Marlin_Firmware/Marlin/src/module/stepper.h
2022-05-07 15:12:45 -05:00

717 lines
26 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Derived from Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../inc/MarlinConfig.h"
#include "planner.h"
#include "stepper/indirection.h"
#ifdef __AVR__
#include "speed_lookuptable.h"
#endif
// Disable multiple steps per ISR
//#define DISABLE_MULTI_STEPPING
//
// Estimate the amount of time the Stepper ISR will take to execute
//
/**
* The method of calculating these cycle-constants is unclear.
* Most of them are no longer used directly for pulse timing, and exist
* only to estimate a maximum step rate based on the user's configuration.
* As 32-bit processors continue to diverge, maintaining cycle counts
* will become increasingly difficult and error-prone.
*/
#ifdef CPU_32_BIT
/**
* Duration of START_TIMED_PULSE
*
* ...as measured on an LPC1768 with a scope and converted to cycles.
* Not applicable to other 32-bit processors, but as long as others
* take longer, pulses will be longer. For example the SKR Pro
* (stm32f407zgt6) requires ~60 cyles.
*/
#define TIMER_READ_ADD_AND_STORE_CYCLES 34UL
// The base ISR takes 792 cycles
#define ISR_BASE_CYCLES 792UL
// Linear advance base time is 64 cycles
#if ENABLED(LIN_ADVANCE)
#define ISR_LA_BASE_CYCLES 64UL
#else
#define ISR_LA_BASE_CYCLES 0UL
#endif
// S curve interpolation adds 40 cycles
#if ENABLED(S_CURVE_ACCELERATION)
#define ISR_S_CURVE_CYCLES 40UL
#else
#define ISR_S_CURVE_CYCLES 0UL
#endif
// Stepper Loop base cycles
#define ISR_LOOP_BASE_CYCLES 4UL
// To start the step pulse, in the worst case takes
#define ISR_START_STEPPER_CYCLES 13UL
// And each stepper (start + stop pulse) takes in worst case
#define ISR_STEPPER_CYCLES 16UL
#else
// Cycles to perform actions in START_TIMED_PULSE
#define TIMER_READ_ADD_AND_STORE_CYCLES 13UL
// The base ISR takes 752 cycles
#define ISR_BASE_CYCLES 752UL
// Linear advance base time is 32 cycles
#if ENABLED(LIN_ADVANCE)
#define ISR_LA_BASE_CYCLES 32UL
#else
#define ISR_LA_BASE_CYCLES 0UL
#endif
// S curve interpolation adds 160 cycles
#if ENABLED(S_CURVE_ACCELERATION)
#define ISR_S_CURVE_CYCLES 160UL
#else
#define ISR_S_CURVE_CYCLES 0UL
#endif
// Stepper Loop base cycles
#define ISR_LOOP_BASE_CYCLES 32UL
// To start the step pulse, in the worst case takes
#define ISR_START_STEPPER_CYCLES 57UL
// And each stepper (start + stop pulse) takes in worst case
#define ISR_STEPPER_CYCLES 88UL
#endif
// If linear advance is disabled, the loop also handles them
#if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
#define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
#else
#define ISR_MIXING_STEPPER_CYCLES 0UL
#endif
// Add time for each stepper
#if HAS_X_STEP
#define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
#endif
#if HAS_Y_STEP
#define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
#endif
#if HAS_Z_STEP
#define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
#endif
#if HAS_I_STEP
#define ISR_I_STEPPER_CYCLES ISR_STEPPER_CYCLES
#endif
#if HAS_J_STEP
#define ISR_J_STEPPER_CYCLES ISR_STEPPER_CYCLES
#endif
#if HAS_K_STEP
#define ISR_K_STEPPER_CYCLES ISR_STEPPER_CYCLES
#endif
#if HAS_EXTRUDERS
#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES // E is always interpolated, even for mixing extruders
#endif
// And the total minimum loop time, not including the base
#define MIN_ISR_LOOP_CYCLES (ISR_MIXING_STEPPER_CYCLES LOGICAL_AXIS_GANG(+ ISR_E_STEPPER_CYCLES, + ISR_X_STEPPER_CYCLES, + ISR_Y_STEPPER_CYCLES, + ISR_Z_STEPPER_CYCLES, + ISR_I_STEPPER_CYCLES, + ISR_J_STEPPER_CYCLES, + ISR_K_STEPPER_CYCLES))
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
#define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
#if MINIMUM_STEPPER_PULSE
#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
#elif HAS_DRIVER(LV8729)
#define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
#else
#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
#endif
// Calculate the minimum pulse times (high and low)
#if MINIMUM_STEPPER_PULSE && MAXIMUM_STEPPER_RATE
constexpr uint32_t _MIN_STEP_PERIOD_NS = 1000000000UL / MAXIMUM_STEPPER_RATE;
constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MAX((_MIN_STEP_PERIOD_NS - _MIN(_MIN_STEP_PERIOD_NS, _MIN_PULSE_HIGH_NS)), _MIN_PULSE_HIGH_NS);
#elif MINIMUM_STEPPER_PULSE
// Assume 50% duty cycle
constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
#elif MAXIMUM_STEPPER_RATE
// Assume 50% duty cycle
constexpr uint32_t _MIN_PULSE_HIGH_NS = 500000000UL / MAXIMUM_STEPPER_RATE;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
#else
#error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
#endif
// But the user could be enforcing a minimum time, so the loop time is
#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
// If linear advance is enabled, then it is handled separately
#if ENABLED(LIN_ADVANCE)
// Estimate the minimum LA loop time
#if ENABLED(MIXING_EXTRUDER) // ToDo: ???
// HELP ME: What is what?
// Directions are set up for MIXING_STEPPERS - like before.
// Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
// These loops are a bit faster than advancing a bresenham counter.
// Always only one e-stepper is stepped.
#define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
#else
#define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
#endif
// And the real loop time
#define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
#else
#define ISR_LA_LOOP_CYCLES 0UL
#endif
// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
#define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
#define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
#define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
#define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
#define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
#define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
#define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
#define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
// The minimum step ISR rate used by ADAPTIVE_STEP_SMOOTHING to target 50% CPU usage
// This does not account for the possibility of multi-stepping.
// Perhaps DISABLE_MULTI_STEPPING should be required with ADAPTIVE_STEP_SMOOTHING.
#define MIN_STEP_ISR_FREQUENCY (MAX_STEP_ISR_FREQUENCY_1X / 2)
#define ENABLE_COUNT (LINEAR_AXES + E_STEPPERS)
typedef IF<(ENABLE_COUNT > 8), uint16_t, uint8_t>::type ena_mask_t;
// Axis flags type, for enabled state or other simple state
typedef struct {
union {
ena_mask_t bits;
struct {
bool LINEAR_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1);
#if HAS_EXTRUDERS
bool LIST_N(EXTRUDERS, E0:1, E1:1, E2:1, E3:1, E4:1, E5:1, E6:1, E7:1);
#endif
};
};
constexpr ena_mask_t linear_bits() { return _BV(LINEAR_AXES) - 1; }
constexpr ena_mask_t e_bits() { return (_BV(EXTRUDERS) - 1) << LINEAR_AXES; }
} axis_flags_t;
// All the stepper enable pins
constexpr pin_t ena_pins[] = {
LINEAR_AXIS_LIST(X_ENABLE_PIN, Y_ENABLE_PIN, Z_ENABLE_PIN, I_ENABLE_PIN, J_ENABLE_PIN, K_ENABLE_PIN),
LIST_N(E_STEPPERS, E0_ENABLE_PIN, E1_ENABLE_PIN, E2_ENABLE_PIN, E3_ENABLE_PIN, E4_ENABLE_PIN, E5_ENABLE_PIN, E6_ENABLE_PIN, E7_ENABLE_PIN)
};
// Index of the axis or extruder element in a combined array
constexpr uint8_t index_of_axis(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
return uint8_t(axis) + (E_TERN0(axis < LINEAR_AXES ? 0 : eindex));
}
//#define __IAX_N(N,V...) _IAX_##N(V)
//#define _IAX_N(N,V...) __IAX_N(N,V)
//#define _IAX_1(A) index_of_axis(A)
//#define _IAX_2(A,B) index_of_axis(A E_OPTARG(B))
//#define INDEX_OF_AXIS(V...) _IAX_N(TWO_ARGS(V),V)
#define INDEX_OF_AXIS(A,V...) index_of_axis(A E_OPTARG(V+0))
// Bit mask for a matching enable pin, or 0
constexpr ena_mask_t ena_same(const uint8_t a, const uint8_t b) {
return ena_pins[a] == ena_pins[b] ? _BV(b) : 0;
}
// Recursively get the enable overlaps mask for a given linear axis or extruder
constexpr ena_mask_t ena_overlap(const uint8_t a=0, const uint8_t b=0) {
return b >= ENABLE_COUNT ? 0 : (a == b ? 0 : ena_same(a, b)) | ena_overlap(a, b + 1);
}
// Recursively get whether there's any overlap at all
constexpr bool any_enable_overlap(const uint8_t a=0) {
return a >= ENABLE_COUNT ? false : ena_overlap(a) || any_enable_overlap(a + 1);
}
// Array of axes that overlap with each
// TODO: Consider cases where >=2 steppers are used by a linear axis or extruder
// (e.g., CoreXY, Dual XYZ, or E with multiple steppers, etc.).
constexpr ena_mask_t enable_overlap[] = {
#define _OVERLAP(N) ena_overlap(INDEX_OF_AXIS(AxisEnum(N))),
REPEAT(LINEAR_AXES, _OVERLAP)
#if HAS_EXTRUDERS
#define _E_OVERLAP(N) ena_overlap(INDEX_OF_AXIS(E_AXIS, N)),
REPEAT(E_STEPPERS, _E_OVERLAP)
#endif
};
//static_assert(!any_enable_overlap(), "There is some overlap.");
//
// Stepper class definition
//
class Stepper {
public:
#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool separate_multi_axis;
#endif
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
#ifndef MOTOR_CURRENT_PWM_FREQUENCY
#define MOTOR_CURRENT_PWM_FREQUENCY 31400
#endif
#define MOTOR_CURRENT_COUNT LINEAR_AXES
#elif HAS_MOTOR_CURRENT_SPI
static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;
#define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
#endif
static bool initialized;
static uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
#endif
// Last-moved extruder, as set when the last movement was fetched from planner
#if HAS_MULTI_EXTRUDER
static uint8_t last_moved_extruder;
#else
static constexpr uint8_t last_moved_extruder = 0;
#endif
#if HAS_FREEZE_PIN
static bool frozen; // Set this flag to instantly freeze motion
#endif
private:
static block_t* current_block; // A pointer to the block currently being traced
static axis_bits_t last_direction_bits, // The next stepping-bits to be output
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static bool abort_current_block; // Signals to the stepper that current block should be aborted
#if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_X_motor, locked_X2_motor;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
static bool locked_Y_motor, locked_Y2_motor;
#endif
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool locked_Z_motor, locked_Z2_motor
#if NUM_Z_STEPPER_DRIVERS >= 3
, locked_Z3_motor
#if NUM_Z_STEPPER_DRIVERS >= 4
, locked_Z4_motor
#endif
#endif
;
#endif
static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
#else
static constexpr uint8_t oversampling_factor = 0;
#endif
// Delta error variables for the Bresenham line tracer
static xyze_long_t delta_error;
static xyze_ulong_t advance_dividend;
static uint32_t advance_divisor,
step_events_completed, // The number of step events executed in the current block
accelerate_until, // The point from where we need to stop acceleration
decelerate_after, // The point from where we need to start decelerating
step_event_count; // The total event count for the current block
#if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
static uint8_t stepper_extruder;
#else
static constexpr uint8_t stepper_extruder = 0;
#endif
#if ENABLED(S_CURVE_ACCELERATION)
static int32_t bezier_A, // A coefficient in Bézier speed curve
bezier_B, // B coefficient in Bézier speed curve
bezier_C; // C coefficient in Bézier speed curve
static uint32_t bezier_F, // F coefficient in Bézier speed curve
bezier_AV; // AV coefficient in Bézier speed curve
#ifdef __AVR__
static bool A_negative; // If A coefficient was negative
#endif
static bool bezier_2nd_half; // If Bézier curve has been initialized or not
#endif
#if ENABLED(LIN_ADVANCE)
static constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
static uint32_t nextAdvanceISR, LA_isr_rate;
static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static int8_t LA_steps;
static bool LA_use_advance_lead;
#endif
#if ENABLED(INTEGRATED_BABYSTEPPING)
static constexpr uint32_t BABYSTEP_NEVER = 0xFFFFFFFF;
static uint32_t nextBabystepISR;
#endif
#if ENABLED(DIRECT_STEPPING)
static page_step_state_t page_step_state;
#endif
static int32_t ticks_nominal;
#if DISABLED(S_CURVE_ACCELERATION)
static uint32_t acc_step_rate; // needed for deceleration start point
#endif
// Exact steps at which an endstop was triggered
static xyz_long_t endstops_trigsteps;
// Positions of stepper motors, in step units
static xyze_long_t count_position;
// Current stepper motor directions (+1 or -1)
static xyze_int8_t count_direction;
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
typedef struct {
bool enabled; // Trapezoid needed flag (i.e., laser on, planner in control)
uint8_t cur_power; // Current laser power
bool cruise_set; // Power set up for cruising?
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
uint16_t till_update; // Countdown to the next update
#else
uint32_t last_step_count, // Step count from the last update
acc_step_count; // Bresenham counter for laser accel/decel
#endif
} stepper_laser_t;
static stepper_laser_t laser_trap;
#endif
public:
// Initialize stepper hardware
static void init();
// Interrupt Service Routine and phases
// The stepper subsystem goes to sleep when it runs out of things to execute.
// Call this to notify the subsystem that it is time to go to work.
static void wake_up() { ENABLE_STEPPER_DRIVER_INTERRUPT(); }
static bool is_awake() { return STEPPER_ISR_ENABLED(); }
static bool suspend() {
const bool awake = is_awake();
if (awake) DISABLE_STEPPER_DRIVER_INTERRUPT();
return awake;
}
// The ISR scheduler
static void isr();
// The stepper pulse ISR phase
static void pulse_phase_isr();
// The stepper block processing ISR phase
static uint32_t block_phase_isr();
#if ENABLED(LIN_ADVANCE)
// The Linear advance ISR phase
static uint32_t advance_isr();
FORCE_INLINE static void initiateLA() { nextAdvanceISR = 0; }
#endif
#if ENABLED(INTEGRATED_BABYSTEPPING)
// The Babystepping ISR phase
static uint32_t babystepping_isr();
FORCE_INLINE static void initiateBabystepping() {
if (nextBabystepISR == BABYSTEP_NEVER) {
nextBabystepISR = 0;
wake_up();
}
}
#endif
// Check if the given block is busy or not - Must not be called from ISR contexts
static bool is_block_busy(const block_t * const block);
// Get the position of a stepper, in steps
static int32_t position(const AxisEnum axis);
// Set the current position in steps
static void set_position(const xyze_long_t &spos);
static void set_axis_position(const AxisEnum a, const int32_t &v);
// Report the positions of the steppers, in steps
static void report_a_position(const xyz_long_t &pos);
static void report_positions();
// Discard current block and free any resources
FORCE_INLINE static void discard_current_block() {
#if ENABLED(DIRECT_STEPPING)
if (IS_PAGE(current_block))
page_manager.free_page(current_block->page_idx);
#endif
current_block = nullptr;
axis_did_move = 0;
planner.release_current_block();
}
// Quickly stop all steppers
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
// The direction of a single motor
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
// Handle a triggered endstop
static void endstop_triggered(const AxisEnum axis);
// Triggered position of an axis in steps
static int32_t triggered_position(const AxisEnum axis);
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void set_digipot_value_spi(const int16_t address, const int16_t value);
static void set_digipot_current(const uint8_t driver, const int16_t current);
#endif
#if HAS_MICROSTEPS
static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3);
static void microstep_mode(const uint8_t driver, const uint8_t stepping);
static void microstep_readings();
#endif
#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
#endif
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_z1_lock(const bool state) { locked_Z_motor = state; }
FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
#if NUM_Z_STEPPER_DRIVERS >= 3
FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
#if NUM_Z_STEPPER_DRIVERS >= 4
FORCE_INLINE static void set_z4_lock(const bool state) { locked_Z4_motor = state; }
#endif
#endif
static void set_all_z_lock(const bool lock, const int8_t except=-1) {
set_z1_lock(lock ^ (except == 0));
set_z2_lock(lock ^ (except == 1));
#if NUM_Z_STEPPER_DRIVERS >= 3
set_z3_lock(lock ^ (except == 2));
#if NUM_Z_STEPPER_DRIVERS >= 4
set_z4_lock(lock ^ (except == 3));
#endif
#endif
}
#endif
#if ENABLED(BABYSTEPPING)
static void do_babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
#if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power();
#endif
static axis_flags_t axis_enabled; // Axis stepper(s) ENABLED states
static bool axis_is_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
return TEST(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
}
static void mark_axis_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
SBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
}
static void mark_axis_disabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
CBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
}
static bool can_axis_disable(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
return !any_enable_overlap() || !(axis_enabled.bits & enable_overlap[INDEX_OF_AXIS(axis, eindex)]);
}
static void enable_axis(const AxisEnum axis);
static bool disable_axis(const AxisEnum axis);
#if HAS_EXTRUDERS
static void enable_extruder(E_TERN_(const uint8_t eindex=0));
static bool disable_extruder(E_TERN_(const uint8_t eindex=0));
static void enable_e_steppers();
static void disable_e_steppers();
#else
static void enable_extruder() {}
static bool disable_extruder() { return true; }
static void enable_e_steppers() {}
static void disable_e_steppers() {}
#endif
#define ENABLE_EXTRUDER(N) enable_extruder(E_TERN_(N))
#define DISABLE_EXTRUDER(N) disable_extruder(E_TERN_(N))
#define AXIS_IS_ENABLED(N,V...) axis_is_enabled(N E_OPTARG(#V))
static void enable_all_steppers();
static void disable_all_steppers();
// Update direction states for all steppers
static void set_directions();
// Set direction bits and update all stepper DIR states
static void set_directions(const axis_bits_t bits) {
last_direction_bits = bits;
set_directions();
}
private:
// Set the current position in steps
static void _set_position(const abce_long_t &spos);
FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t *loops) {
uint32_t timer;
// Scale the frequency, as requested by the caller
step_rate <<= oversampling_factor;
uint8_t multistep = 1;
#if DISABLED(DISABLE_MULTI_STEPPING)
// The stepping frequency limits for each multistepping rate
static const uint32_t limit[] PROGMEM = {
( MAX_STEP_ISR_FREQUENCY_1X ),
( MAX_STEP_ISR_FREQUENCY_2X >> 1),
( MAX_STEP_ISR_FREQUENCY_4X >> 2),
( MAX_STEP_ISR_FREQUENCY_8X >> 3),
( MAX_STEP_ISR_FREQUENCY_16X >> 4),
( MAX_STEP_ISR_FREQUENCY_32X >> 5),
( MAX_STEP_ISR_FREQUENCY_64X >> 6),
(MAX_STEP_ISR_FREQUENCY_128X >> 7)
};
// Select the proper multistepping
uint8_t idx = 0;
while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
step_rate >>= 1;
multistep <<= 1;
++idx;
};
#else
NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
#endif
*loops = multistep;
#ifdef CPU_32_BIT
// In case of high-performance processor, it is able to calculate in real-time
timer = uint32_t(STEPPER_TIMER_RATE) / step_rate;
#else
constexpr uint32_t min_step_rate = (F_CPU) / 500000U;
NOLESS(step_rate, min_step_rate);
step_rate -= min_step_rate; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
const uint8_t tmp_step_rate = (step_rate & 0x00FF);
const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
gain = (uint16_t)pgm_read_word(table_address + 2);
timer = MultiU16X8toH16(tmp_step_rate, gain);
timer = (uint16_t)pgm_read_word(table_address) - timer;
}
else { // lower step rates
uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xFFFC;
timer = (uint16_t)pgm_read_word(table_address)
- (((uint16_t)pgm_read_word(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
}
// (there is no need to limit the timer value here. All limits have been
// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
#endif
return timer;
}
#if ENABLED(S_CURVE_ACCELERATION)
static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
static int32_t _eval_bezier_curve(const uint32_t curr_step);
#endif
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void digipot_init();
#endif
#if HAS_MICROSTEPS
static void microstep_init();
#endif
};
extern Stepper stepper;