Marlin_Firmware/Marlin/src/gcode/bedlevel/G26.cpp
2021-10-02 22:31:15 -05:00

878 lines
32 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G26 Mesh Validation Tool
*
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behavior and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* I # Preset Heat the Nozzle and Bed based on a Material Preset (if material presets are defined).
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'circle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
* an LCD, you must specify a value if you use P.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
* aware that there's some risk associated with printing without the ability to abort in
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
* parameter, every point will be printed.
*
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* un-drawn circle is still done. But the distance to the location for each circle has a
* random number of the specified size added to it. Specifying S50 will give an interesting
* deviation from the normal behavior on a 10 x 10 Mesh.
*
* X # X Coord. Specify the starting location of the drawing activity.
*
* Y # Y Coord. Specify the starting location of the drawing activity.
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(G26_MESH_VALIDATION)
#define G26_OK false
#define G26_ERR true
#include "../../gcode/gcode.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../MarlinCore.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../module/tool_change.h"
#include "../../module/temperature.h"
#include "../../lcd/marlinui.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../lcd/extui/ui_api.h"
#endif
#if ENABLED(UBL_HILBERT_CURVE)
#include "../../feature/bedlevel/hilbert_curve.h"
#endif
#define EXTRUSION_MULTIPLIER 1.0
#define PRIME_LENGTH 10.0
#define OOZE_AMOUNT 0.3
#define INTERSECTION_CIRCLE_RADIUS 5
#define CROSSHAIRS_SIZE 3
#ifndef G26_RETRACT_MULTIPLIER
#define G26_RETRACT_MULTIPLIER 1.0 // x 1mm
#endif
#ifndef G26_XY_FEEDRATE
#define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
#endif
#ifndef G26_XY_FEEDRATE_TRAVEL
#define G26_XY_FEEDRATE_TRAVEL (PLANNER_XY_FEEDRATE() / 1.5)
#endif
#if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
#error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
#endif
#define G26_OK false
#define G26_ERR true
#if ENABLED(ARC_SUPPORT)
void plan_arc(const xyze_pos_t&, const ab_float_t&, const bool, const uint8_t);
#endif
constexpr float g26_e_axis_feedrate = 0.025;
static MeshFlags circle_flags;
float g26_random_deviation = 0.0;
#if HAS_LCD_MENU
/**
* If the LCD is clicked, cancel, wait for release, return true
*/
bool user_canceled() {
if (!ui.button_pressed()) return false; // Return if the button isn't pressed
ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
TERN_(HAS_LCD_MENU, ui.quick_feedback());
ui.wait_for_release();
return true;
}
#endif
void move_to(const_float_t rx, const_float_t ry, const_float_t z, const_float_t e_delta) {
static float last_z = -999.99;
const xy_pos_t dest = { rx, ry };
const bool has_xy_component = dest != current_position, // Check if X or Y is involved in the movement.
has_e_component = e_delta != 0.0;
if (z != last_z) {
last_z = z;
destination.set(current_position.x, current_position.y, z, current_position.e);
const feedRate_t fr_mm_s = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
prepare_internal_move_to_destination(fr_mm_s);
}
// If X or Y in combination with E is involved do a 'normal' move.
// If X or Y with no E is involved do a 'fast' move
// Otherwise retract/recover/hop.
destination = dest;
destination.e += e_delta;
const feedRate_t fr_mm_s = has_xy_component
? (has_e_component ? feedRate_t(G26_XY_FEEDRATE) : feedRate_t(G26_XY_FEEDRATE_TRAVEL))
: planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
prepare_internal_move_to_destination(fr_mm_s);
}
void move_to(const xyz_pos_t &where, const_float_t de) { move_to(where.x, where.y, where.z, de); }
typedef struct {
float extrusion_multiplier = EXTRUSION_MULTIPLIER,
retraction_multiplier = G26_RETRACT_MULTIPLIER,
layer_height = MESH_TEST_LAYER_HEIGHT,
prime_length = PRIME_LENGTH;
celsius_t bed_temp = MESH_TEST_BED_TEMP,
hotend_temp = MESH_TEST_HOTEND_TEMP;
float nozzle = MESH_TEST_NOZZLE_SIZE,
filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
ooze_amount; // 'O' ... OOZE_AMOUNT
bool continue_with_closest, // 'C'
keep_heaters_on; // 'K'
xy_pos_t xy_pos; // = { 0, 0 }
int8_t prime_flag = 0;
bool g26_retracted = false; // Track the retracted state during G26 so mismatched
// retracts/recovers don't result in a bad state.
void retract_filament(const xyz_pos_t &where) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where, -1.0f * retraction_multiplier);
}
}
// TODO: Parameterize the Z lift with a define
void retract_lift_move(const xyz_pos_t &s) {
retract_filament(destination);
move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0f); // Z lift to minimize scraping
move_to(s.x, s.y, s.z + 0.5f, 0.0f); // Get to the starting point with no extrusion while lifted
}
void recover_filament(const xyz_pos_t &where) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where, 1.2f * retraction_multiplier);
g26_retracted = false;
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
// Distances to the start / end of the line
xy_float_t svec = current_position - s, evec = current_position - e;
const float dist_start = HYPOT2(svec.x, svec.y),
dist_end = HYPOT2(evec.x, evec.y),
line_length = HYPOT(e.x - s.x, e.y - s.y);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
return print_line_from_here_to_there(e, s);
// Decide whether to retract & lift
if (dist_start > 2.0) retract_lift_move(s);
move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
recover_filament(destination);
move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
void connect_neighbor_with_line(const xy_int8_t &p1, int8_t dx, int8_t dy) {
xy_int8_t p2;
p2.x = p1.x + dx;
p2.y = p1.y + dy;
if (p2.x < 0 || p2.x >= (GRID_MAX_POINTS_X)) return;
if (p2.y < 0 || p2.y >= (GRID_MAX_POINTS_Y)) return;
if (circle_flags.marked(p1.x, p1.y) && circle_flags.marked(p2.x, p2.y)) {
xyz_pos_t s, e;
s.x = _GET_MESH_X(p1.x) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx;
e.x = _GET_MESH_X(p2.x) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx;
s.y = _GET_MESH_Y(p1.y) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dy;
e.y = _GET_MESH_Y(p2.y) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dy;
s.z = e.z = layer_height;
#if HAS_ENDSTOPS
LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
#endif
if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
print_line_from_here_to_there(s, e);
}
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
SERIAL_ECHOLNPGM("Waiting for heatup.");
#if HAS_HEATED_BED
if (bed_temp > 25) {
#if HAS_WIRED_LCD
ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
ui.quick_feedback();
TERN_(HAS_LCD_MENU, ui.capture());
#endif
thermalManager.setTargetBed(bed_temp);
// Wait for the temperature to stabilize
if (!thermalManager.wait_for_bed(true OPTARG(G26_CLICK_CAN_CANCEL, true)))
return G26_ERR;
}
#else
UNUSED(bed_temp);
#endif // HAS_HEATED_BED
// Start heating the active nozzle
#if HAS_WIRED_LCD
ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
ui.quick_feedback();
#endif
thermalManager.setTargetHotend(hotend_temp, active_extruder);
// Wait for the temperature to stabilize
if (!thermalManager.wait_for_hotend(active_extruder, true OPTARG(G26_CLICK_CAN_CANCEL, true)))
return G26_ERR;
#if HAS_WIRED_LCD
ui.reset_status();
ui.quick_feedback();
#endif
return G26_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
#if HAS_LCD_MENU && !HAS_TOUCH_BUTTONS // ui.button_pressed issue with touchscreen
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
float Total_Prime = 0.0;
#endif
if (prime_flag == -1) { // The user wants to control how much filament gets purged
ui.capture();
ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
ui.chirp();
destination = current_position;
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ui.button_pressed()) {
ui.chirp();
destination.e += 0.25;
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) {
ui.release();
return G26_ERR;
}
#endif
prepare_internal_move_to_destination(fr_slow_e);
destination = current_position;
planner.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
}
ui.wait_for_release();
ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
ui.quick_feedback();
ui.release();
}
else
#endif
{
#if HAS_WIRED_LCD
ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
ui.quick_feedback();
#endif
destination = current_position;
destination.e += prime_length;
prepare_internal_move_to_destination(fr_slow_e);
destination.e -= prime_length;
retract_filament(destination);
}
return G26_OK;
}
/**
* Find the nearest point at which to print a circle
*/
mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
mesh_index_pair out_point;
out_point.pos = -1;
#if ENABLED(UBL_HILBERT_CURVE)
auto test_func = [](uint8_t i, uint8_t j, void *data) -> bool {
if (!circle_flags.marked(i, j)) {
mesh_index_pair *out_point = (mesh_index_pair*)data;
out_point->pos.set(i, j); // Save its data
return true;
}
return false;
};
hilbert_curve::search_from_closest(pos, test_func, &out_point);
#else
float closest = 99999.99;
GRID_LOOP(i, j) {
if (!circle_flags.marked(i, j)) {
// We found a circle that needs to be printed
const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
// Get the distance to this intersection
float f = (pos - m).magnitude();
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += (xy_pos - m).magnitude() / 15.0f;
// Add the specified amount of Random Noise to our search
if (g26_random_deviation > 1.0) f += random(0.0, g26_random_deviation);
if (f < closest) {
closest = f; // Found a closer un-printed location
out_point.pos.set(i, j); // Save its data
out_point.distance = closest;
}
}
}
#endif
circle_flags.mark(out_point); // Mark this location as done.
return out_point;
}
} g26_helper_t;
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit the mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*
* Parameters:
*
* B Bed Temperature
* C Continue from the Closest mesh point
* D Disable leveling before starting
* F Filament diameter
* H Hotend Temperature
* K Keep heaters on when completed
* L Layer Height
* O Ooze extrusion length
* P Prime length
* Q Retraction multiplier
* R Repetitions (number of grid points)
* S Nozzle Size (diameter) in mm
* T Tool index to change to, if included
* U Random deviation (50 if no value given)
* X X position
* Y Y position
*/
void GcodeSuite::G26() {
SERIAL_ECHOLNPGM("G26 starting...");
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (homing_needed_error()) return;
// Change the tool first, if specified
if (parser.seenval('T')) tool_change(parser.value_int());
g26_helper_t g26;
g26.ooze_amount = parser.linearval('O', OOZE_AMOUNT);
g26.continue_with_closest = parser.boolval('C');
g26.keep_heaters_on = parser.boolval('K');
// Accept 'I' if temperature presets are defined
#if PREHEAT_COUNT
const uint8_t preset_index = parser.seenval('I') ? _MIN(parser.value_byte(), PREHEAT_COUNT - 1) + 1 : 0;
#endif
#if HAS_HEATED_BED
// Get a temperature from 'I' or 'B'
celsius_t bedtemp = 0;
// Use the 'I' index if temperature presets are defined
#if PREHEAT_COUNT
if (preset_index) bedtemp = ui.material_preset[preset_index - 1].bed_temp;
#endif
// Look for 'B' Bed Temperature
if (parser.seenval('B')) bedtemp = parser.value_celsius();
if (bedtemp) {
if (!WITHIN(bedtemp, 40, BED_MAX_TARGET)) {
SERIAL_ECHOLNPGM("?Specified bed temperature not plausible (40-", BED_MAX_TARGET, "C).");
return;
}
g26.bed_temp = bedtemp;
}
#endif // HAS_HEATED_BED
if (parser.seenval('L')) {
g26.layer_height = parser.value_linear_units();
if (!WITHIN(g26.layer_height, 0.0, 2.0)) {
SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
return;
}
}
if (parser.seen('Q')) {
if (parser.has_value()) {
g26.retraction_multiplier = parser.value_float();
if (!WITHIN(g26.retraction_multiplier, 0.05, 15.0)) {
SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
return;
}
}
else {
SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
return;
}
}
if (parser.seenval('S')) {
g26.nozzle = parser.value_float();
if (!WITHIN(g26.nozzle, 0.1, 2.0)) {
SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
return;
}
}
if (parser.seen('P')) {
if (!parser.has_value()) {
#if HAS_LCD_MENU
g26.prime_flag = -1;
#else
SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
return;
#endif
}
else {
g26.prime_flag++;
g26.prime_length = parser.value_linear_units();
if (!WITHIN(g26.prime_length, 0.0, 25.0)) {
SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
return;
}
}
}
if (parser.seenval('F')) {
g26.filament_diameter = parser.value_linear_units();
if (!WITHIN(g26.filament_diameter, 1.0, 4.0)) {
SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
return;
}
}
g26.extrusion_multiplier *= sq(1.75) / sq(g26.filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
g26.extrusion_multiplier *= g26.filament_diameter * sq(g26.nozzle) / sq(0.3); // Scale up by nozzle size
// Get a temperature from 'I' or 'H'
celsius_t noztemp = 0;
// Accept 'I' if temperature presets are defined
#if PREHEAT_COUNT
if (preset_index) noztemp = ui.material_preset[preset_index - 1].hotend_temp;
#endif
// Look for 'H' Hotend Temperature
if (parser.seenval('H')) noztemp = parser.value_celsius();
// If any preset or temperature was specified
if (noztemp) {
if (!WITHIN(noztemp, 165, (HEATER_0_MAXTEMP) - (HOTEND_OVERSHOOT))) {
SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
return;
}
g26.hotend_temp = noztemp;
}
// 'U' to Randomize and optionally set circle deviation
if (parser.seen('U')) {
randomSeed(millis());
// This setting will persist for the next G26
g26_random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
// Get repeat from 'R', otherwise do one full circuit
int16_t g26_repeats;
#if HAS_LCD_MENU
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
#else
if (parser.seen('R'))
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
else {
SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
return;
}
#endif
if (g26_repeats < 1) {
SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
return;
}
// Set a position with 'X' and/or 'Y'. Default: current_position
g26.xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
if (!position_is_reachable(g26.xy_pos)) {
SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
return;
}
/**
* Wait until all parameters are verified before altering the state!
*/
set_bed_leveling_enabled(!parser.seen_test('D'));
do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
#if DISABLED(NO_VOLUMETRICS)
bool volumetric_was_enabled = parser.volumetric_enabled;
parser.volumetric_enabled = false;
planner.calculate_volumetric_multipliers();
#endif
if (g26.turn_on_heaters() != G26_OK) goto LEAVE;
current_position.e = 0.0;
sync_plan_position_e();
if (g26.prime_flag && g26.prime_nozzle() != G26_OK) goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
circle_flags.reset();
// Move nozzle to the specified height for the first layer
destination = current_position;
destination.z = g26.layer_height;
move_to(destination, 0.0);
move_to(destination, g26.ooze_amount);
TERN_(HAS_LCD_MENU, ui.capture());
#if DISABLED(ARC_SUPPORT)
/**
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
*/
#define A_INT 30
#define _ANGS (360 / A_INT)
#define A_CNT (_ANGS / 2)
#define _IND(A) ((A + _ANGS * 8) % _ANGS)
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
#if A_CNT & 1
#error "A_CNT must be a positive value. Please change A_INT."
#endif
float trig_table[A_CNT];
LOOP_L_N(i, A_CNT)
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
#endif // !ARC_SUPPORT
mesh_index_pair location;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_START));
do {
// Find the nearest confluence
location = g26.find_closest_circle_to_print(g26.continue_with_closest ? xy_pos_t(current_position) : g26.xy_pos);
if (location.valid()) {
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_POINT_START));
const xy_pos_t circle = _GET_MESH_POS(location.pos);
// If this mesh location is outside the printable radius, skip it.
if (!position_is_reachable(circle)) continue;
// Determine where to start and end the circle,
// which is always drawn counter-clockwise.
const xy_int8_t st = location;
const bool f = st.y == 0,
r = st.x >= GRID_MAX_POINTS_X - 1,
b = st.y >= GRID_MAX_POINTS_Y - 1;
#if ENABLED(ARC_SUPPORT)
#define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
#define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
xyz_float_t s = e;
// Figure out where to start and end the arc - we always print counterclockwise
float arc_length = ARC_LENGTH(4);
if (st.x == 0) { // left edge
if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (r) { // right edge
if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (f) {
e.x -= INTERSECTION_CIRCLE_DIAM;
arc_length = ARC_LENGTH(2);
}
else if (b) {
s.x -= INTERSECTION_CIRCLE_DIAM;
arc_length = ARC_LENGTH(2);
}
const ab_float_t arc_offset = circle - s;
const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
const float dist_start = HYPOT2(dist.x, dist.y);
const xyze_pos_t endpoint = {
e.x, e.y, g26.layer_height,
current_position.e + (arc_length * g26_e_axis_feedrate * g26.extrusion_multiplier)
};
if (dist_start > 2.0) {
s.z = g26.layer_height + 0.5f;
g26.retract_lift_move(s);
}
s.z = g26.layer_height;
move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
g26.recover_filament(destination);
{ REMEMBER(fr, feedrate_mm_s, PLANNER_XY_FEEDRATE() * 0.1f);
plan_arc(endpoint, arc_offset, false, 0); // Draw a counter-clockwise arc
destination = current_position;
}
if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#else // !ARC_SUPPORT
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
if (st.x == 0) { // Left edge? Just right half.
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
}
else if (r) { // Right edge? Just left half.
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
}
else if (f) { // Front edge? Just back half.
start_ind = 0; // 03:00
end_ind = 5; // 09:00
}
else if (b) { // Back edge? Just front half.
start_ind = 6; // 09:00
end_ind = 11; // 03:00
}
for (int8_t ind = start_ind; ind <= end_ind; ind++) {
if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26.layer_height },
q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26.layer_height };
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
#elif HAS_ENDSTOPS
LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
g26.print_line_from_here_to_there(p, q);
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
#endif // !ARC_SUPPORT
g26.connect_neighbor_with_line(location.pos, -1, 0);
g26.connect_neighbor_with_line(location.pos, 1, 0);
g26.connect_neighbor_with_line(location.pos, 0, -1);
g26.connect_neighbor_with_line(location.pos, 0, 1);
planner.synchronize();
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_POINT_FINISH));
if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE;
}
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (--g26_repeats && location.valid());
LEAVE:
ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, ExtUI::G26_FINISH));
g26.retract_filament(destination);
destination.z = Z_CLEARANCE_BETWEEN_PROBES;
move_to(destination, 0); // Raise the nozzle
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled = volumetric_was_enabled;
planner.calculate_volumetric_multipliers();
#endif
TERN_(HAS_LCD_MENU, ui.release()); // Give back control of the LCD
if (!g26.keep_heaters_on) {
TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0));
thermalManager.setTargetHotend(active_extruder, 0);
}
}
#endif // G26_MESH_VALIDATION