Marlin_Firmware/Marlin/src/libs/L64XX/L64XX_Marlin.cpp

915 lines
32 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The monitor_driver routines are a close copy of the TMC code
*/
#include "../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "L64XX_Marlin.h"
L64XX_Marlin L64xxManager;
#include "../../module/stepper/indirection.h"
#include "../../gcode/gcode.h"
#include "../../module/planner.h"
#include "../../HAL/shared/Delay.h"
void echo_yes_no(const bool yes) { serialprintPGM(yes ? PSTR(" YES") : PSTR(" NO ")); }
char L64XX_Marlin::index_to_axis[MAX_L64XX][3] = { "X ", "Y ", "Z ", "X2", "Y2", "Z2", "Z3", "Z4", "E0", "E1", "E2", "E3", "E4", "E5", "E6", "E7" };
#define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../core/debug_out.h"
uint8_t L64XX_Marlin::dir_commands[MAX_L64XX]; // array to hold direction command for each driver
uint8_t L64XX_Marlin::index_to_dir[MAX_L64XX] = { (INVERT_X_DIR), // 0 X
(INVERT_Y_DIR), // 1 Y
(INVERT_Z_DIR), // 2 Z
#if ENABLED(X_DUAL_STEPPER_DRIVERS) // 3 X2
(INVERT_X_DIR) ^ (INVERT_X2_VS_X_DIR),
#else
(INVERT_X_DIR),
#endif
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) // 4 Y2
(INVERT_Y_DIR) ^ (INVERT_Y2_VS_Y_DIR),
#else
(INVERT_Y_DIR),
#endif
(INVERT_Z_DIR), // 5 Z2
(INVERT_Z_DIR), // 6 Z3
(INVERT_Z_DIR), // 7 Z4
(INVERT_E0_DIR), // 8 E0
(INVERT_E1_DIR), // 9 E1
(INVERT_E2_DIR), // 10 E2
(INVERT_E3_DIR), // 11 E3
(INVERT_E4_DIR), // 12 E4
(INVERT_E5_DIR), // 13 E5
(INVERT_E6_DIR), // 14 E6
(INVERT_E7_DIR) // 15 E7
};
volatile uint8_t L64XX_Marlin::spi_abort = false;
uint8_t L64XX_Marlin::spi_active = false;
L64XX_Marlin::L64XX_shadow_t L64XX_Marlin::shadow;
//uint32_t UVLO_ADC = 0x0400; // ADC undervoltage event
void L6470_populate_chain_array() {
#define _L6470_INIT_SPI(Q) do{ stepper##Q.set_chain_info(Q, Q##_CHAIN_POS); }while(0)
#if AXIS_IS_L64XX(X)
_L6470_INIT_SPI(X);
#endif
#if AXIS_IS_L64XX(X2)
_L6470_INIT_SPI(X2);
#endif
#if AXIS_IS_L64XX(Y)
_L6470_INIT_SPI(Y);
#endif
#if AXIS_IS_L64XX(Y2)
_L6470_INIT_SPI(Y2);
#endif
#if AXIS_IS_L64XX(Z)
_L6470_INIT_SPI(Z);
#endif
#if AXIS_IS_L64XX(Z2)
_L6470_INIT_SPI(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
_L6470_INIT_SPI(Z3);
#endif
#if AXIS_IS_L64XX(Z4)
_L6470_INIT_SPI(Z4);
#endif
#if AXIS_IS_L64XX(E0)
_L6470_INIT_SPI(E0);
#endif
#if AXIS_IS_L64XX(E1)
_L6470_INIT_SPI(E1);
#endif
#if AXIS_IS_L64XX(E2)
_L6470_INIT_SPI(E2);
#endif
#if AXIS_IS_L64XX(E3)
_L6470_INIT_SPI(E3);
#endif
#if AXIS_IS_L64XX(E4)
_L6470_INIT_SPI(E4);
#endif
#if AXIS_IS_L64XX(E5)
_L6470_INIT_SPI(E5);
#endif
}
/**
* Some status bit positions & definitions differ per driver.
* Copy info to known locations to simplfy check/display logic.
* 1. Copy stepper status
* 2. Copy status bit definitions
* 3. Copy status layout
* 4. Make all error bits active low (as needed)
*/
uint16_t L64XX_Marlin::get_stepper_status(L64XX &st) {
shadow.STATUS_AXIS_RAW = st.getStatus();
shadow.STATUS_AXIS = shadow.STATUS_AXIS_RAW;
shadow.STATUS_AXIS_LAYOUT = st.L6470_status_layout;
shadow.AXIS_OCD_TH_MAX = st.OCD_TH_MAX;
shadow.AXIS_STALL_TH_MAX = st.STALL_TH_MAX;
shadow.AXIS_OCD_CURRENT_CONSTANT_INV = st.OCD_CURRENT_CONSTANT_INV;
shadow.AXIS_STALL_CURRENT_CONSTANT_INV = st.STALL_CURRENT_CONSTANT_INV;
shadow.L6470_AXIS_CONFIG = st.L64XX_CONFIG;
shadow.L6470_AXIS_STATUS = st.L64XX_STATUS;
shadow.STATUS_AXIS_OCD = st.STATUS_OCD;
shadow.STATUS_AXIS_SCK_MOD = st.STATUS_SCK_MOD;
shadow.STATUS_AXIS_STEP_LOSS_A = st.STATUS_STEP_LOSS_A;
shadow.STATUS_AXIS_STEP_LOSS_B = st.STATUS_STEP_LOSS_B;
shadow.STATUS_AXIS_TH_SD = st.STATUS_TH_SD;
shadow.STATUS_AXIS_TH_WRN = st.STATUS_TH_WRN;
shadow.STATUS_AXIS_UVLO = st.STATUS_UVLO;
shadow.STATUS_AXIS_WRONG_CMD = st.STATUS_WRONG_CMD;
shadow.STATUS_AXIS_CMD_ERR = st.STATUS_CMD_ERR;
shadow.STATUS_AXIS_NOTPERF_CMD = st.STATUS_NOTPERF_CMD;
switch (shadow.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: { // L6470
shadow.L6470_ERROR_MASK = shadow.STATUS_AXIS_UVLO | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD | shadow.STATUS_AXIS_OCD | shadow.STATUS_AXIS_STEP_LOSS_A | shadow.STATUS_AXIS_STEP_LOSS_B;
shadow.STATUS_AXIS ^= (shadow.STATUS_AXIS_WRONG_CMD | shadow.STATUS_AXIS_NOTPERF_CMD); // invert just error bits that are active high
break;
}
case L6474_STATUS_LAYOUT: { // L6474
shadow.L6470_ERROR_MASK = shadow.STATUS_AXIS_UVLO | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD | shadow.STATUS_AXIS_OCD ;
shadow.STATUS_AXIS ^= (shadow.STATUS_AXIS_WRONG_CMD | shadow.STATUS_AXIS_NOTPERF_CMD); // invert just error bits that are active high
break;
}
case L6480_STATUS_LAYOUT: { // L6480 & powerSTEP01
shadow.L6470_ERROR_MASK = shadow.STATUS_AXIS_UVLO | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD | shadow.STATUS_AXIS_OCD | shadow.STATUS_AXIS_STEP_LOSS_A | shadow.STATUS_AXIS_STEP_LOSS_B;
shadow.STATUS_AXIS ^= (shadow.STATUS_AXIS_CMD_ERR | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD); // invert just error bits that are active high
break;
}
}
return shadow.STATUS_AXIS;
}
void L64XX_Marlin::init() { // Set up SPI and then init chips
ENABLE_RESET_L64XX_CHIPS(LOW); // hardware reset of drivers
DELAY_US(100);
ENABLE_RESET_L64XX_CHIPS(HIGH);
DELAY_US(1000); // need about 650µs for the chip(s) to fully start up
L6470_populate_chain_array(); // Set up array to control where in the SPI transfer sequence a particular stepper's data goes
spi_init(); // Since L64XX SPI pins are unset we must init SPI here
init_to_defaults(); // init the chips
}
uint16_t L64XX_Marlin::get_status(const L64XX_axis_t axis) {
#define STATUS_L6470(Q) get_stepper_status(stepper##Q)
switch (axis) {
default: break;
#if AXIS_IS_L64XX(X)
case X : return STATUS_L6470(X);
#endif
#if AXIS_IS_L64XX(Y)
case Y : return STATUS_L6470(Y);
#endif
#if AXIS_IS_L64XX(Z)
case Z : return STATUS_L6470(Z);
#endif
#if AXIS_IS_L64XX(X2)
case X2: return STATUS_L6470(X2);
#endif
#if AXIS_IS_L64XX(Y2)
case Y2: return STATUS_L6470(Y2);
#endif
#if AXIS_IS_L64XX(Z2)
case Z2: return STATUS_L6470(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
case Z3: return STATUS_L6470(Z3);
#endif
#if AXIS_IS_L64XX(Z4)
case Z4: return STATUS_L6470(Z4);
#endif
#if AXIS_IS_L64XX(E0)
case E0: return STATUS_L6470(E0);
#endif
#if AXIS_IS_L64XX(E1)
case E1: return STATUS_L6470(E1);
#endif
#if AXIS_IS_L64XX(E2)
case E2: return STATUS_L6470(E2);
#endif
#if AXIS_IS_L64XX(E3)
case E3: return STATUS_L6470(E3);
#endif
#if AXIS_IS_L64XX(E4)
case E4: return STATUS_L6470(E4);
#endif
#if AXIS_IS_L64XX(E5)
case E5: return STATUS_L6470(E5);
#endif
}
return 0; // Not needed but kills a compiler warning
}
uint32_t L64XX_Marlin::get_param(const L64XX_axis_t axis, const uint8_t param) {
#define GET_L6470_PARAM(Q) L6470_GETPARAM(param, Q)
switch (axis) {
default: break;
#if AXIS_IS_L64XX(X)
case X : return GET_L6470_PARAM(X);
#endif
#if AXIS_IS_L64XX(Y)
case Y : return GET_L6470_PARAM(Y);
#endif
#if AXIS_IS_L64XX(Z)
case Z : return GET_L6470_PARAM(Z);
#endif
#if AXIS_IS_L64XX(X2)
case X2: return GET_L6470_PARAM(X2);
#endif
#if AXIS_IS_L64XX(Y2)
case Y2: return GET_L6470_PARAM(Y2);
#endif
#if AXIS_IS_L64XX(Z2)
case Z2: return GET_L6470_PARAM(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
case Z3: return GET_L6470_PARAM(Z3);
#endif
#if AXIS_IS_L64XX(Z4)
case Z4: return GET_L6470_PARAM(Z4);
#endif
#if AXIS_IS_L64XX(E0)
case E0: return GET_L6470_PARAM(E0);
#endif
#if AXIS_IS_L64XX(E1)
case E1: return GET_L6470_PARAM(E1);
#endif
#if AXIS_IS_L64XX(E2)
case E2: return GET_L6470_PARAM(E2);
#endif
#if AXIS_IS_L64XX(E3)
case E3: return GET_L6470_PARAM(E3);
#endif
#if AXIS_IS_L64XX(E4)
case E4: return GET_L6470_PARAM(E4);
#endif
#if AXIS_IS_L64XX(E5)
case E5: return GET_L6470_PARAM(E5);
#endif
}
return 0; // not needed but kills a compiler warning
}
void L64XX_Marlin::set_param(const L64XX_axis_t axis, const uint8_t param, const uint32_t value) {
#define SET_L6470_PARAM(Q) stepper##Q.SetParam(param, value)
switch (axis) {
default: break;
#if AXIS_IS_L64XX(X)
case X : SET_L6470_PARAM(X); break;
#endif
#if AXIS_IS_L64XX(Y)
case Y : SET_L6470_PARAM(Y); break;
#endif
#if AXIS_IS_L64XX(Z)
case Z : SET_L6470_PARAM(Z); break;
#endif
#if AXIS_IS_L64XX(X2)
case X2: SET_L6470_PARAM(X2); break;
#endif
#if AXIS_IS_L64XX(Y2)
case Y2: SET_L6470_PARAM(Y2); break;
#endif
#if AXIS_IS_L64XX(Z2)
case Z2: SET_L6470_PARAM(Z2); break;
#endif
#if AXIS_IS_L64XX(Z3)
case Z3: SET_L6470_PARAM(Z3); break;
#endif
#if AXIS_IS_L64XX(Z4)
case Z4: SET_L6470_PARAM(Z4); break;
#endif
#if AXIS_IS_L64XX(E0)
case E0: SET_L6470_PARAM(E0); break;
#endif
#if AXIS_IS_L64XX(E1)
case E1: SET_L6470_PARAM(E1); break;
#endif
#if AXIS_IS_L64XX(E2)
case E2: SET_L6470_PARAM(E2); break;
#endif
#if AXIS_IS_L64XX(E3)
case E3: SET_L6470_PARAM(E3); break;
#endif
#if AXIS_IS_L64XX(E4)
case E4: SET_L6470_PARAM(E4); break;
#endif
#if AXIS_IS_L64XX(E5)
case E5: SET_L6470_PARAM(E5); break;
#endif
}
}
inline void echo_min_max(const char a, const float &min, const float &max) {
DEBUG_CHAR(' '); DEBUG_CHAR(a);
DEBUG_ECHOPAIR(" min = ", min);
DEBUG_ECHOLNPAIR(" max = ", max);
}
inline void echo_oct_used(const float &oct, const uint8_t stall) {
DEBUG_ECHOPAIR("over_current_threshold used : ", oct);
serialprintPGM(stall ? PSTR(" (Stall") : PSTR(" (OCD"));
DEBUG_ECHOLNPGM(" threshold)");
}
inline void err_out_of_bounds() { DEBUG_ECHOLNPGM("Test aborted - motion out of bounds"); }
uint8_t L64XX_Marlin::get_user_input(uint8_t &driver_count, L64XX_axis_t axis_index[3], char axis_mon[3][3],
float &position_max, float &position_min, float &final_feedrate, uint8_t &kval_hold,
uint8_t over_current_flag, uint8_t &OCD_TH_val, uint8_t &STALL_TH_val, uint16_t &over_current_threshold
) {
// Return TRUE if the calling routine needs to abort/kill
uint16_t displacement = 0; // " = 0" to eliminate compiler warning
uint8_t j; // general purpose counter
if (!all_axes_homed()) {
DEBUG_ECHOLNPGM("Test aborted - home all before running this command");
return true;
}
uint8_t found_displacement = false;
LOOP_XYZE(i) if (uint16_t _displacement = parser.intval(axis_codes[i])) {
found_displacement = true;
displacement = _displacement;
uint8_t axis_offset = parser.byteval('J');
axis_mon[0][0] = axis_codes[i]; // axis ASCII value (target character)
uint8_t driver_count_local = 0; // Can't use "driver_count" directly as a subscript because it's passed by reference
if (axis_offset >= 2 || axis_mon[0][0] == 'E') { // Single axis, E0, or E1
axis_mon[0][1] = axis_offset + '0';
for (j = 0; j < MAX_L64XX; j++) { // See how many drivers on this axis
const char * const str = index_to_axis[j];
if (axis_mon[0][0] == str[0]) {
char * const mon = axis_mon[driver_count_local];
mon[0] = str[0];
mon[1] = str[1];
mon[2] = str[2]; // append end of string
axis_index[driver_count_local] = (L64XX_axis_t)j; // set axis index
driver_count_local++;
}
}
}
else if (axis_offset == 0) { // One or more axes
for (j = 0; j < MAX_L64XX; j++) { // See how many drivers on this axis
const char * const str = index_to_axis[j];
if (axis_mon[0][0] == str[0]) {
char * const mon = axis_mon[driver_count_local];
mon[0] = str[0];
mon[1] = str[1];
mon[2] = str[2]; // append end of string
axis_index[driver_count_local] = (L64XX_axis_t)j; // set axis index
driver_count_local++;
}
}
driver_count = driver_count_local;
}
break; // only take first axis found
}
if (!found_displacement) {
DEBUG_ECHOLNPGM("Test aborted - AXIS with displacement is required");
return true;
}
//
// Position calcs & checks
//
const float X_center = LOGICAL_X_POSITION(current_position.x),
Y_center = LOGICAL_Y_POSITION(current_position.y),
Z_center = LOGICAL_Z_POSITION(current_position.z),
E_center = current_position.e;
switch (axis_mon[0][0]) {
default: position_max = position_min = 0; break;
case 'X': {
position_min = X_center - displacement;
position_max = X_center + displacement;
echo_min_max('X', position_min, position_max);
if (false
#ifdef X_MIN_POS
|| position_min < (X_MIN_POS)
#endif
#ifdef X_MAX_POS
|| position_max > (X_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'Y': {
position_min = Y_center - displacement;
position_max = Y_center + displacement;
echo_min_max('Y', position_min, position_max);
if (false
#ifdef Y_MIN_POS
|| position_min < (Y_MIN_POS)
#endif
#ifdef Y_MAX_POS
|| position_max > (Y_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'Z': {
position_min = Z_center - displacement;
position_max = Z_center + displacement;
echo_min_max('Z', position_min, position_max);
if (false
#ifdef Z_MIN_POS
|| position_min < (Z_MIN_POS)
#endif
#ifdef Z_MAX_POS
|| position_max > (Z_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'E': {
position_min = E_center - displacement;
position_max = E_center + displacement;
echo_min_max('E', position_min, position_max);
} break;
}
//
// Work on the drivers
//
for (uint8_t k = 0; k < driver_count; k++) {
uint8_t not_found = true;
for (j = 1; j <= L64XX::chain[0]; j++) {
const char * const ind_axis = index_to_axis[L64XX::chain[j]];
if (ind_axis[0] == axis_mon[k][0] && ind_axis[1] == axis_mon[k][1]) { // See if a L6470 driver
not_found = false;
break;
}
}
if (not_found) {
driver_count = k;
axis_mon[k][0] = ' '; // mark this entry invalid
break;
}
}
if (driver_count == 0) {
DEBUG_ECHOLNPGM("Test aborted - not a L6470 axis");
return true;
}
DEBUG_ECHOPGM("Monitoring:");
for (j = 0; j < driver_count; j++) DEBUG_ECHOPAIR(" ", axis_mon[j]);
DEBUG_EOL();
// now have a list of driver(s) to monitor
//
// TVAL & kVAL_HOLD checks & settings
//
const L64XX_shadow_t &sh = shadow;
get_status(axis_index[0]); // populate shadow array
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // L6474 - use TVAL
uint16_t TVAL_current = parser.ushortval('T');
if (TVAL_current) {
uint8_t TVAL_count = (TVAL_current / sh.AXIS_STALL_CURRENT_CONSTANT_INV) - 1;
LIMIT(TVAL_count, 0, sh.AXIS_STALL_TH_MAX);
for (j = 0; j < driver_count; j++)
set_param(axis_index[j], L6474_TVAL, TVAL_count);
}
// only print the tval from one of the drivers
kval_hold = get_param(axis_index[0], L6474_TVAL);
DEBUG_ECHOLNPAIR("TVAL current (mA) = ", (kval_hold + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV);
}
else {
kval_hold = parser.byteval('K');
if (kval_hold) {
DEBUG_ECHOLNPAIR("kval_hold = ", kval_hold);
for (j = 0; j < driver_count; j++)
set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold);
}
else {
// only print the KVAL_HOLD from one of the drivers
kval_hold = get_param(axis_index[0], L6470_KVAL_HOLD);
DEBUG_ECHOLNPAIR("KVAL_HOLD = ", kval_hold);
}
}
//
// Overcurrent checks & settings
//
if (over_current_flag) {
uint8_t OCD_TH_val_local = 0, // compiler thinks OCD_TH_val is unused if use it directly
STALL_TH_val_local = 0; // just in case ...
over_current_threshold = parser.intval('I');
if (over_current_threshold) {
OCD_TH_val_local = over_current_threshold/375;
LIMIT(OCD_TH_val_local, 0, 15);
STALL_TH_val_local = over_current_threshold/31.25;
LIMIT(STALL_TH_val_local, 0, 127);
uint16_t OCD_TH_actual = (OCD_TH_val_local + 1) * 375,
STALL_TH_actual = (STALL_TH_val_local + 1) * 31.25;
if (OCD_TH_actual < STALL_TH_actual) {
OCD_TH_val_local++;
OCD_TH_actual = (OCD_TH_val_local + 1) * 375;
}
DEBUG_ECHOLNPAIR("over_current_threshold specified: ", over_current_threshold);
if (!(sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)) echo_oct_used((STALL_TH_val_local + 1) * 31.25, true);
echo_oct_used((OCD_TH_val_local + 1) * 375, false);
#define SET_OVER_CURRENT(Q) do { stepper##Q.SetParam(L6470_STALL_TH, STALL_TH_val_local); stepper##Q.SetParam(L6470_OCD_TH, OCD_TH_val_local);} while (0)
for (j = 0; j < driver_count; j++) {
set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val_local);
set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val_local);
}
}
else {
// only get & print the OVER_CURRENT values from one of the drivers
STALL_TH_val_local = get_param(axis_index[0], L6470_STALL_TH);
OCD_TH_val_local = get_param(axis_index[0], L6470_OCD_TH);
if (!(sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)) echo_oct_used((STALL_TH_val_local + 1) * 31.25, true);
echo_oct_used((OCD_TH_val_local + 1) * 375, false);
} // over_current_threshold
for (j = 0; j < driver_count; j++) { // set all drivers on axis the same
set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val_local);
set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val_local);
}
OCD_TH_val = OCD_TH_val_local; // force compiler to update the main routine's copy
STALL_TH_val = STALL_TH_val_local; // force compiler to update the main routine's copy
} // end of overcurrent
//
// Feedrate
//
final_feedrate = parser.floatval('F');
if (final_feedrate == 0) {
static constexpr float default_max_feedrate[] = DEFAULT_MAX_FEEDRATE;
const uint8_t num_feedrates = COUNT(default_max_feedrate);
for (j = 0; j < num_feedrates; j++) {
if (axis_codes[j] == axis_mon[0][0]) {
final_feedrate = default_max_feedrate[j];
break;
}
}
if (j == 3 && num_feedrates > 4) { // have more than one extruder feedrate
uint8_t extruder_num = axis_mon[0][1] - '0';
if (j <= num_feedrates - extruder_num) // have a feedrate specifically for this extruder
final_feedrate = default_max_feedrate[j + extruder_num];
else
final_feedrate = default_max_feedrate[3]; // use E0 feedrate for this extruder
}
final_feedrate *= 60; // convert to mm/minute
} // end of feedrate
return false; // FALSE indicates no user input problems
}
void L64XX_Marlin::say_axis(const L64XX_axis_t axis, const uint8_t label/*=true*/) {
if (label) SERIAL_ECHOPGM("AXIS:");
const char * const str = L64xxManager.index_to_axis[axis];
SERIAL_CHAR(' ', str[0], str[1], ' ');
}
#if ENABLED(L6470_CHITCHAT)
// Assumes status bits have been inverted
void L64XX_Marlin::error_status_decode(const uint16_t status, const L64XX_axis_t axis,
const uint16_t _status_axis_th_sd, const uint16_t _status_axis_th_wrn,
const uint16_t _status_axis_step_loss_a, const uint16_t _status_axis_step_loss_b,
const uint16_t _status_axis_ocd, const uint8_t _status_axis_layout
) {
say_axis(axis);
DEBUG_ECHOPGM(" THERMAL: ");
serialprintPGM((status & _status_axis_th_sd) ? PSTR("SHUTDOWN") : (status & _status_axis_th_wrn) ? PSTR("WARNING ") : PSTR("OK "));
DEBUG_ECHOPGM(" OVERCURRENT: ");
echo_yes_no((status & _status_axis_ocd) != 0);
if (!(_status_axis_layout == L6474_STATUS_LAYOUT)) { // L6474 doesn't have these bits
DEBUG_ECHOPGM(" STALL: ");
echo_yes_no((status & (_status_axis_step_loss_a | _status_axis_step_loss_b)) != 0);
}
DEBUG_EOL();
}
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////
////
//// MONITOR_L6470_DRIVER_STATUS routines
////
//////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(MONITOR_L6470_DRIVER_STATUS)
bool L64XX_Marlin::monitor_paused = false; // Flag to skip monitor during M122, M906, M916, M917, M918, etc.
struct L6470_driver_data {
uint8_t driver_index;
uint32_t driver_status;
uint8_t is_otw;
uint8_t otw_counter;
uint8_t is_ot;
uint8_t is_hi_Z;
uint8_t com_counter;
};
L6470_driver_data driver_L6470_data[] = {
#if AXIS_IS_L64XX(X)
{ 0, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Y)
{ 1, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z)
{ 2, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(X2)
{ 3, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Y2)
{ 4, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z2)
{ 5, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z3)
{ 6, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z4)
{ 6, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E0)
{ 7, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E1)
{ 8, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E2)
{ 9, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E3)
{ 10, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E4)
{ 11, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E5)
{ 12, 0, 0, 0, 0, 0, 0 }
#endif
};
void L64XX_Marlin::append_stepper_err(char* &p, const uint8_t stepper_index, const char * const err/*=nullptr*/) {
p += sprintf_P(p, PSTR("Stepper %c%c "), index_to_axis[stepper_index][0], index_to_axis[stepper_index][1]);
if (err) p += sprintf_P(p, err);
}
void L64XX_Marlin::monitor_update(L64XX_axis_t stepper_index) {
if (spi_abort) return; // don't do anything if set_directions() has occurred
const L64XX_shadow_t &sh = shadow;
get_status(stepper_index); // get stepper status and details
uint16_t status = sh.STATUS_AXIS;
uint8_t kval_hold, tval;
char temp_buf[120], *p = temp_buf;
uint8_t j;
for (j = 0; j < L64XX::chain[0]; j++) // find the table for this stepper
if (driver_L6470_data[j].driver_index == stepper_index) break;
driver_L6470_data[j].driver_status = status;
uint16_t _status = ~status; // all error bits are active low
if (status == 0 || status == 0xFFFF) { // com problem
if (driver_L6470_data[j].com_counter == 0) { // warn user when it first happens
driver_L6470_data[j].com_counter++;
append_stepper_err(p, stepper_index, PSTR(" - communications lost\n"));
DEBUG_ECHO(temp_buf);
}
else {
driver_L6470_data[j].com_counter++;
if (driver_L6470_data[j].com_counter > 240) { // remind of com problem about every 2 minutes
driver_L6470_data[j].com_counter = 1;
append_stepper_err(p, stepper_index, PSTR(" - still no communications\n"));
DEBUG_ECHO(temp_buf);
}
}
}
else {
if (driver_L6470_data[j].com_counter) { // comms re-established
driver_L6470_data[j].com_counter = 0;
append_stepper_err(p, stepper_index, PSTR(" - communications re-established\n.. setting all drivers to default values\n"));
DEBUG_ECHO(temp_buf);
init_to_defaults();
}
else {
// no com problems - do the usual checks
if (_status & sh.L6470_ERROR_MASK) {
append_stepper_err(p, stepper_index);
if (status & STATUS_HIZ) { // The driver has shut down. HiZ is active high
driver_L6470_data[j].is_hi_Z = true;
p += sprintf_P(p, PSTR("%cIS SHUT DOWN"), ' ');
//if (_status & sh.STATUS_AXIS_TH_SD) { // strange - TH_SD never seems to go active, must be implied by the HiZ and TH_WRN
if (_status & sh.STATUS_AXIS_TH_WRN) { // over current shutdown
p += sprintf_P(p, PSTR("%cdue to over temperature"), ' ');
driver_L6470_data[j].is_ot = true;
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // L6474
tval = get_param(stepper_index, L6474_TVAL) - 2 * KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6474_TVAL, tval); // reduce TVAL
p += sprintf_P(p, PSTR(" - TVAL reduced by %d to %d mA"), uint16_t (2 * KVAL_HOLD_STEP_DOWN * sh.AXIS_STALL_CURRENT_CONSTANT_INV), uint16_t ((tval + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV)); // let user know
}
else {
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD) - 2 * KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6470_KVAL_HOLD, kval_hold); // reduce KVAL_HOLD
p += sprintf_P(p, PSTR(" - KVAL_HOLD reduced by %d to %d"), 2 * KVAL_HOLD_STEP_DOWN, kval_hold); // let user know
}
}
else
driver_L6470_data[j].is_ot = false;
}
else {
driver_L6470_data[j].is_hi_Z = false;
if (_status & sh.STATUS_AXIS_TH_WRN) { // have an over temperature warning
driver_L6470_data[j].is_otw = true;
driver_L6470_data[j].otw_counter++;
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD);
if (driver_L6470_data[j].otw_counter > 4) { // otw present for 2 - 2.5 seconds, reduce KVAL_HOLD
driver_L6470_data[j].otw_counter = 0;
driver_L6470_data[j].is_otw = true;
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // L6474
tval = get_param(stepper_index, L6474_TVAL) - KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6474_TVAL, tval); // reduce TVAL
p += sprintf_P(p, PSTR(" - TVAL reduced by %d to %d mA"), uint16_t (KVAL_HOLD_STEP_DOWN * sh.AXIS_STALL_CURRENT_CONSTANT_INV), uint16_t ((tval + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV)); // let user know
}
else {
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD) - KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6470_KVAL_HOLD, kval_hold); // reduce KVAL_HOLD
p += sprintf_P(p, PSTR(" - KVAL_HOLD reduced by %d to %d"), KVAL_HOLD_STEP_DOWN, kval_hold); // let user know
}
}
else if (driver_L6470_data[j].otw_counter)
p += sprintf_P(p, PSTR("%c- thermal warning"), ' '); // warn user
}
}
#if ENABLED(L6470_STOP_ON_ERROR)
if (_status & (sh.STATUS_AXIS_UVLO | sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD))
kill(temp_buf);
#endif
#if ENABLED(L6470_CHITCHAT)
if (_status & sh.STATUS_AXIS_OCD)
p += sprintf_P(p, PSTR("%c over current"), ' ');
if (_status & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B))
p += sprintf_P(p, PSTR("%c stall"), ' ');
if (_status & sh.STATUS_AXIS_UVLO)
p += sprintf_P(p, PSTR("%c under voltage lock out"), ' ');
p += sprintf_P(p, PSTR("%c\n"), ' ');
#endif
DEBUG_ECHOLN(temp_buf); // print the error message
}
else {
driver_L6470_data[j].is_ot = false;
driver_L6470_data[j].otw_counter = 0; //clear out warning indicators
driver_L6470_data[j].is_otw = false;
} // end usual checks
} // comms established but have errors
} // comms re-established
} // end monitor_update()
void L64XX_Marlin::monitor_driver() {
static millis_t next_cOT = 0;
if (ELAPSED(millis(), next_cOT)) {
next_cOT = millis() + 500;
if (!monitor_paused) { // Skip during M122, M906, M916, M917 or M918 (could steal status result from test)
spi_active = true; // Tell set_directions() a series of SPI transfers is underway
#if AXIS_IS_L64XX(X)
monitor_update(X);
#endif
#if AXIS_IS_L64XX(Y)
monitor_update(Y);
#endif
#if AXIS_IS_L64XX(Z)
monitor_update(Z);
#endif
#if AXIS_IS_L64XX(X2)
monitor_update(X2);
#endif
#if AXIS_IS_L64XX(Y2)
monitor_update(Y2);
#endif
#if AXIS_IS_L64XX(Z2)
monitor_update(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
monitor_update(Z3);
#endif
#if AXIS_IS_L64XX(Z4)
monitor_update(Z4);
#endif
#if AXIS_IS_L64XX(E0)
monitor_update(E0);
#endif
#if AXIS_IS_L64XX(E1)
monitor_update(E1);
#endif
#if AXIS_IS_L64XX(E2)
monitor_update(E2);
#endif
#if AXIS_IS_L64XX(E3)
monitor_update(E3);
#endif
#if AXIS_IS_L64XX(E4)
monitor_update(E4);
#endif
#if AXIS_IS_L64XX(E5)
monitor_update(E5);
#endif
#if ENABLED(L6470_DEBUG)
if (report_L6470_status) DEBUG_EOL();
#endif
spi_active = false; // done with all SPI transfers - clear handshake flags
spi_abort = false;
}
}
}
#endif // MONITOR_L6470_DRIVER_STATUS
#endif // HAS_L64XX