Marlin_Firmware/Marlin/src/feature/bedlevel/mbl/mesh_bed_leveling.cpp
2019-03-13 00:45:52 -05:00

135 lines
4.8 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#include "../../../module/motion.h"
#include "../../../feature/bedlevel/bedlevel.h"
mesh_bed_leveling mbl;
float mesh_bed_leveling::z_offset,
mesh_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
mesh_bed_leveling::index_to_xpos[GRID_MAX_POINTS_X],
mesh_bed_leveling::index_to_ypos[GRID_MAX_POINTS_Y];
mesh_bed_leveling::mesh_bed_leveling() {
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; ++i)
index_to_xpos[i] = MESH_MIN_X + i * (MESH_X_DIST);
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; ++i)
index_to_ypos[i] = MESH_MIN_Y + i * (MESH_Y_DIST);
reset();
}
void mesh_bed_leveling::reset() {
z_offset = 0;
ZERO(z_values);
#if ENABLED(EXTENSIBLE_UI)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
ExtUI::onMeshUpdate(x, y, 0);
#endif
}
#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
/**
* Prepare a mesh-leveled linear move in a Cartesian setup,
* splitting the move where it crosses mesh borders.
*/
void mesh_bed_leveling::line_to_destination(const float fr_mm_s, uint8_t x_splits, uint8_t y_splits) {
// Get current and destination cells for this line
int cx1 = cell_index_x(current_position[X_AXIS]),
cy1 = cell_index_y(current_position[Y_AXIS]),
cx2 = cell_index_x(destination[X_AXIS]),
cy2 = cell_index_y(destination[Y_AXIS]);
NOMORE(cx1, GRID_MAX_POINTS_X - 2);
NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
NOMORE(cx2, GRID_MAX_POINTS_X - 2);
NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
// Start and end in the same cell? No split needed.
if (cx1 == cx2 && cy1 == cy2) {
line_to_destination(fr_mm_s);
set_current_from_destination();
return;
}
#define MBL_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)
float normalized_dist, end[XYZE];
const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);
// Crosses on the X and not already split on this X?
// The x_splits flags are insurance against rounding errors.
if (cx2 != cx1 && TEST(x_splits, gcx)) {
// Split on the X grid line
CBI(x_splits, gcx);
COPY(end, destination);
destination[X_AXIS] = index_to_xpos[gcx];
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
}
// Crosses on the Y and not already split on this Y?
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
// Split on the Y grid line
CBI(y_splits, gcy);
COPY(end, destination);
destination[Y_AXIS] = index_to_ypos[gcy];
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X);
}
else {
// Must already have been split on these border(s)
// This should be a rare case.
line_to_destination(fr_mm_s);
set_current_from_destination();
return;
}
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
destination[E_AXIS] = MBL_SEGMENT_END(E);
// Do the split and look for more borders
line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
COPY(destination, end);
line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // IS_CARTESIAN && !SEGMENT_LEVELED_MOVES
void mesh_bed_leveling::report_mesh() {
SERIAL_ECHOPAIR_F(STRINGIFY(GRID_MAX_POINTS_X) "x" STRINGIFY(GRID_MAX_POINTS_Y) " mesh. Z offset: ", z_offset, 5);
SERIAL_ECHOLNPGM("\nMeasured points:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
);
}
#endif // MESH_BED_LEVELING