// get all oversampled sensor readings
#define MIN_ADC_ISR_LOOPS 10
#define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
#if HAS_PID_HEATING
#define PID_K2 (1-float(PID_K1))
#define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
// Apply the scale factors to the PID values
#define scalePID_i(i) ( float(i) * PID_dT )
#define unscalePID_i(i) ( float(i) / PID_dT )
#define scalePID_d(d) ( float(d) / PID_dT )
#define unscalePID_d(d) ( float(d) * PID_dT )
#endif
#if ENABLED(G26_MESH_VALIDATION) && EITHER(HAS_LCD_MENU, EXTENSIBLE_UI)
#define G26_CLICK_CAN_CANCEL 1
#endif
// A temperature sensor
typedef struct TempInfo {
uint16_t acc;
int16_t raw;
celsius_float_t celsius;
inline void reset() { acc = 0; }
inline void sample(const uint16_t s) { acc += s; }
inline void update() { raw = acc; }
} temp_info_t;
#if HAS_TEMP_REDUNDANT
// A redundant temperature sensor
typedef struct RedundantTempInfo : public TempInfo {
temp_info_t* target;
} redundant_info_t;
#endif
// A PWM heater with temperature sensor
typedef struct HeaterInfo : public TempInfo {
celsius_t target;
uint8_t soft_pwm_amount;
} heater_info_t;
// A heater with PID stabilization
template<typename T>
struct PIDHeaterInfo : public HeaterInfo {
T pid; // Initialized by settings.load()
};
#if ENABLED(PIDTEMP)
typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
#else
typedef heater_info_t hotend_info_t;
#endif
#if HAS_HEATED_BED
#if ENABLED(PIDTEMPBED)
typedef struct PIDHeaterInfo<PID_t> bed_info_t;
#else
typedef heater_info_t bed_info_t;
#endif
#endif
#if HAS_TEMP_PROBE
typedef temp_info_t probe_info_t;
#endif
#if HAS_HEATED_CHAMBER
#if ENABLED(PIDTEMPCHAMBER)
typedef struct PIDHeaterInfo<PID_t> chamber_info_t;
#else
typedef heater_info_t chamber_info_t;
#endif
#elif HAS_TEMP_CHAMBER
typedef temp_info_t chamber_info_t;
#endif
#if HAS_TEMP_BOARD
typedef temp_info_t board_info_t;
#endif
#if EITHER(HAS_COOLER, HAS_TEMP_COOLER)
typedef heater_info_t cooler_info_t;
#endif
// Heater watch handling
template <int INCREASE, int HYSTERESIS, millis_t PERIOD>
struct HeaterWatch {
celsius_t target;
millis_t next_ms;
inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
inline bool elapsed() { return elapsed(millis()); }
inline bool check(const celsius_t curr) { return curr >= target; }
inline void restart(const celsius_t curr, const celsius_t tgt) {
if (tgt) {
const celsius_t newtarget = curr + INCREASE;
if (newtarget < tgt - HYSTERESIS - 1) {
target = newtarget;
next_ms = millis() + SEC_TO_MS(PERIOD);
return;
}
}
next_ms = 0;
}
};
#if WATCH_HOTENDS
typedef struct HeaterWatch<WATCH_TEMP_INCREASE, TEMP_HYSTERESIS, WATCH_TEMP_PERIOD> hotend_watch_t;
#endif
#if WATCH_BED
typedef struct HeaterWatch<WATCH_BED_TEMP_INCREASE, TEMP_BED_HYSTERESIS, WATCH_BED_TEMP_PERIOD> bed_watch_t;
#endif
#if WATCH_CHAMBER
typedef struct HeaterWatch<WATCH_CHAMBER_TEMP_INCREASE, TEMP_CHAMBER_HYSTERESIS, WATCH_CHAMBER_TEMP_PERIOD> chamber_watch_t;
#endif
#if WATCH_COOLER
typedef struct HeaterWatch<WATCH_COOLER_TEMP_INCREASE, TEMP_COOLER_HYSTERESIS, WATCH_COOLER_TEMP_PERIOD> cooler_watch_t;
#endif
// Temperature sensor read value ranges
typedef struct { int16_t raw_min, raw_max; } raw_range_t;
typedef struct { celsius_t mintemp, maxtemp; } celsius_range_t;
typedef struct { int16_t raw_min, raw_max; celsius_t mintemp, maxtemp; } temp_range_t;
#define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
#define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
#if HAS_USER_THERMISTORS
enum CustomThermistorIndex : uint8_t {
#if TEMP_SENSOR_0_IS_CUSTOM
CTI_HOTEND_0,
#endif
#if TEMP_SENSOR_1_IS_CUSTOM
CTI_HOTEND_1,
#endif
#if TEMP_SENSOR_2_IS_CUSTOM
CTI_HOTEND_2,
#endif
#if TEMP_SENSOR_3_IS_CUSTOM
CTI_HOTEND_3,
#endif
#if TEMP_SENSOR_4_IS_CUSTOM
CTI_HOTEND_4,
#endif
#if TEMP_SENSOR_5_IS_CUSTOM
CTI_HOTEND_5,
#endif
#if TEMP_SENSOR_BED_IS_CUSTOM
CTI_BED,
#endif
#if TEMP_SENSOR_PROBE_IS_CUSTOM
CTI_PROBE,
#endif
#if TEMP_SENSOR_CHAMBER_IS_CUSTOM
CTI_CHAMBER,
#endif
#if TEMP_SENSOR_COOLER_IS_CUSTOM
CTI_COOLER,
#endif
#if TEMP_SENSOR_BOARD_IS_CUSTOM
CTI_BOARD,
#endif
#if TEMP_SENSOR_REDUNDANT_IS_CUSTOM
CTI_REDUNDANT,
#endif
USER_THERMISTORS
};
// User-defined thermistor
typedef struct {
bool pre_calc; // true if pre-calculations update needed
float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
sh_alpha,
series_res,
res_25, res_25_recip,
res_25_log,
beta, beta_recip;
} user_thermistor_t;
#endif
class Temperature {
public:
#if HAS_HOTEND
static hotend_info_t temp_hotend[HOTENDS];
static const celsius_t hotend_maxtemp[HOTENDS];
static inline celsius_t hotend_max_target(const uint8_t e) { return hotend_maxtemp[e] - (HOTEND_OVERSHOOT); }
#endif
#if HAS_HEATED_BED
static bed_info_t temp_bed;
#endif
#if HAS_TEMP_PROBE
static probe_info_t temp_probe;
#endif
#if HAS_TEMP_CHAMBER
static chamber_info_t temp_chamber;
#endif
#if HAS_TEMP_COOLER
static cooler_info_t temp_cooler;
#endif
#if HAS_TEMP_BOARD
static board_info_t temp_board;
#endif
#if HAS_TEMP_REDUNDANT
static redundant_info_t temp_redundant;
#endif
#if ENABLED(AUTO_POWER_E_FANS)
static uint8_t autofan_speed[HOTENDS];
#endif
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
static uint8_t chamberfan_speed;
#endif
#if ENABLED(AUTO_POWER_COOLER_FAN)
static uint8_t coolerfan_speed;
#endif
#if ENABLED(FAN_SOFT_PWM)
static uint8_t soft_pwm_amount_fan[FAN_COUNT],
soft_pwm_count_fan[FAN_COUNT];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
static bool allow_cold_extrude;
static celsius_t extrude_min_temp;
static inline bool tooCold(const celsius_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp - (TEMP_WINDOW); }
static inline bool tooColdToExtrude(const uint8_t E_NAME) { return tooCold(wholeDegHotend(HOTEND_INDEX)); }
static inline bool targetTooColdToExtrude(const uint8_t E_NAME) { return tooCold(degTargetHotend(HOTEND_INDEX)); }
#else
static inline bool tooColdToExtrude(const uint8_t) { return false; }
static inline bool targetTooColdToExtrude(const uint8_t) { return false; }
#endif
static inline bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
static inline bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
#if EITHER(SINGLENOZZLE_STANDBY_TEMP, SINGLENOZZLE_STANDBY_FAN)
#if ENABLED(SINGLENOZZLE_STANDBY_TEMP)
static celsius_t singlenozzle_temp[EXTRUDERS];
#endif
#if ENABLED(SINGLENOZZLE_STANDBY_FAN)
static uint8_t singlenozzle_fan_speed[EXTRUDERS];
#endif
static void singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool);
#endif
#if HEATER_IDLE_HANDLER
// Heater idle handling. Marlin creates one per hotend and one for the heated bed.
typedef struct {
millis_t timeout_ms;
bool timed_out;
inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
inline void reset() { timeout_ms = 0; timed_out = false; }
inline void expire() { start(0); }
} heater_idle_t;
// Indices and size for the heater_idle array
enum IdleIndex : int8_t {
_II = -1
#define _IDLE_INDEX_E(N) ,IDLE_INDEX_E##N
REPEAT(HOTENDS, _IDLE_INDEX_E)
#undef _IDLE_INDEX_E
OPTARG(HAS_HEATED_BED, IDLE_INDEX_BED)
, NR_HEATER_IDLE
};
// Convert the given heater_id_t to idle array index
static inline IdleIndex idle_index_for_id(const int8_t heater_id) {
TERN_(HAS_HEATED_BED, if (heater_id == H_BED) return IDLE_INDEX_BED);
return (IdleIndex)_MAX(heater_id, 0);
}
static heater_idle_t heater_idle[NR_HEATER_IDLE];
#endif // HEATER_IDLE_TIMER
#if HAS_ADC_BUTTONS
static uint32_t current_ADCKey_raw;
static uint16_t ADCKey_count;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
static int16_t lpq_len;
#endif
private:
#if ENABLED(WATCH_HOTENDS)
static hotend_watch_t watch_hotend[HOTENDS];
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
static int32_t last_e_position, lpq[LPQ_MAX_LEN];
static lpq_ptr_t lpq_ptr;
#endif
#if HAS_HOTEND
static temp_range_t temp_range[HOTENDS];
#endif
#if HAS_HEATED_BED
#if ENABLED(WATCH_BED)
static bed_watch_t watch_bed;
#endif
IF_DISABLED(PIDTEMPBED, static millis_t next_bed_check_ms);
static int16_t mintemp_raw_BED, maxtemp_raw_BED;
#endif
#if HAS_HEATED_CHAMBER
#if ENABLED(WATCH_CHAMBER)
static chamber_watch_t watch_chamber;
#endif
TERN(PIDTEMPCHAMBER,,static millis_t next_chamber_check_ms);
static int16_t mintemp_raw_CHAMBER, maxtemp_raw_CHAMBER;
#endif
#if HAS_COOLER
#if ENABLED(WATCH_COOLER)
static cooler_watch_t watch_cooler;
#endif
static millis_t next_cooler_check_ms, cooler_fan_flush_ms;
static int16_t mintemp_raw_COOLER, maxtemp_raw_COOLER;
#endif
#if HAS_TEMP_BOARD && ENABLED(THERMAL_PROTECTION_BOARD)
static int16_t mintemp_raw_BOARD, maxtemp_raw_BOARD;
#endif
#if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
static uint8_t consecutive_low_temperature_error[HOTENDS];
#endif
#if MILLISECONDS_PREHEAT_TIME > 0
static millis_t preheat_end_time[HOTENDS];
#endif
#if HAS_AUTO_FAN
static millis_t next_auto_fan_check_ms;
#endif
#if ENABLED(PROBING_HEATERS_OFF)
static bool paused_for_probing;
#endif
public:
/**
* Instance Methods
*/
void init();
/**
* Static (class) methods
*/
#if HAS_USER_THERMISTORS
static user_thermistor_t user_thermistor[USER_THERMISTORS];
static void M305_report(const uint8_t t_index, const bool forReplay=true);
static void reset_user_thermistors();
static celsius_float_t user_thermistor_to_deg_c(const uint8_t t_index, const int16_t raw);
static inline bool set_pull_up_res(int8_t t_index, float value) {
//if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
if (!WITHIN(value, 1, 1000000)) return false;
user_thermistor[t_index].series_res = value;
return true;
}
static inline bool set_res25(int8_t t_index, float value) {
if (!WITHIN(value, 1, 10000000)) return false;
user_thermistor[t_index].res_25 = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
static inline bool set_beta(int8_t t_index, float value) {
if (!WITHIN(value, 1, 1000000)) return false;
user_thermistor[t_index].beta = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
static inline bool set_sh_coeff(int8_t t_index, float value) {
if (!WITHIN(value, -0.01f, 0.01f)) return false;
user_thermistor[t_index].sh_c_coeff = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
#endif
#if HAS_HOTEND
static celsius_float_t analog_to_celsius_hotend(const int16_t raw, const uint8_t e);
#endif
#if HAS_HEATED_BED
static celsius_float_t analog_to_celsius_bed(const int16_t raw);
#endif
#if HAS_TEMP_PROBE
static celsius_float_t analog_to_celsius_probe(const int16_t raw);
#endif
#if HAS_TEMP_CHAMBER
static celsius_float_t analog_to_celsius_chamber(const int16_t raw);
#endif
#if HAS_TEMP_COOLER
static celsius_float_t analog_to_celsius_cooler(const int16_t raw);
#endif
#if HAS_TEMP_BOARD
static celsius_float_t analog_to_celsius_board(const int16_t raw);
#endif
#if HAS_TEMP_REDUNDANT
static celsius_float_t analog_to_celsius_redundant(const int16_t raw);
#endif
#if HAS_FAN
static uint8_t fan_speed[FAN_COUNT];
#define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
static void set_fan_speed(const uint8_t fan, const uint16_t speed);
#if ENABLED(REPORT_FAN_CHANGE)
static void report_fan_speed(const uint8_t fan);
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
static bool fans_paused;
static uint8_t saved_fan_speed[FAN_COUNT];
#endif
#if ENABLED(ADAPTIVE_FAN_SLOWING)
static uint8_t fan_speed_scaler[FAN_COUNT];
#endif
static inline uint8_t scaledFanSpeed(const uint8_t fan, const uint8_t fs) {
UNUSED(fan); // Potentially unused!
return (fs * uint16_t(TERN(ADAPTIVE_FAN_SLOWING, fan_speed_scaler[fan], 128))) >> 7;
}
static inline uint8_t scaledFanSpeed(const uint8_t fan) {
return scaledFanSpeed(fan, fan_speed[fan]);
}
static constexpr inline uint8_t pwmToPercent(const uint8_t speed) { return ui8_to_percent(speed); }
static inline uint8_t fanSpeedPercent(const uint8_t fan) { return ui8_to_percent(fan_speed[fan]); }
static inline uint8_t scaledFanSpeedPercent(const uint8_t fan) { return ui8_to_percent(scaledFanSpeed(fan)); }
#if ENABLED(EXTRA_FAN_SPEED)
typedef struct { uint8_t saved, speed; } extra_fan_t;
static extra_fan_t extra_fan_speed[FAN_COUNT];
static void set_temp_fan_speed(const uint8_t fan, const uint16_t command_or_speed);
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
void set_fans_paused(const bool p);
#endif
#endif // HAS_FAN
static inline void zero_fan_speeds() {
#if HAS_FAN
FANS_LOOP(i) set_fan_speed(i, 0);
#endif
}
/**
* Called from the Temperature ISR
*/
static void isr();
static void readings_ready();
/**
* Call periodically to manage heaters
*/
static void manage_heater() _O2; // Added _O2 to work around a compiler error
/**
* Preheating hotends
*/
#if MILLISECONDS_PREHEAT_TIME > 0
static inline bool is_preheating(const uint8_t E_NAME) {
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
}
static inline void start_preheat_time(const uint8_t E_NAME) {
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
}
static inline void reset_preheat_time(const uint8_t E_NAME) {
preheat_end_time[HOTEND_INDEX] = 0;
}
#else
#define is_preheating(n) (false)
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
static inline celsius_float_t degHotend(const uint8_t E_NAME) {
return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].celsius);
}
static inline celsius_t wholeDegHotend(const uint8_t E_NAME) {
return TERN0(HAS_HOTEND, static_cast<celsius_t>(temp_hotend[HOTEND_INDEX].celsius + 0.5f));
}
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawHotendTemp(const uint8_t E_NAME) {
return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].raw);
}
#endif
static inline celsius_t degTargetHotend(const uint8_t E_NAME) {
return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].target);
}
#if HAS_HOTEND
static void setTargetHotend(const celsius_t celsius, const uint8_t E_NAME) {
const uint8_t ee = HOTEND_INDEX;
#if MILLISECONDS_PREHEAT_TIME > 0
if (celsius == 0)
reset_preheat_time(ee);
else if (temp_hotend[ee].target == 0)
start_preheat_time(ee);
#endif
TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on());
temp_hotend[ee].target = _MIN(celsius, hotend_max_target(ee));
start_watching_hotend(ee);
}
static inline bool isHeatingHotend(const uint8_t E_NAME) {
return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
}
static inline bool isCoolingHotend(const uint8_t E_NAME) {
return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
}
#if HAS_TEMP_HOTEND
static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel=false)
);
#if ENABLED(WAIT_FOR_HOTEND)
static void wait_for_hotend_heating(const uint8_t target_extruder);
#endif
#endif
static inline bool still_heating(const uint8_t e) {
return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(wholeDegHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
}
static inline bool degHotendNear(const uint8_t e, const celsius_t temp) {
return ABS(wholeDegHotend(e) - temp) < (TEMP_HYSTERESIS);
}
// Start watching a Hotend to make sure it's really heating up
static inline void start_watching_hotend(const uint8_t E_NAME) {
UNUSED(HOTEND_INDEX);
#if WATCH_HOTENDS
watch_hotend[HOTEND_INDEX].restart(degHotend(HOTEND_INDEX), degTargetHotend(HOTEND_INDEX));
#endif
}
#endif // HAS_HOTEND
#if HAS_HEATED_BED
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawBedTemp() { return temp_bed.raw; }
#endif
static inline celsius_float_t degBed() { return temp_bed.celsius; }
static inline celsius_t wholeDegBed() { return static_cast<celsius_t>(degBed() + 0.5f); }
static inline celsius_t degTargetBed() { return temp_bed.target; }
static inline bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
static inline bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
// Start watching the Bed to make sure it's really heating up
static inline void start_watching_bed() { TERN_(WATCH_BED, watch_bed.restart(degBed(), degTargetBed())); }
static void setTargetBed(const celsius_t celsius) {
TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on());
temp_bed.target = _MIN(celsius, BED_MAX_TARGET);
start_watching_bed();
}
static bool wait_for_bed(const bool no_wait_for_cooling=true
OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel=false)
);
static void wait_for_bed_heating();
static inline bool degBedNear(const celsius_t temp) {
return ABS(wholeDegBed() - temp) < (TEMP_BED_HYSTERESIS);
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_PROBE
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawProbeTemp() { return temp_probe.raw; }
#endif
static inline celsius_float_t degProbe() { return temp_probe.celsius; }
static inline celsius_t wholeDegProbe() { return static_cast<celsius_t>(degProbe() + 0.5f); }
static inline bool isProbeBelowTemp(const celsius_t target_temp) { return wholeDegProbe() < target_temp; }
static inline bool isProbeAboveTemp(const celsius_t target_temp) { return wholeDegProbe() > target_temp; }
static bool wait_for_probe(const celsius_t target_temp, bool no_wait_for_cooling=true);
#endif
#if HAS_TEMP_CHAMBER
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawChamberTemp() { return temp_chamber.raw; }
#endif
static inline celsius_float_t degChamber() { return temp_chamber.celsius; }
static inline celsius_t wholeDegChamber() { return static_cast<celsius_t>(degChamber() + 0.5f); }
#if HAS_HEATED_CHAMBER
static inline celsius_t degTargetChamber() { return temp_chamber.target; }
static inline bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
static inline bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
static bool wait_for_chamber(const bool no_wait_for_cooling=true);
#endif
#endif
#if HAS_HEATED_CHAMBER
static void setTargetChamber(const celsius_t celsius) {
temp_chamber.target = _MIN(celsius, CHAMBER_MAX_TARGET);
start_watching_chamber();
}
// Start watching the Chamber to make sure it's really heating up
static inline void start_watching_chamber() { TERN_(WATCH_CHAMBER, watch_chamber.restart(degChamber(), degTargetChamber())); }
#endif
#if HAS_TEMP_COOLER
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawCoolerTemp() { return temp_cooler.raw; }
#endif
static inline celsius_float_t degCooler() { return temp_cooler.celsius; }
static inline celsius_t wholeDegCooler() { return static_cast<celsius_t>(temp_cooler.celsius + 0.5f); }
#if HAS_COOLER
static inline celsius_t degTargetCooler() { return temp_cooler.target; }
static inline bool isLaserHeating() { return temp_cooler.target > temp_cooler.celsius; }
static inline bool isLaserCooling() { return temp_cooler.target < temp_cooler.celsius; }
static bool wait_for_cooler(const bool no_wait_for_cooling=true);
#endif
#endif
#if HAS_TEMP_BOARD
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawBoardTemp() { return temp_board.raw; }
#endif
static inline celsius_float_t degBoard() { return temp_board.celsius; }
static inline celsius_t wholeDegBoard() { return static_cast<celsius_t>(temp_board.celsius + 0.5f); }
#endif
#if HAS_TEMP_REDUNDANT
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static inline int16_t rawRedundantTemp() { return temp_redundant.raw; }
static inline int16_t rawRedundanTargetTemp() { return (*temp_redundant.target).raw; }
#endif
static inline celsius_float_t degRedundant() { return temp_redundant.celsius; }
static inline celsius_float_t degRedundantTarget() { return (*temp_redundant.target).celsius; }
static inline celsius_t wholeDegRedundant() { return static_cast<celsius_t>(temp_redundant.celsius + 0.5f); }
static inline celsius_t wholeDegRedundantTarget() { return static_cast<celsius_t>((*temp_redundant.target).celsius + 0.5f); }
#endif
#if HAS_COOLER
static inline void setTargetCooler(const celsius_t celsius) {
temp_cooler.target = constrain(celsius, COOLER_MIN_TARGET, COOLER_MAX_TARGET);
start_watching_cooler();
}
// Start watching the Cooler to make sure it's really cooling down
static inline void start_watching_cooler() { TERN_(WATCH_COOLER, watch_cooler.restart(degCooler(), degTargetCooler())); }
#endif
/**
* The software PWM power for a heater
*/
static int16_t getHeaterPower(const heater_id_t heater_id);
/**
* Switch off all heaters, set all target temperatures to 0
*/
static void disable_all_heaters();
/**
* Cooldown, as from the LCD. Disables all heaters and fans.
*/
static inline void cooldown() {
zero_fan_speeds();
disable_all_heaters();
}
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* Methods to check if heaters are enabled, indicating an active job
*/
static bool auto_job_over_threshold();
static void auto_job_check_timer(const bool can_start, const bool can_stop);
#endif
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
#if ANY(PID_DEBUG, PID_BED_DEBUG, PID_CHAMBER_DEBUG)
static bool pid_debug_flag;
#endif
static void PID_autotune(const celsius_t target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result=false);
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
static bool adaptive_fan_slowing;
#elif ENABLED(ADAPTIVE_FAN_SLOWING)
static constexpr bool adaptive_fan_slowing = true;
#endif
/**
* Update the temp manager when PID values change
*/
#if ENABLED(PIDTEMP)
static inline void updatePID() {
TERN_(PID_EXTRUSION_SCALING, last_e_position = 0);
}
#endif
#endif
#if ENABLED(PROBING_HEATERS_OFF)
static void pause_heaters(const bool p);
#endif
#if HEATER_IDLE_HANDLER
static inline void reset_hotend_idle_timer(const uint8_t E_NAME) {
heater_idle[HOTEND_INDEX].reset();
start_watching_hotend(HOTEND_INDEX);
}
#if HAS_HEATED_BED
static inline void reset_bed_idle_timer() {
heater_idle[IDLE_INDEX_BED].reset();
start_watching_bed();
}
#endif
#endif // HEATER_IDLE_HANDLER
#if HAS_TEMP_SENSOR
static void print_heater_states(const uint8_t target_extruder
OPTARG(HAS_TEMP_REDUNDANT, const bool include_r=false)
);
#if ENABLED(AUTO_REPORT_TEMPERATURES)
struct AutoReportTemp { static void report(); };
static AutoReporter<AutoReportTemp> auto_reporter;
#endif
#endif
#if HAS_HOTEND && HAS_STATUS_MESSAGE
static void set_heating_message(const uint8_t e);
#else
static inline void set_heating_message(const uint8_t) {}
#endif
#if HAS_LCD_MENU && HAS_TEMPERATURE
static void lcd_preheat(const uint8_t e, const int8_t indh, const int8_t indb);
#endif
private:
// Reading raw temperatures and converting to Celsius when ready
static volatile bool raw_temps_ready;
static void update_raw_temperatures();
static void updateTemperaturesFromRawValues();
static inline bool updateTemperaturesIfReady() {
if (!raw_temps_ready) return false;
updateTemperaturesFromRawValues();
raw_temps_ready = false;
return true;
}
// MAX Thermocouples
#if HAS_MAX_TC
#define MAX_TC_COUNT COUNT_ENABLED(TEMP_SENSOR_0_IS_MAX_TC, TEMP_SENSOR_1_IS_MAX_TC, TEMP_SENSOR_REDUNDANT_IS_MAX_TC)
#if MAX_TC_COUNT > 1
#define HAS_MULTI_MAX_TC 1
#define READ_MAX_TC(N) read_max_tc(N)
#else
#define READ_MAX_TC(N) read_max_tc()
#endif
static int16_t read_max_tc(TERN_(HAS_MULTI_MAX_TC, const uint8_t hindex=0));
#endif
static void checkExtruderAutoFans();
#if HAS_HOTEND
static float get_pid_output_hotend(const uint8_t e);
#endif
#if ENABLED(PIDTEMPBED)
static float get_pid_output_bed();
#endif
#if ENABLED(PIDTEMPCHAMBER)
static float get_pid_output_chamber();
#endif
static void _temp_error(const heater_id_t e, FSTR_P const serial_msg, FSTR_P const lcd_msg);
static void min_temp_error(const heater_id_t e);
static void max_temp_error(const heater_id_t e);
#define HAS_THERMAL_PROTECTION ANY(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER, HAS_THERMALLY_PROTECTED_BED, THERMAL_PROTECTION_COOLER)
#if HAS_THERMAL_PROTECTION
// Indices and size for the tr_state_machine array. One for each protected heater.
enum RunawayIndex : int8_t {
_RI = -1
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#define _RUNAWAY_IND_E(N) ,RUNAWAY_IND_E##N
REPEAT(HOTENDS, _RUNAWAY_IND_E)
#undef _RUNAWAY_IND_E
#endif
OPTARG(HAS_THERMALLY_PROTECTED_BED, RUNAWAY_IND_BED)
OPTARG(THERMAL_PROTECTION_CHAMBER, RUNAWAY_IND_CHAMBER)
OPTARG(THERMAL_PROTECTION_COOLER, RUNAWAY_IND_COOLER)
, NR_HEATER_RUNAWAY
};
// Convert the given heater_id_t to runaway state array index
static inline RunawayIndex runaway_index_for_id(const int8_t heater_id) {
TERN_(HAS_THERMALLY_PROTECTED_CHAMBER, if (heater_id == H_CHAMBER) return RUNAWAY_IND_CHAMBER);
TERN_(HAS_THERMALLY_PROTECTED_CHAMBER, if (heater_id == H_COOLER) return RUNAWAY_IND_COOLER);
TERN_(HAS_THERMALLY_PROTECTED_BED, if (heater_id == H_BED) return RUNAWAY_IND_BED);
return (RunawayIndex)_MAX(heater_id, 0);
}
enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
typedef struct {
millis_t timer = 0;
TRState state = TRInactive;
float running_temp;
void run(const_celsius_float_t current, const_celsius_float_t target, const heater_id_t heater_id, const uint16_t period_seconds, const celsius_t hysteresis_degc);
} tr_state_machine_t;
static tr_state_machine_t tr_state_machine[NR_HEATER_RUNAWAY];
#endif // HAS_THERMAL_PROTECTION
};
extern Temperature thermalManager;