733 lines
21 KiB
C++
733 lines
21 KiB
C++
/**
|
|
* ConfigurationStore.cpp
|
|
*
|
|
* Configuration and EEPROM storage
|
|
*
|
|
* V16 EEPROM Layout:
|
|
*
|
|
* ver
|
|
* axis_steps_per_unit (x4)
|
|
* max_feedrate (x4)
|
|
* max_acceleration_units_per_sq_second (x4)
|
|
* acceleration
|
|
* retract_acceleration
|
|
* travel_aceeleration
|
|
* minimumfeedrate
|
|
* mintravelfeedrate
|
|
* minsegmenttime
|
|
* max_xy_jerk
|
|
* max_z_jerk
|
|
* max_e_jerk
|
|
* add_homing (x3)
|
|
*
|
|
* Mesh bed leveling:
|
|
* active
|
|
* mesh_num_x
|
|
* mesh_num_y
|
|
* z_values[][]
|
|
*
|
|
* DELTA:
|
|
* endstop_adj (x3)
|
|
* delta_radius
|
|
* delta_diagonal_rod
|
|
* delta_segments_per_second
|
|
*
|
|
* ULTIPANEL:
|
|
* plaPreheatHotendTemp
|
|
* plaPreheatHPBTemp
|
|
* plaPreheatFanSpeed
|
|
* absPreheatHotendTemp
|
|
* absPreheatHPBTemp
|
|
* absPreheatFanSpeed
|
|
* zprobe_zoffset
|
|
*
|
|
* PIDTEMP:
|
|
* Kp[0], Ki[0], Kd[0], Kc[0]
|
|
* Kp[1], Ki[1], Kd[1], Kc[1]
|
|
* Kp[2], Ki[2], Kd[2], Kc[2]
|
|
* Kp[3], Ki[3], Kd[3], Kc[3]
|
|
*
|
|
* DOGLCD:
|
|
* lcd_contrast
|
|
*
|
|
* SCARA:
|
|
* axis_scaling (x3)
|
|
*
|
|
* FWRETRACT:
|
|
* autoretract_enabled
|
|
* retract_length
|
|
* retract_length_swap
|
|
* retract_feedrate
|
|
* retract_zlift
|
|
* retract_recover_length
|
|
* retract_recover_length_swap
|
|
* retract_recover_feedrate
|
|
*
|
|
* volumetric_enabled
|
|
*
|
|
* filament_size (x4)
|
|
*
|
|
*/
|
|
#include "Marlin.h"
|
|
#include "language.h"
|
|
#include "planner.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
#include "ConfigurationStore.h"
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
|
|
uint8_t c;
|
|
while(size--) {
|
|
eeprom_write_byte((unsigned char*)pos, *value);
|
|
c = eeprom_read_byte((unsigned char*)pos);
|
|
if (c != *value) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
|
|
}
|
|
pos++;
|
|
value++;
|
|
};
|
|
}
|
|
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
|
|
do {
|
|
*value = eeprom_read_byte((unsigned char*)pos);
|
|
pos++;
|
|
value++;
|
|
} while (--size);
|
|
}
|
|
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
|
|
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
|
|
|
|
//======================================================================================
|
|
|
|
#define DUMMY_PID_VALUE 3000.0f
|
|
|
|
#define EEPROM_OFFSET 100
|
|
|
|
|
|
// IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
|
// in the functions below, also increment the version number. This makes sure that
|
|
// the default values are used whenever there is a change to the data, to prevent
|
|
// wrong data being written to the variables.
|
|
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
|
|
|
|
#define EEPROM_VERSION "V17"
|
|
|
|
#ifdef EEPROM_SETTINGS
|
|
|
|
void Config_StoreSettings() {
|
|
float dummy = 0.0f;
|
|
char ver[4] = "000";
|
|
int i = EEPROM_OFFSET;
|
|
EEPROM_WRITE_VAR(i, ver); // invalidate data first
|
|
EEPROM_WRITE_VAR(i, axis_steps_per_unit);
|
|
EEPROM_WRITE_VAR(i, max_feedrate);
|
|
EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
|
|
EEPROM_WRITE_VAR(i, acceleration);
|
|
EEPROM_WRITE_VAR(i, retract_acceleration);
|
|
EEPROM_WRITE_VAR(i, travel_acceleration);
|
|
EEPROM_WRITE_VAR(i, minimumfeedrate);
|
|
EEPROM_WRITE_VAR(i, mintravelfeedrate);
|
|
EEPROM_WRITE_VAR(i, minsegmenttime);
|
|
EEPROM_WRITE_VAR(i, max_xy_jerk);
|
|
EEPROM_WRITE_VAR(i, max_z_jerk);
|
|
EEPROM_WRITE_VAR(i, max_e_jerk);
|
|
EEPROM_WRITE_VAR(i, add_homing);
|
|
|
|
uint8_t mesh_num_x = 3;
|
|
uint8_t mesh_num_y = 3;
|
|
#if defined(MESH_BED_LEVELING)
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
|
|
mesh_num_x = MESH_NUM_X_POINTS;
|
|
mesh_num_y = MESH_NUM_Y_POINTS;
|
|
EEPROM_WRITE_VAR(i, mbl.active);
|
|
EEPROM_WRITE_VAR(i, mesh_num_x);
|
|
EEPROM_WRITE_VAR(i, mesh_num_y);
|
|
EEPROM_WRITE_VAR(i, mbl.z_values);
|
|
#else
|
|
uint8_t dummy_uint8 = 0;
|
|
EEPROM_WRITE_VAR(i, dummy_uint8);
|
|
EEPROM_WRITE_VAR(i, mesh_num_x);
|
|
EEPROM_WRITE_VAR(i, mesh_num_y);
|
|
dummy = 0.0f;
|
|
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
}
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#ifdef DELTA
|
|
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
|
|
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
|
|
#else
|
|
dummy = 0.0f;
|
|
for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
|
|
#ifndef ULTIPANEL
|
|
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
|
|
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
|
|
#endif // !ULTIPANEL
|
|
|
|
EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
|
|
EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
|
|
EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
|
|
EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
|
|
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
|
|
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
|
|
EEPROM_WRITE_VAR(i, zprobe_zoffset);
|
|
|
|
for (int e = 0; e < 4; e++) {
|
|
|
|
#ifdef PIDTEMP
|
|
if (e < EXTRUDERS) {
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
|
|
#else
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
}
|
|
else {
|
|
#else // !PIDTEMP
|
|
{
|
|
#endif // !PIDTEMP
|
|
|
|
dummy = DUMMY_PID_VALUE;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
dummy = 0.0f;
|
|
for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
}
|
|
|
|
} // Extruders Loop
|
|
|
|
#ifndef DOGLCD
|
|
int lcd_contrast = 32;
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, lcd_contrast);
|
|
|
|
#ifdef SCARA
|
|
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
|
|
#else
|
|
dummy = 1.0f;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
|
|
#ifdef FWRETRACT
|
|
EEPROM_WRITE_VAR(i, autoretract_enabled);
|
|
EEPROM_WRITE_VAR(i, retract_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_WRITE_VAR(i, retract_length_swap);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, retract_feedrate);
|
|
EEPROM_WRITE_VAR(i, retract_zlift);
|
|
EEPROM_WRITE_VAR(i, retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_WRITE_VAR(i, retract_recover_length_swap);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, retract_recover_feedrate);
|
|
#endif // FWRETRACT
|
|
|
|
EEPROM_WRITE_VAR(i, volumetric_enabled);
|
|
|
|
// Save filament sizes
|
|
for (int q = 0; q < 4; q++) {
|
|
if (q < EXTRUDERS) dummy = filament_size[q];
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
}
|
|
|
|
int storageSize = i;
|
|
|
|
char ver2[4] = EEPROM_VERSION;
|
|
int j = EEPROM_OFFSET;
|
|
EEPROM_WRITE_VAR(j, ver2); // validate data
|
|
|
|
// Report storage size
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
}
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
int i = EEPROM_OFFSET;
|
|
char stored_ver[4];
|
|
char ver[4] = EEPROM_VERSION;
|
|
EEPROM_READ_VAR(i, stored_ver); //read stored version
|
|
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
|
|
|
|
if (strncmp(ver, stored_ver, 3) != 0) {
|
|
Config_ResetDefault();
|
|
}
|
|
else {
|
|
float dummy = 0;
|
|
|
|
// version number match
|
|
EEPROM_READ_VAR(i, axis_steps_per_unit);
|
|
EEPROM_READ_VAR(i, max_feedrate);
|
|
EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
|
|
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
reset_acceleration_rates();
|
|
|
|
EEPROM_READ_VAR(i, acceleration);
|
|
EEPROM_READ_VAR(i, retract_acceleration);
|
|
EEPROM_READ_VAR(i, travel_acceleration);
|
|
EEPROM_READ_VAR(i, minimumfeedrate);
|
|
EEPROM_READ_VAR(i, mintravelfeedrate);
|
|
EEPROM_READ_VAR(i, minsegmenttime);
|
|
EEPROM_READ_VAR(i, max_xy_jerk);
|
|
EEPROM_READ_VAR(i, max_z_jerk);
|
|
EEPROM_READ_VAR(i, max_e_jerk);
|
|
EEPROM_READ_VAR(i, add_homing);
|
|
|
|
uint8_t mesh_num_x = 0;
|
|
uint8_t mesh_num_y = 0;
|
|
#if defined(MESH_BED_LEVELING)
|
|
EEPROM_READ_VAR(i, mbl.active);
|
|
EEPROM_READ_VAR(i, mesh_num_x);
|
|
EEPROM_READ_VAR(i, mesh_num_y);
|
|
if (mesh_num_x != MESH_NUM_X_POINTS ||
|
|
mesh_num_y != MESH_NUM_Y_POINTS) {
|
|
mbl.reset();
|
|
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
|
|
EEPROM_READ_VAR(i, dummy);
|
|
}
|
|
} else {
|
|
EEPROM_READ_VAR(i, mbl.z_values);
|
|
}
|
|
#else
|
|
uint8_t dummy_uint8 = 0;
|
|
EEPROM_READ_VAR(i, dummy_uint8);
|
|
EEPROM_READ_VAR(i, mesh_num_x);
|
|
EEPROM_READ_VAR(i, mesh_num_y);
|
|
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
|
|
EEPROM_READ_VAR(i, dummy);
|
|
}
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#ifdef DELTA
|
|
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
|
|
EEPROM_READ_VAR(i, delta_radius); // 1 float
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
|
|
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
|
|
#else
|
|
for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
|
|
#ifndef ULTIPANEL
|
|
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
|
|
absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
|
|
#endif
|
|
|
|
EEPROM_READ_VAR(i, plaPreheatHotendTemp);
|
|
EEPROM_READ_VAR(i, plaPreheatHPBTemp);
|
|
EEPROM_READ_VAR(i, plaPreheatFanSpeed);
|
|
EEPROM_READ_VAR(i, absPreheatHotendTemp);
|
|
EEPROM_READ_VAR(i, absPreheatHPBTemp);
|
|
EEPROM_READ_VAR(i, absPreheatFanSpeed);
|
|
EEPROM_READ_VAR(i, zprobe_zoffset);
|
|
|
|
#ifdef PIDTEMP
|
|
for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
|
|
EEPROM_READ_VAR(i, dummy);
|
|
if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
PID_PARAM(Kp, e) = dummy;
|
|
EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
}
|
|
else {
|
|
for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
|
|
}
|
|
}
|
|
#else // !PIDTEMP
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
for (int q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
|
|
#endif // !PIDTEMP
|
|
|
|
#ifndef DOGLCD
|
|
int lcd_contrast;
|
|
#endif
|
|
EEPROM_READ_VAR(i, lcd_contrast);
|
|
|
|
#ifdef SCARA
|
|
EEPROM_READ_VAR(i, axis_scaling); // 3 floats
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
|
|
#ifdef FWRETRACT
|
|
EEPROM_READ_VAR(i, autoretract_enabled);
|
|
EEPROM_READ_VAR(i, retract_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_READ_VAR(i, retract_length_swap);
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_READ_VAR(i, retract_feedrate);
|
|
EEPROM_READ_VAR(i, retract_zlift);
|
|
EEPROM_READ_VAR(i, retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_READ_VAR(i, retract_recover_length_swap);
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_READ_VAR(i, retract_recover_feedrate);
|
|
#endif // FWRETRACT
|
|
|
|
EEPROM_READ_VAR(i, volumetric_enabled);
|
|
|
|
for (int q = 0; q < 4; q++) {
|
|
EEPROM_READ_VAR(i, dummy);
|
|
if (q < EXTRUDERS) filament_size[q] = dummy;
|
|
}
|
|
|
|
calculate_volumetric_multipliers();
|
|
// Call updatePID (similar to when we have processed M301)
|
|
updatePID();
|
|
|
|
// Report settings retrieved and length
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(ver);
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
}
|
|
|
|
#ifdef EEPROM_CHITCHAT
|
|
Config_PrintSettings();
|
|
#endif
|
|
}
|
|
|
|
#endif // EEPROM_SETTINGS
|
|
|
|
void Config_ResetDefault() {
|
|
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
|
|
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
|
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
axis_steps_per_unit[i] = tmp1[i];
|
|
max_feedrate[i] = tmp2[i];
|
|
max_acceleration_units_per_sq_second[i] = tmp3[i];
|
|
#ifdef SCARA
|
|
if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
|
|
axis_scaling[i] = 1;
|
|
#endif
|
|
}
|
|
|
|
// steps per sq second need to be updated to agree with the units per sq second
|
|
reset_acceleration_rates();
|
|
|
|
acceleration = DEFAULT_ACCELERATION;
|
|
retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
|
travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
|
minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
|
|
minsegmenttime = DEFAULT_MINSEGMENTTIME;
|
|
mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
|
|
max_xy_jerk = DEFAULT_XYJERK;
|
|
max_z_jerk = DEFAULT_ZJERK;
|
|
max_e_jerk = DEFAULT_EJERK;
|
|
add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
mbl.active = 0;
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#ifdef DELTA
|
|
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
|
|
delta_radius = DELTA_RADIUS;
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
|
|
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
|
|
plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
|
|
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
|
|
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
|
|
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
|
|
#endif
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
#ifdef DOGLCD
|
|
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
|
#endif
|
|
|
|
#ifdef PIDTEMP
|
|
#ifdef PID_PARAMS_PER_EXTRUDER
|
|
for (int e = 0; e < EXTRUDERS; e++)
|
|
#else
|
|
int e = 0; // only need to write once
|
|
#endif
|
|
{
|
|
PID_PARAM(Kp, e) = DEFAULT_Kp;
|
|
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
|
|
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
PID_PARAM(Kc, e) = DEFAULT_Kc;
|
|
#endif
|
|
}
|
|
// call updatePID (similar to when we have processed M301)
|
|
updatePID();
|
|
#endif // PIDTEMP
|
|
|
|
#ifdef FWRETRACT
|
|
autoretract_enabled = false;
|
|
retract_length = RETRACT_LENGTH;
|
|
#if EXTRUDERS > 1
|
|
retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
#endif
|
|
retract_feedrate = RETRACT_FEEDRATE;
|
|
retract_zlift = RETRACT_ZLIFT;
|
|
retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
#if EXTRUDERS > 1
|
|
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
#endif
|
|
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
#endif
|
|
|
|
volumetric_enabled = false;
|
|
filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
#if EXTRUDERS > 1
|
|
filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
#if EXTRUDERS > 2
|
|
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
#if EXTRUDERS > 3
|
|
filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
calculate_volumetric_multipliers();
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
|
|
}
|
|
|
|
#ifndef DISABLE_M503
|
|
|
|
void Config_PrintSettings(bool forReplay) {
|
|
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
#ifdef SCARA
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Scaling factors:");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO_START;
|
|
#endif // SCARA
|
|
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
|
|
SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
|
|
SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
|
|
SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M204 P", acceleration );
|
|
SERIAL_ECHOPAIR(" R", retract_acceleration);
|
|
SERIAL_ECHOPAIR(" T", travel_acceleration);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M205 S", minimumfeedrate );
|
|
SERIAL_ECHOPAIR(" T", mintravelfeedrate );
|
|
SERIAL_ECHOPAIR(" B", minsegmenttime );
|
|
SERIAL_ECHOPAIR(" X", max_xy_jerk );
|
|
SERIAL_ECHOPAIR(" Z", max_z_jerk);
|
|
SERIAL_ECHOPAIR(" E", max_e_jerk);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Home offset (mm):");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M206 X", add_homing[X_AXIS] );
|
|
SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] );
|
|
SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] );
|
|
SERIAL_EOL;
|
|
|
|
#ifdef DELTA
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS] );
|
|
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
|
|
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod );
|
|
SERIAL_ECHOPAIR(" R", delta_radius );
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second );
|
|
SERIAL_EOL;
|
|
#endif // DELTA
|
|
|
|
#ifdef PIDTEMP
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
SERIAL_EOL;
|
|
#endif // PIDTEMP
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M207 S", retract_length);
|
|
SERIAL_ECHOPAIR(" F", retract_feedrate*60);
|
|
SERIAL_ECHOPAIR(" Z", retract_zlift);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
|
|
SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
|
|
SERIAL_EOL;
|
|
|
|
#if EXTRUDERS > 1
|
|
if (!forReplay) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Multi-extruder settings:");
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif // EXTRUDERS > 1
|
|
|
|
#endif // FWRETRACT
|
|
|
|
SERIAL_ECHO_START;
|
|
if (volumetric_enabled) {
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Filament settings:");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
SERIAL_EOL;
|
|
|
|
#if EXTRUDERS > 1
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 2
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 3
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
SERIAL_EOL;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
} else {
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Filament settings: Disabled");
|
|
}
|
|
}
|
|
|
|
#ifdef CUSTOM_M_CODES
|
|
SERIAL_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
SERIAL_ECHO_START;
|
|
}
|
|
SERIAL_ECHO(" M");
|
|
SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
|
|
SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
#endif // !DISABLE_M503
|