731 lines
26 KiB
C++
731 lines
26 KiB
C++
/******************************************************************************
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2010 Perry Hung.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation
|
|
* files (the "Software"), to deal in the Software without
|
|
* restriction, including without limitation the rights to use, copy,
|
|
* modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*****************************************************************************/
|
|
|
|
/**
|
|
* @author Marti Bolivar <mbolivar@leaflabs.com>
|
|
* @brief Wirish SPI implementation.
|
|
*/
|
|
|
|
#ifdef __STM32F1__
|
|
|
|
#include <SPI.h>
|
|
|
|
#include <libmaple/timer.h>
|
|
#include <libmaple/util.h>
|
|
#include <libmaple/rcc.h>
|
|
|
|
#include <boards.h>
|
|
#include <wirish.h>
|
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
#include "spi_pins.h"
|
|
|
|
/** Time in ms for DMA receive timeout */
|
|
#define DMA_TIMEOUT 100
|
|
|
|
#if CYCLES_PER_MICROSECOND != 72
|
|
#warning "Unexpected clock speed; SPI frequency calculation will be incorrect"
|
|
#endif
|
|
|
|
struct spi_pins { uint8_t nss, sck, miso, mosi; };
|
|
|
|
static const spi_pins* dev_to_spi_pins(spi_dev *dev);
|
|
static void configure_gpios(spi_dev *dev, bool as_master);
|
|
static spi_baud_rate determine_baud_rate(spi_dev *dev, uint32_t freq);
|
|
|
|
#if BOARD_NR_SPI >= 3 && !defined(STM32_HIGH_DENSITY)
|
|
#error "The SPI library is misconfigured: 3 SPI ports only available on high density STM32 devices"
|
|
#endif
|
|
|
|
static const spi_pins board_spi_pins[] __FLASH__ = {
|
|
#if BOARD_NR_SPI >= 1
|
|
{ BOARD_SPI1_NSS_PIN,
|
|
BOARD_SPI1_SCK_PIN,
|
|
BOARD_SPI1_MISO_PIN,
|
|
BOARD_SPI1_MOSI_PIN },
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
{ BOARD_SPI2_NSS_PIN,
|
|
BOARD_SPI2_SCK_PIN,
|
|
BOARD_SPI2_MISO_PIN,
|
|
BOARD_SPI2_MOSI_PIN },
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
{ BOARD_SPI3_NSS_PIN,
|
|
BOARD_SPI3_SCK_PIN,
|
|
BOARD_SPI3_MISO_PIN,
|
|
BOARD_SPI3_MOSI_PIN },
|
|
#endif
|
|
};
|
|
|
|
#if BOARD_NR_SPI >= 1
|
|
static void *_spi1_this;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
static void *_spi2_this;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
static void *_spi3_this;
|
|
#endif
|
|
|
|
/**
|
|
* Constructor
|
|
*/
|
|
SPIClass::SPIClass(uint32_t spi_num) {
|
|
_currentSetting = &_settings[spi_num - 1]; // SPI channels are called 1 2 and 3 but the array is zero indexed
|
|
|
|
switch (spi_num) {
|
|
#if BOARD_NR_SPI >= 1
|
|
case 1:
|
|
_currentSetting->spi_d = SPI1;
|
|
_spi1_this = (void*)this;
|
|
break;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
case 2:
|
|
_currentSetting->spi_d = SPI2;
|
|
_spi2_this = (void*)this;
|
|
break;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
case 3:
|
|
_currentSetting->spi_d = SPI3;
|
|
_spi3_this = (void*)this;
|
|
break;
|
|
#endif
|
|
default: ASSERT(0);
|
|
}
|
|
|
|
// Init things specific to each SPI device
|
|
// clock divider setup is a bit of hack, and needs to be improved at a later date.
|
|
#if BOARD_NR_SPI >= 1
|
|
_settings[0].spi_d = SPI1;
|
|
_settings[0].clockDivider = determine_baud_rate(_settings[0].spi_d, _settings[0].clock);
|
|
_settings[0].spiDmaDev = DMA1;
|
|
_settings[0].spiTxDmaChannel = DMA_CH3;
|
|
_settings[0].spiRxDmaChannel = DMA_CH2;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
_settings[1].spi_d = SPI2;
|
|
_settings[1].clockDivider = determine_baud_rate(_settings[1].spi_d, _settings[1].clock);
|
|
_settings[1].spiDmaDev = DMA1;
|
|
_settings[1].spiTxDmaChannel = DMA_CH5;
|
|
_settings[1].spiRxDmaChannel = DMA_CH4;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
_settings[2].spi_d = SPI3;
|
|
_settings[2].clockDivider = determine_baud_rate(_settings[2].spi_d, _settings[2].clock);
|
|
_settings[2].spiDmaDev = DMA2;
|
|
_settings[2].spiTxDmaChannel = DMA_CH2;
|
|
_settings[2].spiRxDmaChannel = DMA_CH1;
|
|
#endif
|
|
|
|
// added for DMA callbacks.
|
|
_currentSetting->state = SPI_STATE_IDLE;
|
|
}
|
|
|
|
SPIClass::SPIClass(int8_t mosi, int8_t miso, int8_t sclk, int8_t ssel) {
|
|
#if BOARD_NR_SPI >= 1
|
|
if (mosi == BOARD_SPI1_MOSI_PIN) SPIClass(1);
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
if (mosi == BOARD_SPI2_MOSI_PIN) SPIClass(2);
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
if (mosi == BOARD_SPI3_MOSI_PIN) SPIClass(3);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Set up/tear down
|
|
*/
|
|
void SPIClass::updateSettings() {
|
|
uint32_t flags = ((_currentSetting->bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB) | _currentSetting->dataSize | SPI_SW_SLAVE | SPI_SOFT_SS);
|
|
spi_master_enable(_currentSetting->spi_d, (spi_baud_rate)_currentSetting->clockDivider, (spi_mode)_currentSetting->dataMode, flags);
|
|
}
|
|
|
|
void SPIClass::begin() {
|
|
spi_init(_currentSetting->spi_d);
|
|
configure_gpios(_currentSetting->spi_d, 1);
|
|
updateSettings();
|
|
// added for DMA callbacks.
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
}
|
|
|
|
void SPIClass::beginSlave() {
|
|
spi_init(_currentSetting->spi_d);
|
|
configure_gpios(_currentSetting->spi_d, 0);
|
|
uint32_t flags = ((_currentSetting->bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB) | _currentSetting->dataSize);
|
|
spi_slave_enable(_currentSetting->spi_d, (spi_mode)_currentSetting->dataMode, flags);
|
|
// added for DMA callbacks.
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
}
|
|
|
|
void SPIClass::end() {
|
|
if (!spi_is_enabled(_currentSetting->spi_d)) return;
|
|
|
|
// Follows RM0008's sequence for disabling a SPI in master/slave
|
|
// full duplex mode.
|
|
while (spi_is_rx_nonempty(_currentSetting->spi_d)) {
|
|
// FIXME [0.1.0] remove this once you have an interrupt based driver
|
|
volatile uint16_t rx __attribute__((unused)) = spi_rx_reg(_currentSetting->spi_d);
|
|
}
|
|
waitSpiTxEnd(_currentSetting->spi_d);
|
|
|
|
spi_peripheral_disable(_currentSetting->spi_d);
|
|
// added for DMA callbacks.
|
|
// Need to add unsetting the callbacks for the DMA channels.
|
|
_currentSetting->state = SPI_STATE_IDLE;
|
|
}
|
|
|
|
/* Roger Clark added 3 functions */
|
|
void SPIClass::setClockDivider(uint32_t clockDivider) {
|
|
_currentSetting->clockDivider = clockDivider;
|
|
uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_BR);
|
|
_currentSetting->spi_d->regs->CR1 = cr1 | (clockDivider & SPI_CR1_BR);
|
|
}
|
|
|
|
void SPIClass::setBitOrder(BitOrder bitOrder) {
|
|
_currentSetting->bitOrder = bitOrder;
|
|
uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_LSBFIRST);
|
|
if (bitOrder == LSBFIRST) cr1 |= SPI_CR1_LSBFIRST;
|
|
_currentSetting->spi_d->regs->CR1 = cr1;
|
|
}
|
|
|
|
/**
|
|
* Victor Perez. Added to test changing datasize from 8 to 16 bit modes on the fly.
|
|
* Input parameter should be SPI_CR1_DFF set to 0 or 1 on a 32bit word.
|
|
*/
|
|
void SPIClass::setDataSize(uint32_t datasize) {
|
|
_currentSetting->dataSize = datasize;
|
|
uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_DFF);
|
|
uint8_t en = spi_is_enabled(_currentSetting->spi_d);
|
|
spi_peripheral_disable(_currentSetting->spi_d);
|
|
_currentSetting->spi_d->regs->CR1 = cr1 | (datasize & SPI_CR1_DFF) | en;
|
|
}
|
|
|
|
void SPIClass::setDataMode(uint8_t dataMode) {
|
|
/**
|
|
* Notes:
|
|
* As far as we know the AVR numbers for dataMode match the numbers required by the STM32.
|
|
* From the AVR doc https://www.atmel.com/images/doc2585.pdf section 2.4
|
|
*
|
|
* SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
|
|
* 0 0 0 Falling Rising
|
|
* 1 0 1 Rising Falling
|
|
* 2 1 0 Rising Falling
|
|
* 3 1 1 Falling Rising
|
|
*
|
|
* On the STM32 it appears to be
|
|
*
|
|
* bit 1 - CPOL : Clock polarity
|
|
* (This bit should not be changed when communication is ongoing)
|
|
* 0 : CLK to 0 when idle
|
|
* 1 : CLK to 1 when idle
|
|
*
|
|
* bit 0 - CPHA : Clock phase
|
|
* (This bit should not be changed when communication is ongoing)
|
|
* 0 : The first clock transition is the first data capture edge
|
|
* 1 : The second clock transition is the first data capture edge
|
|
*
|
|
* If someone finds this is not the case or sees a logic error with this let me know ;-)
|
|
*/
|
|
_currentSetting->dataMode = dataMode;
|
|
uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_CPOL|SPI_CR1_CPHA);
|
|
_currentSetting->spi_d->regs->CR1 = cr1 | (dataMode & (SPI_CR1_CPOL|SPI_CR1_CPHA));
|
|
}
|
|
|
|
void SPIClass::beginTransaction(uint8_t pin, const SPISettings &settings) {
|
|
setBitOrder(settings.bitOrder);
|
|
setDataMode(settings.dataMode);
|
|
setDataSize(settings.dataSize);
|
|
setClockDivider(determine_baud_rate(_currentSetting->spi_d, settings.clock));
|
|
begin();
|
|
}
|
|
|
|
void SPIClass::beginTransactionSlave(const SPISettings &settings) {
|
|
setBitOrder(settings.bitOrder);
|
|
setDataMode(settings.dataMode);
|
|
setDataSize(settings.dataSize);
|
|
beginSlave();
|
|
}
|
|
|
|
void SPIClass::endTransaction() { }
|
|
|
|
/**
|
|
* I/O
|
|
*/
|
|
|
|
uint16_t SPIClass::read() {
|
|
while (!spi_is_rx_nonempty(_currentSetting->spi_d)) { /* nada */ }
|
|
return (uint16_t)spi_rx_reg(_currentSetting->spi_d);
|
|
}
|
|
|
|
void SPIClass::read(uint8_t *buf, uint32_t len) {
|
|
if (len == 0) return;
|
|
spi_rx_reg(_currentSetting->spi_d); // clear the RX buffer in case a byte is waiting on it.
|
|
spi_reg_map * regs = _currentSetting->spi_d->regs;
|
|
// start sequence: write byte 0
|
|
regs->DR = 0x00FF; // write the first byte
|
|
// main loop
|
|
while (--len) {
|
|
while (!(regs->SR & SPI_SR_TXE)) { /* nada */ } // wait for TXE flag
|
|
noInterrupts(); // go atomic level - avoid interrupts to surely get the previously received data
|
|
regs->DR = 0x00FF; // write the next data item to be transmitted into the SPI_DR register. This clears the TXE flag.
|
|
while (!(regs->SR & SPI_SR_RXNE)) { /* nada */ } // wait till data is available in the DR register
|
|
*buf++ = (uint8)(regs->DR); // read and store the received byte. This clears the RXNE flag.
|
|
interrupts(); // let systick do its job
|
|
}
|
|
// read remaining last byte
|
|
while (!(regs->SR & SPI_SR_RXNE)) { /* nada */ } // wait till data is available in the Rx register
|
|
*buf++ = (uint8)(regs->DR); // read and store the received byte
|
|
}
|
|
|
|
void SPIClass::write(uint16_t data) {
|
|
/* Added for 16bit data Victor Perez. Roger Clark
|
|
* Improved speed by just directly writing the single byte to the SPI data reg and wait for completion,
|
|
* by taking the Tx code from transfer(byte)
|
|
* This almost doubles the speed of this function.
|
|
*/
|
|
spi_tx_reg(_currentSetting->spi_d, data); // write the data to be transmitted into the SPI_DR register (this clears the TXE flag)
|
|
waitSpiTxEnd(_currentSetting->spi_d);
|
|
}
|
|
|
|
void SPIClass::write16(uint16_t data) {
|
|
// Added by stevestrong: write two consecutive bytes in 8 bit mode (DFF=0)
|
|
spi_tx_reg(_currentSetting->spi_d, data>>8); // write high byte
|
|
while (!spi_is_tx_empty(_currentSetting->spi_d)) { /* nada */ } // Wait until TXE=1
|
|
spi_tx_reg(_currentSetting->spi_d, data); // write low byte
|
|
waitSpiTxEnd(_currentSetting->spi_d);
|
|
}
|
|
|
|
void SPIClass::write(uint16_t data, uint32_t n) {
|
|
// Added by stevstrong: Repeatedly send same data by the specified number of times
|
|
spi_reg_map * regs = _currentSetting->spi_d->regs;
|
|
while (n--) {
|
|
regs->DR = data; // write the data to be transmitted into the SPI_DR register (this clears the TXE flag)
|
|
while (!(regs->SR & SPI_SR_TXE)) { /* nada */ } // wait till Tx empty
|
|
}
|
|
while (regs->SR & SPI_SR_BSY) { /* nada */ } // wait until BSY=0 before returning
|
|
}
|
|
|
|
void SPIClass::write(const void *data, uint32_t length) {
|
|
spi_dev * spi_d = _currentSetting->spi_d;
|
|
spi_tx(spi_d, data, length); // data can be array of bytes or words
|
|
waitSpiTxEnd(spi_d);
|
|
}
|
|
|
|
uint8_t SPIClass::transfer(uint8_t byte) const {
|
|
spi_dev * spi_d = _currentSetting->spi_d;
|
|
spi_rx_reg(spi_d); // read any previous data
|
|
spi_tx_reg(spi_d, byte); // Write the data item to be transmitted into the SPI_DR register
|
|
waitSpiTxEnd(spi_d);
|
|
return (uint8)spi_rx_reg(spi_d); // "... and read the last received data."
|
|
}
|
|
|
|
uint16_t SPIClass::transfer16(uint16_t data) const {
|
|
// Modified by stevestrong: write & read two consecutive bytes in 8 bit mode (DFF=0)
|
|
// This is more effective than two distinct byte transfers
|
|
spi_dev * spi_d = _currentSetting->spi_d;
|
|
spi_rx_reg(spi_d); // read any previous data
|
|
spi_tx_reg(spi_d, data>>8); // write high byte
|
|
waitSpiTxEnd(spi_d); // wait until TXE=1 and then wait until BSY=0
|
|
uint16_t ret = spi_rx_reg(spi_d)<<8; // read and shift high byte
|
|
spi_tx_reg(spi_d, data); // write low byte
|
|
waitSpiTxEnd(spi_d); // wait until TXE=1 and then wait until BSY=0
|
|
ret += spi_rx_reg(spi_d); // read low byte
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Roger Clark and Victor Perez, 2015
|
|
* Performs a DMA SPI transfer with at least a receive buffer.
|
|
* If a TX buffer is not provided, FF is sent over and over for the lenght of the transfer.
|
|
* On exit TX buffer is not modified, and RX buffer cotains the received data.
|
|
* Still in progress.
|
|
*/
|
|
void SPIClass::dmaTransferSet(const void *transmitBuf, void *receiveBuf) {
|
|
dma_init(_currentSetting->spiDmaDev);
|
|
//spi_rx_dma_enable(_currentSetting->spi_d);
|
|
//spi_tx_dma_enable(_currentSetting->spi_d);
|
|
dma_xfer_size dma_bit_size = (_currentSetting->dataSize==DATA_SIZE_16BIT) ? DMA_SIZE_16BITS : DMA_SIZE_8BITS;
|
|
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, &_currentSetting->spi_d->regs->DR,
|
|
dma_bit_size, receiveBuf, dma_bit_size, (DMA_MINC_MODE | DMA_TRNS_CMPLT ));// receive buffer DMA
|
|
if (!transmitBuf) {
|
|
transmitBuf = &ff;
|
|
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR,
|
|
dma_bit_size, (volatile void*)transmitBuf, dma_bit_size, (DMA_FROM_MEM));// Transmit FF repeatedly
|
|
}
|
|
else {
|
|
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR,
|
|
dma_bit_size, (volatile void*)transmitBuf, dma_bit_size, (DMA_MINC_MODE | DMA_FROM_MEM ));// Transmit buffer DMA
|
|
}
|
|
dma_set_priority(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, DMA_PRIORITY_LOW);
|
|
dma_set_priority(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, DMA_PRIORITY_VERY_HIGH);
|
|
}
|
|
|
|
uint8_t SPIClass::dmaTransferRepeat(uint16_t length) {
|
|
if (length == 0) return 0;
|
|
if (spi_is_rx_nonempty(_currentSetting->spi_d) == 1) spi_rx_reg(_currentSetting->spi_d);
|
|
_currentSetting->state = SPI_STATE_TRANSFER;
|
|
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, length);
|
|
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length);
|
|
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);// enable receive
|
|
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit
|
|
spi_rx_dma_enable(_currentSetting->spi_d);
|
|
spi_tx_dma_enable(_currentSetting->spi_d);
|
|
if (_currentSetting->receiveCallback)
|
|
return 0;
|
|
|
|
//uint32_t m = millis();
|
|
uint8_t b = 0;
|
|
uint32_t m = millis();
|
|
while (!(dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & DMA_ISR_TCIF1)) {
|
|
// Avoid interrupts and just loop waiting for the flag to be set.
|
|
if ((millis() - m) > DMA_TIMEOUT) { b = 2; break; }
|
|
}
|
|
|
|
waitSpiTxEnd(_currentSetting->spi_d); // until TXE=1 and BSY=0
|
|
spi_tx_dma_disable(_currentSetting->spi_d);
|
|
spi_rx_dma_disable(_currentSetting->spi_d);
|
|
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);
|
|
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);
|
|
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
return b;
|
|
}
|
|
|
|
/**
|
|
* Roger Clark and Victor Perez, 2015
|
|
* Performs a DMA SPI transfer with at least a receive buffer.
|
|
* If a TX buffer is not provided, FF is sent over and over for the length of the transfer.
|
|
* On exit TX buffer is not modified, and RX buffer contains the received data.
|
|
* Still in progress.
|
|
*/
|
|
uint8_t SPIClass::dmaTransfer(const void *transmitBuf, void *receiveBuf, uint16_t length) {
|
|
dmaTransferSet(transmitBuf, receiveBuf);
|
|
return dmaTransferRepeat(length);
|
|
}
|
|
|
|
/**
|
|
* Roger Clark and Victor Perez, 2015
|
|
* Performs a DMA SPI send using a TX buffer.
|
|
* On exit TX buffer is not modified.
|
|
* Still in progress.
|
|
* 2016 - stevstrong - reworked to automatically detect bit size from SPI setting
|
|
*/
|
|
void SPIClass::dmaSendSet(const void * transmitBuf, bool minc) {
|
|
uint32_t flags = ( (DMA_MINC_MODE*minc) | DMA_FROM_MEM | DMA_TRNS_CMPLT);
|
|
dma_init(_currentSetting->spiDmaDev);
|
|
dma_xfer_size dma_bit_size = (_currentSetting->dataSize==DATA_SIZE_16BIT) ? DMA_SIZE_16BITS : DMA_SIZE_8BITS;
|
|
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, dma_bit_size,
|
|
(volatile void*)transmitBuf, dma_bit_size, flags);// Transmit buffer DMA
|
|
dma_set_priority(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, DMA_PRIORITY_LOW);
|
|
}
|
|
|
|
uint8_t SPIClass::dmaSendRepeat(uint16_t length) {
|
|
if (length == 0) return 0;
|
|
|
|
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length);
|
|
_currentSetting->state = SPI_STATE_TRANSMIT;
|
|
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel); // enable transmit
|
|
spi_tx_dma_enable(_currentSetting->spi_d);
|
|
if (_currentSetting->transmitCallback) return 0;
|
|
|
|
uint32_t m = millis();
|
|
uint8_t b = 0;
|
|
while (!(dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & DMA_ISR_TCIF1)) {
|
|
// Avoid interrupts and just loop waiting for the flag to be set.
|
|
if ((millis() - m) > DMA_TIMEOUT) { b = 2; break; }
|
|
}
|
|
waitSpiTxEnd(_currentSetting->spi_d); // until TXE=1 and BSY=0
|
|
spi_tx_dma_disable(_currentSetting->spi_d);
|
|
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
return b;
|
|
}
|
|
|
|
uint8_t SPIClass::dmaSend(const void * transmitBuf, uint16_t length, bool minc) {
|
|
dmaSendSet(transmitBuf, minc);
|
|
return dmaSendRepeat(length);
|
|
}
|
|
|
|
uint8_t SPIClass::dmaSendAsync(const void * transmitBuf, uint16_t length, bool minc) {
|
|
uint8_t b = 0;
|
|
|
|
if (_currentSetting->state != SPI_STATE_READY) {
|
|
uint32_t m = millis();
|
|
while (!(dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & DMA_ISR_TCIF1)) {
|
|
//Avoid interrupts and just loop waiting for the flag to be set.
|
|
//delayMicroseconds(10);
|
|
if ((millis() - m) > DMA_TIMEOUT) { b = 2; break; }
|
|
}
|
|
waitSpiTxEnd(_currentSetting->spi_d); // until TXE=1 and BSY=0
|
|
spi_tx_dma_disable(_currentSetting->spi_d);
|
|
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
}
|
|
|
|
if (length == 0) return 0;
|
|
uint32_t flags = ( (DMA_MINC_MODE*minc) | DMA_FROM_MEM | DMA_TRNS_CMPLT);
|
|
|
|
dma_init(_currentSetting->spiDmaDev);
|
|
// TX
|
|
dma_xfer_size dma_bit_size = (_currentSetting->dataSize==DATA_SIZE_16BIT) ? DMA_SIZE_16BITS : DMA_SIZE_8BITS;
|
|
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR,
|
|
dma_bit_size, (volatile void*)transmitBuf, dma_bit_size, flags);// Transmit buffer DMA
|
|
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length);
|
|
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit
|
|
spi_tx_dma_enable(_currentSetting->spi_d);
|
|
|
|
_currentSetting->state = SPI_STATE_TRANSMIT;
|
|
return b;
|
|
}
|
|
|
|
|
|
/**
|
|
* New functions added to manage callbacks.
|
|
* Victor Perez 2017
|
|
*/
|
|
void SPIClass::onReceive(void(*callback)()) {
|
|
_currentSetting->receiveCallback = callback;
|
|
if (callback) {
|
|
switch (_currentSetting->spi_d->clk_id) {
|
|
#if BOARD_NR_SPI >= 1
|
|
case RCC_SPI1:
|
|
dma_attach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, &SPIClass::_spi1EventCallback);
|
|
break;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
case RCC_SPI2:
|
|
dma_attach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, &SPIClass::_spi2EventCallback);
|
|
break;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
case RCC_SPI3:
|
|
dma_attach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, &SPIClass::_spi3EventCallback);
|
|
break;
|
|
#endif
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
else {
|
|
dma_detach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);
|
|
}
|
|
}
|
|
|
|
void SPIClass::onTransmit(void(*callback)()) {
|
|
_currentSetting->transmitCallback = callback;
|
|
if (callback) {
|
|
switch (_currentSetting->spi_d->clk_id) {
|
|
#if BOARD_NR_SPI >= 1
|
|
case RCC_SPI1:
|
|
dma_attach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &SPIClass::_spi1EventCallback);
|
|
break;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
case RCC_SPI2:
|
|
dma_attach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &SPIClass::_spi2EventCallback);
|
|
break;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
case RCC_SPI3:
|
|
dma_attach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &SPIClass::_spi3EventCallback);
|
|
break;
|
|
#endif
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
else {
|
|
dma_detach_interrupt(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* TODO: check if better to first call the customer code, next disable the DMA requests.
|
|
* Also see if we need to check whether callbacks are set or not, may be better to be checked
|
|
* during the initial setup and only set the callback to EventCallback if they are set.
|
|
*/
|
|
void SPIClass::EventCallback() {
|
|
waitSpiTxEnd(_currentSetting->spi_d);
|
|
switch (_currentSetting->state) {
|
|
case SPI_STATE_TRANSFER:
|
|
while (spi_is_rx_nonempty(_currentSetting->spi_d)) { /* nada */ }
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
spi_tx_dma_disable(_currentSetting->spi_d);
|
|
spi_rx_dma_disable(_currentSetting->spi_d);
|
|
//dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
//dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);
|
|
if (_currentSetting->receiveCallback)
|
|
_currentSetting->receiveCallback();
|
|
break;
|
|
case SPI_STATE_TRANSMIT:
|
|
_currentSetting->state = SPI_STATE_READY;
|
|
spi_tx_dma_disable(_currentSetting->spi_d);
|
|
//dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
|
|
if (_currentSetting->transmitCallback)
|
|
_currentSetting->transmitCallback();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SPIClass::attachInterrupt() {
|
|
// Should be enableInterrupt()
|
|
}
|
|
|
|
void SPIClass::detachInterrupt() {
|
|
// Should be disableInterrupt()
|
|
}
|
|
|
|
/**
|
|
* Pin accessors
|
|
*/
|
|
|
|
uint8_t SPIClass::misoPin() {
|
|
return dev_to_spi_pins(_currentSetting->spi_d)->miso;
|
|
}
|
|
|
|
uint8_t SPIClass::mosiPin() {
|
|
return dev_to_spi_pins(_currentSetting->spi_d)->mosi;
|
|
}
|
|
|
|
uint8_t SPIClass::sckPin() {
|
|
return dev_to_spi_pins(_currentSetting->spi_d)->sck;
|
|
}
|
|
|
|
uint8_t SPIClass::nssPin() {
|
|
return dev_to_spi_pins(_currentSetting->spi_d)->nss;
|
|
}
|
|
|
|
/**
|
|
* Deprecated functions
|
|
*/
|
|
uint8_t SPIClass::send(uint8_t data) { write(data); return 1; }
|
|
uint8_t SPIClass::send(uint8_t *buf, uint32_t len) { write(buf, len); return len; }
|
|
uint8_t SPIClass::recv() { return read(); }
|
|
|
|
/**
|
|
* DMA call back functions, one per port.
|
|
*/
|
|
#if BOARD_NR_SPI >= 1
|
|
void SPIClass::_spi1EventCallback() {
|
|
reinterpret_cast<class SPIClass*>(_spi1_this)->EventCallback();
|
|
}
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
void SPIClass::_spi2EventCallback() {
|
|
reinterpret_cast<class SPIClass*>(_spi2_this)->EventCallback();
|
|
}
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
void SPIClass::_spi3EventCallback() {
|
|
reinterpret_cast<class SPIClass*>(_spi3_this)->EventCallback();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Auxiliary functions
|
|
*/
|
|
static const spi_pins* dev_to_spi_pins(spi_dev *dev) {
|
|
switch (dev->clk_id) {
|
|
#if BOARD_NR_SPI >= 1
|
|
case RCC_SPI1: return board_spi_pins;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 2
|
|
case RCC_SPI2: return board_spi_pins + 1;
|
|
#endif
|
|
#if BOARD_NR_SPI >= 3
|
|
case RCC_SPI3: return board_spi_pins + 2;
|
|
#endif
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
|
|
static void disable_pwm(const stm32_pin_info *i) {
|
|
if (i->timer_device)
|
|
timer_set_mode(i->timer_device, i->timer_channel, TIMER_DISABLED);
|
|
}
|
|
|
|
static void configure_gpios(spi_dev *dev, bool as_master) {
|
|
const spi_pins *pins = dev_to_spi_pins(dev);
|
|
if (!pins) return;
|
|
|
|
const stm32_pin_info *nssi = &PIN_MAP[pins->nss],
|
|
*scki = &PIN_MAP[pins->sck],
|
|
*misoi = &PIN_MAP[pins->miso],
|
|
*mosii = &PIN_MAP[pins->mosi];
|
|
|
|
disable_pwm(nssi);
|
|
disable_pwm(scki);
|
|
disable_pwm(misoi);
|
|
disable_pwm(mosii);
|
|
|
|
spi_config_gpios(dev, as_master, nssi->gpio_device, nssi->gpio_bit,
|
|
scki->gpio_device, scki->gpio_bit, misoi->gpio_bit,
|
|
mosii->gpio_bit);
|
|
}
|
|
|
|
static const spi_baud_rate baud_rates[8] __FLASH__ = {
|
|
SPI_BAUD_PCLK_DIV_2,
|
|
SPI_BAUD_PCLK_DIV_4,
|
|
SPI_BAUD_PCLK_DIV_8,
|
|
SPI_BAUD_PCLK_DIV_16,
|
|
SPI_BAUD_PCLK_DIV_32,
|
|
SPI_BAUD_PCLK_DIV_64,
|
|
SPI_BAUD_PCLK_DIV_128,
|
|
SPI_BAUD_PCLK_DIV_256,
|
|
};
|
|
|
|
/**
|
|
* Note: This assumes you're on a LeafLabs-style board
|
|
* (CYCLES_PER_MICROSECOND == 72, APB2 at 72MHz, APB1 at 36MHz).
|
|
*/
|
|
static spi_baud_rate determine_baud_rate(spi_dev *dev, uint32_t freq) {
|
|
uint32_t clock = 0;
|
|
switch (rcc_dev_clk(dev->clk_id)) {
|
|
case RCC_AHB:
|
|
case RCC_APB2: clock = STM32_PCLK2; break; // 72 Mhz
|
|
case RCC_APB1: clock = STM32_PCLK1; break; // 36 Mhz
|
|
}
|
|
clock >>= 1;
|
|
|
|
uint8_t i = 0;
|
|
while (i < 7 && freq < clock) { clock >>= 1; i++; }
|
|
return baud_rates[i];
|
|
}
|
|
|
|
SPIClass SPI(SPI_DEVICE);
|
|
|
|
#endif // __STM32F1__
|