Marlin_Firmware/Marlin/src/module/temperature.cpp
2021-12-25 03:23:09 -06:00

4200 lines
142 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* temperature.cpp - temperature control
*/
// Useful when debugging thermocouples
//#define IGNORE_THERMOCOUPLE_ERRORS
#include "../MarlinCore.h"
#include "../HAL/shared/Delay.h"
#include "../lcd/marlinui.h"
#include "temperature.h"
#include "endstops.h"
#include "planner.h"
#include "printcounter.h"
#if EITHER(HAS_COOLER, LASER_COOLANT_FLOW_METER)
#include "../feature/cooler.h"
#include "../feature/spindle_laser.h"
#endif
#if ENABLED(USE_CONTROLLER_FAN)
#include "../feature/controllerfan.h"
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "motion.h"
#endif
#if ENABLED(DWIN_CREALITY_LCD)
#include "../lcd/e3v2/creality/dwin.h"
#elif ENABLED(DWIN_CREALITY_LCD_ENHANCED)
#include "../lcd/e3v2/enhanced/dwin.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extui/ui_api.h"
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../feature/host_actions.h"
#endif
#if HAS_TEMP_SENSOR
#include "../gcode/gcode.h"
#endif
#if ENABLED(NOZZLE_PARK_FEATURE)
#include "../libs/nozzle.h"
#endif
// MAX TC related macros
#define TEMP_SENSOR_IS_MAX(n, M) (ENABLED(TEMP_SENSOR_##n##_IS_MAX##M) || (ENABLED(TEMP_SENSOR_REDUNDANT_IS_MAX##M) && REDUNDANT_TEMP_MATCH(SOURCE, E##n)))
#define TEMP_SENSOR_IS_ANY_MAX_TC(n) (ENABLED(TEMP_SENSOR_##n##_IS_MAX_TC) || (ENABLED(TEMP_SENSOR_REDUNDANT_IS_MAX_TC) && REDUNDANT_TEMP_MATCH(SOURCE, E##n)))
// LIB_MAX6675 can be added to the build_flags in platformio.ini to use a user-defined library
// If LIB_MAX6675 is not on the build_flags then raw SPI reads will be used.
#if HAS_MAX6675 && USE_LIB_MAX6675
#include <max6675.h>
#define HAS_MAX6675_LIBRARY 1
#endif
// LIB_MAX31855 can be added to the build_flags in platformio.ini to use a user-defined library.
// If LIB_MAX31855 is not on the build_flags then raw SPI reads will be used.
#if HAS_MAX31855 && USE_ADAFRUIT_MAX31855
#include <Adafruit_MAX31855.h>
#define HAS_MAX31855_LIBRARY 1
typedef Adafruit_MAX31855 MAX31855;
#endif
#if HAS_MAX31865
#if USE_ADAFRUIT_MAX31865
#include <Adafruit_MAX31865.h>
typedef Adafruit_MAX31865 MAX31865;
#else
#include "../libs/MAX31865.h"
#endif
#endif
#if HAS_MAX6675_LIBRARY || HAS_MAX31855_LIBRARY || HAS_MAX31865
#define HAS_MAXTC_LIBRARIES 1
#endif
// If we have a MAX TC with SCK and MISO pins defined, it's either on a separate/dedicated Hardware
// SPI bus, or some pins for Software SPI. Alternate Hardware SPI buses are not supported yet, so
// your SPI options are:
//
// 1. Only CS pin(s) defined: Hardware SPI on the default bus (usually the SD card SPI).
// 2. CS, MISO, and SCK pins defined: Software SPI on a separate bus, as defined by MISO, SCK.
// 3. CS, MISO, and SCK pins w/ FORCE_HW_SPI: Hardware SPI on the default bus, ignoring MISO, SCK.
//
#if TEMP_SENSOR_IS_ANY_MAX_TC(0) && TEMP_SENSOR_0_HAS_SPI_PINS && DISABLED(TEMP_SENSOR_FORCE_HW_SPI)
#define TEMP_SENSOR_0_USES_SW_SPI 1
#endif
#if TEMP_SENSOR_IS_ANY_MAX_TC(1) && TEMP_SENSOR_1_HAS_SPI_PINS && DISABLED(TEMP_SENSOR_FORCE_HW_SPI)
#define TEMP_SENSOR_1_USES_SW_SPI 1
#endif
#if (TEMP_SENSOR_0_USES_SW_SPI || TEMP_SENSOR_1_USES_SW_SPI) && !HAS_MAXTC_LIBRARIES
#include "../libs/private_spi.h"
#define HAS_MAXTC_SW_SPI 1
// Define pins for SPI-based sensors
#if TEMP_SENSOR_0_USES_SW_SPI
#define SW_SPI_SCK_PIN TEMP_0_SCK_PIN
#define SW_SPI_MISO_PIN TEMP_0_MISO_PIN
#if PIN_EXISTS(TEMP_0_MOSI)
#define SW_SPI_MOSI_PIN TEMP_0_MOSI_PIN
#endif
#else
#define SW_SPI_SCK_PIN TEMP_1_SCK_PIN
#define SW_SPI_MISO_PIN TEMP_1_MISO_PIN
#if PIN_EXISTS(TEMP_1_MOSI)
#define SW_SPI_MOSI_PIN TEMP_1_MOSI_PIN
#endif
#endif
#ifndef SW_SPI_MOSI_PIN
#define SW_SPI_MOSI_PIN SD_MOSI_PIN
#endif
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
#include "stepper.h"
#endif
#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
#include "../feature/babystep.h"
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#include "../feature/filwidth.h"
#endif
#if HAS_POWER_MONITOR
#include "../feature/power_monitor.h"
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "../feature/e_parser.h"
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
#include "../feature/leds/printer_event_leds.h"
#endif
#if ENABLED(JOYSTICK)
#include "../feature/joystick.h"
#endif
#if ENABLED(SINGLENOZZLE)
#include "tool_change.h"
#endif
#if USE_BEEPER
#include "../libs/buzzer.h"
#endif
#if HAS_SERVOS
#include "servo.h"
#endif
#if ANY(TEMP_SENSOR_0_IS_THERMISTOR, TEMP_SENSOR_1_IS_THERMISTOR, TEMP_SENSOR_2_IS_THERMISTOR, TEMP_SENSOR_3_IS_THERMISTOR, \
TEMP_SENSOR_4_IS_THERMISTOR, TEMP_SENSOR_5_IS_THERMISTOR, TEMP_SENSOR_6_IS_THERMISTOR, TEMP_SENSOR_7_IS_THERMISTOR )
#define HAS_HOTEND_THERMISTOR 1
#endif
#if HAS_HOTEND_THERMISTOR
#define NEXT_TEMPTABLE(N) ,TEMPTABLE_##N
#define NEXT_TEMPTABLE_LEN(N) ,TEMPTABLE_##N##_LEN
static const temp_entry_t* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS(TEMPTABLE_0 REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE));
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(TEMPTABLE_0_LEN REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE_LEN));
#endif
Temperature thermalManager;
PGMSTR(str_t_thermal_runaway, STR_T_THERMAL_RUNAWAY);
PGMSTR(str_t_heating_failed, STR_T_HEATING_FAILED);
/**
* Macros to include the heater id in temp errors. The compiler's dead-code
* elimination should (hopefully) optimize out the unused strings.
*/
#if HAS_HEATED_BED
#define _BED_FSTR(h) (h) == H_BED ? GET_TEXT_F(MSG_BED) :
#else
#define _BED_FSTR(h)
#endif
#if HAS_HEATED_CHAMBER
#define _CHAMBER_FSTR(h) (h) == H_CHAMBER ? GET_TEXT_F(MSG_CHAMBER) :
#else
#define _CHAMBER_FSTR(h)
#endif
#if HAS_COOLER
#define _COOLER_FSTR(h) (h) == H_COOLER ? GET_TEXT_F(MSG_COOLER) :
#else
#define _COOLER_FSTR(h)
#endif
#define _E_FSTR(h,N) ((HOTENDS) > N && (h) == N) ? F(LCD_STR_E##N) :
#define HEATER_FSTR(h) _BED_FSTR(h) _CHAMBER_FSTR(h) _COOLER_FSTR(h) _E_FSTR(h,1) _E_FSTR(h,2) _E_FSTR(h,3) _E_FSTR(h,4) _E_FSTR(h,5) F(LCD_STR_E0)
//
// Initialize MAX TC objects/SPI
//
#if HAS_MAX_TC
#if HAS_MAXTC_SW_SPI
// Initialize SoftSPI for non-lib Software SPI; Libraries take care of it themselves.
template<uint8_t MisoPin, uint8_t MosiPin, uint8_t SckPin>
SoftSPI<MisoPin, MosiPin, SckPin> SPIclass<MisoPin, MosiPin, SckPin>::softSPI;
SPIclass<SW_SPI_MISO_PIN, SW_SPI_MOSI_PIN, SW_SPI_SCK_PIN> max_tc_spi;
#endif
#define MAXTC_INIT(n, M) \
MAX##M max##M##_##n = MAX##M( \
TEMP_##n##_CS_PIN \
OPTARG(_MAX31865_##n##_SW, TEMP_##n##_MOSI_PIN) \
OPTARG(TEMP_SENSOR_##n##_USES_SW_SPI, TEMP_##n##_MISO_PIN, TEMP_##n##_SCK_PIN) \
OPTARG(LARGE_PINMAP, HIGH) \
)
#if HAS_MAX6675_LIBRARY
#if TEMP_SENSOR_IS_MAX(0, 6675)
MAXTC_INIT(0, 6675);
#endif
#if TEMP_SENSOR_IS_MAX(1, 6675)
MAXTC_INIT(1, 6675);
#endif
#endif
#if HAS_MAX31855_LIBRARY
#if TEMP_SENSOR_IS_MAX(0, 31855)
MAXTC_INIT(0, 31855);
#endif
#if TEMP_SENSOR_IS_MAX(1, 31855)
MAXTC_INIT(1, 31855);
#endif
#endif
// MAX31865 always uses a library, unlike '55 & 6675
#if HAS_MAX31865
#define _MAX31865_0_SW TEMP_SENSOR_0_USES_SW_SPI
#define _MAX31865_1_SW TEMP_SENSOR_1_USES_SW_SPI
#if TEMP_SENSOR_IS_MAX(0, 31865)
MAXTC_INIT(0, 31865);
#endif
#if TEMP_SENSOR_IS_MAX(1, 31865)
MAXTC_INIT(1, 31865);
#endif
#undef _MAX31865_0_SW
#undef _MAX31865_1_SW
#endif
#undef MAXTC_INIT
#endif
/**
* public:
*/
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
bool Temperature::adaptive_fan_slowing = true;
#endif
#if HAS_HOTEND
hotend_info_t Temperature::temp_hotend[HOTENDS];
#define _HMT(N) HEATER_##N##_MAXTEMP,
const celsius_t Temperature::hotend_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP);
#endif
#if HAS_TEMP_REDUNDANT
redundant_info_t Temperature::temp_redundant;
#endif
#if EITHER(AUTO_POWER_E_FANS, HAS_FANCHECK)
uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
#endif
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
uint8_t Temperature::chamberfan_speed; // = 0
#endif
#if ENABLED(AUTO_POWER_COOLER_FAN)
uint8_t Temperature::coolerfan_speed; // = 0
#endif
#if BOTH(FAN_SOFT_PWM, USE_CONTROLLER_FAN)
uint8_t Temperature::soft_pwm_controller_speed;
#endif
// Init fans according to whether they're native PWM or Software PWM
#ifdef BOARD_OPENDRAIN_MOSFETS
#define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH)
#else
#define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
#endif
#if ENABLED(FAN_SOFT_PWM)
#define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
#else
#define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
#endif
#if ENABLED(FAST_PWM_FAN)
#define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
#else
#define SET_FAST_PWM_FREQ(P) NOOP
#endif
#define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
// HAS_FAN does not include CONTROLLER_FAN
#if HAS_FAN
uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
#if ENABLED(EXTRA_FAN_SPEED)
Temperature::extra_fan_t Temperature::extra_fan_speed[FAN_COUNT];
/**
* Handle the M106 P<fan> T<speed> command:
* T1 = Restore fan speed saved on the last T2
* T2 = Save the fan speed, then set to the last T<3-255> value
* T<3-255> = Set the "extra fan speed"
*/
void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t command_or_speed) {
switch (command_or_speed) {
case 1:
set_fan_speed(fan, extra_fan_speed[fan].saved);
break;
case 2:
extra_fan_speed[fan].saved = fan_speed[fan];
set_fan_speed(fan, extra_fan_speed[fan].speed);
break;
default:
extra_fan_speed[fan].speed = _MIN(command_or_speed, 255U);
break;
}
}
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
bool Temperature::fans_paused; // = false;
uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 }
#endif
#if ENABLED(ADAPTIVE_FAN_SLOWING)
uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N_1(FAN_COUNT, 128);
#endif
/**
* Set the print fan speed for a target extruder
*/
void Temperature::set_fan_speed(uint8_t fan, uint16_t speed) {
NOMORE(speed, 255U);
#if ENABLED(SINGLENOZZLE_STANDBY_FAN)
if (fan != active_extruder) {
if (fan < EXTRUDERS) singlenozzle_fan_speed[fan] = speed;
return;
}
#endif
TERN_(SINGLENOZZLE, if (fan < EXTRUDERS) fan = 0); // Always fan 0 for SINGLENOZZLE E fan
if (fan >= FAN_COUNT) return;
fan_speed[fan] = speed;
#if REDUNDANT_PART_COOLING_FAN
if (fan == 0) fan_speed[REDUNDANT_PART_COOLING_FAN] = speed;
#endif
TERN_(REPORT_FAN_CHANGE, report_fan_speed(fan));
}
#if ENABLED(REPORT_FAN_CHANGE)
/**
* Report print fan speed for a target extruder
*/
void Temperature::report_fan_speed(const uint8_t fan) {
if (fan >= FAN_COUNT) return;
PORT_REDIRECT(SerialMask::All);
SERIAL_ECHOLNPGM("M106 P", fan, " S", fan_speed[fan]);
}
#endif
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
void Temperature::set_fans_paused(const bool p) {
if (p != fans_paused) {
fans_paused = p;
if (p)
FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
else
FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
}
}
#endif
#endif // HAS_FAN
#if WATCH_HOTENDS
hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
#endif
#if HEATER_IDLE_HANDLER
Temperature::heater_idle_t Temperature::heater_idle[NR_HEATER_IDLE]; // = { { 0 } }
#endif
#if HAS_HEATED_BED
bed_info_t Temperature::temp_bed; // = { 0 }
// Init min and max temp with extreme values to prevent false errors during startup
int16_t Temperature::mintemp_raw_BED = TEMP_SENSOR_BED_RAW_LO_TEMP,
Temperature::maxtemp_raw_BED = TEMP_SENSOR_BED_RAW_HI_TEMP;
TERN_(WATCH_BED, bed_watch_t Temperature::watch_bed); // = { 0 }
IF_DISABLED(PIDTEMPBED, millis_t Temperature::next_bed_check_ms);
#endif
#if HAS_TEMP_CHAMBER
chamber_info_t Temperature::temp_chamber; // = { 0 }
#if HAS_HEATED_CHAMBER
millis_t next_cool_check_ms_2 = 0;
celsius_float_t old_temp = 9999;
int16_t Temperature::mintemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_LO_TEMP,
Temperature::maxtemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_HI_TEMP;
TERN_(WATCH_CHAMBER, chamber_watch_t Temperature::watch_chamber{0});
IF_DISABLED(PIDTEMPCHAMBER, millis_t Temperature::next_chamber_check_ms);
#endif
#endif
#if HAS_TEMP_COOLER
cooler_info_t Temperature::temp_cooler; // = { 0 }
#if HAS_COOLER
bool flag_cooler_state;
//bool flag_cooler_excess = false;
celsius_float_t previous_temp = 9999;
int16_t Temperature::mintemp_raw_COOLER = TEMP_SENSOR_COOLER_RAW_LO_TEMP,
Temperature::maxtemp_raw_COOLER = TEMP_SENSOR_COOLER_RAW_HI_TEMP;
#if WATCH_COOLER
cooler_watch_t Temperature::watch_cooler{0};
#endif
millis_t Temperature::next_cooler_check_ms, Temperature::cooler_fan_flush_ms;
#endif
#endif
#if HAS_TEMP_PROBE
probe_info_t Temperature::temp_probe; // = { 0 }
#endif
#if HAS_TEMP_BOARD
board_info_t Temperature::temp_board; // = { 0 }
#if ENABLED(THERMAL_PROTECTION_BOARD)
int16_t Temperature::mintemp_raw_BOARD = TEMP_SENSOR_BOARD_RAW_LO_TEMP,
Temperature::maxtemp_raw_BOARD = TEMP_SENSOR_BOARD_RAW_HI_TEMP;
#endif
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
bool Temperature::allow_cold_extrude = false;
celsius_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#if HAS_ADC_BUTTONS
uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE;
uint16_t Temperature::ADCKey_count = 0;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
int16_t Temperature::lpq_len; // Initialized in settings.cpp
#endif
/**
* private:
*/
volatile bool Temperature::raw_temps_ready = false;
#if ENABLED(PID_EXTRUSION_SCALING)
int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
lpq_ptr_t Temperature::lpq_ptr = 0;
#endif
#define TEMPDIR(N) ((TEMP_SENSOR_##N##_RAW_LO_TEMP) < (TEMP_SENSOR_##N##_RAW_HI_TEMP) ? 1 : -1)
#if HAS_HOTEND
// Init mintemp and maxtemp with extreme values to prevent false errors during startup
constexpr temp_range_t sensor_heater_0 { TEMP_SENSOR_0_RAW_LO_TEMP, TEMP_SENSOR_0_RAW_HI_TEMP, 0, 16383 },
sensor_heater_1 { TEMP_SENSOR_1_RAW_LO_TEMP, TEMP_SENSOR_1_RAW_HI_TEMP, 0, 16383 },
sensor_heater_2 { TEMP_SENSOR_2_RAW_LO_TEMP, TEMP_SENSOR_2_RAW_HI_TEMP, 0, 16383 },
sensor_heater_3 { TEMP_SENSOR_3_RAW_LO_TEMP, TEMP_SENSOR_3_RAW_HI_TEMP, 0, 16383 },
sensor_heater_4 { TEMP_SENSOR_4_RAW_LO_TEMP, TEMP_SENSOR_4_RAW_HI_TEMP, 0, 16383 },
sensor_heater_5 { TEMP_SENSOR_5_RAW_LO_TEMP, TEMP_SENSOR_5_RAW_HI_TEMP, 0, 16383 },
sensor_heater_6 { TEMP_SENSOR_6_RAW_LO_TEMP, TEMP_SENSOR_6_RAW_HI_TEMP, 0, 16383 },
sensor_heater_7 { TEMP_SENSOR_7_RAW_LO_TEMP, TEMP_SENSOR_7_RAW_HI_TEMP, 0, 16383 };
temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7);
#endif
#if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
#endif
#if MILLISECONDS_PREHEAT_TIME > 0
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
#endif
#if HAS_FAN_LOGIC
constexpr millis_t Temperature::fan_update_interval_ms;
millis_t Temperature::fan_update_ms = 0;
#endif
#if ENABLED(FAN_SOFT_PWM)
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
Temperature::soft_pwm_count_fan[FAN_COUNT];
#endif
#if ENABLED(SINGLENOZZLE_STANDBY_TEMP)
celsius_t Temperature::singlenozzle_temp[EXTRUDERS];
#endif
#if ENABLED(SINGLENOZZLE_STANDBY_FAN)
uint8_t Temperature::singlenozzle_fan_speed[EXTRUDERS];
#endif
#if ENABLED(PROBING_HEATERS_OFF)
bool Temperature::paused_for_probing;
#endif
/**
* public:
* Class and Instance Methods
*/
#if HAS_PID_HEATING
inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
/**
* PID Autotuning (M303)
*
* Alternately heat and cool the nozzle, observing its behavior to
* determine the best PID values to achieve a stable temperature.
* Needs sufficient heater power to make some overshoot at target
* temperature to succeed.
*/
void Temperature::PID_autotune(const celsius_t target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result/*=false*/) {
celsius_float_t current_temp = 0.0;
int cycles = 0;
bool heating = true;
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
long t_high = 0, t_low = 0;
PID_t tune_pid = { 0, 0, 0 };
celsius_float_t maxT = 0, minT = 10000;
const bool isbed = (heater_id == H_BED);
const bool ischamber = (heater_id == H_CHAMBER);
#if ENABLED(PIDTEMPCHAMBER)
#define C_TERN(T,A,B) ((T) ? (A) : (B))
#else
#define C_TERN(T,A,B) (B)
#endif
#if ENABLED(PIDTEMPBED)
#define B_TERN(T,A,B) ((T) ? (A) : (B))
#else
#define B_TERN(T,A,B) (B)
#endif
#define GHV(C,B,H) C_TERN(ischamber, C, B_TERN(isbed, B, H))
#define SHV(V) C_TERN(ischamber, temp_chamber.soft_pwm_amount = V, B_TERN(isbed, temp_bed.soft_pwm_amount = V, temp_hotend[heater_id].soft_pwm_amount = V))
#define ONHEATINGSTART() C_TERN(ischamber, printerEventLEDs.onChamberHeatingStart(), B_TERN(isbed, printerEventLEDs.onBedHeatingStart(), printerEventLEDs.onHotendHeatingStart()))
#define ONHEATING(S,C,T) C_TERN(ischamber, printerEventLEDs.onChamberHeating(S,C,T), B_TERN(isbed, printerEventLEDs.onBedHeating(S,C,T), printerEventLEDs.onHotendHeating(S,C,T)))
#define WATCH_PID DISABLED(NO_WATCH_PID_TUNING) && (BOTH(WATCH_CHAMBER, PIDTEMPCHAMBER) || BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP))
#if WATCH_PID
#if BOTH(THERMAL_PROTECTION_CHAMBER, PIDTEMPCHAMBER)
#define C_GTV(T,A,B) ((T) ? (A) : (B))
#else
#define C_GTV(T,A,B) (B)
#endif
#if BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED)
#define B_GTV(T,A,B) ((T) ? (A) : (B))
#else
#define B_GTV(T,A,B) (B)
#endif
#define GTV(C,B,H) C_GTV(ischamber, C, B_GTV(isbed, B, H))
const uint16_t watch_temp_period = GTV(WATCH_CHAMBER_TEMP_PERIOD, WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
const uint8_t watch_temp_increase = GTV(WATCH_CHAMBER_TEMP_INCREASE, WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
const celsius_float_t watch_temp_target = celsius_float_t(target - (watch_temp_increase + GTV(TEMP_CHAMBER_HYSTERESIS, TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1));
millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period);
celsius_float_t next_watch_temp = 0.0;
bool heated = false;
#endif
TERN_(HAS_FAN_LOGIC, fan_update_ms = next_temp_ms + fan_update_interval_ms);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_STARTED));
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_PidTuning(isbed ? PID_BED_START : PID_EXTR_START));
if (target > GHV(CHAMBER_MAX_TARGET, BED_MAX_TARGET, temp_range[heater_id].maxtemp - (HOTEND_OVERSHOOT))) {
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_PidTuning(PID_TEMP_TOO_HIGH));
return;
}
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START);
disable_all_heaters();
TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
long bias = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX) >> 1, d = bias;
SHV(bias);
#if ENABLED(PRINTER_EVENT_LEDS)
const celsius_float_t start_temp = GHV(degChamber(), degBed(), degHotend(heater_id));
LEDColor color = ONHEATINGSTART();
#endif
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false);
// PID Tuning loop
wait_for_heatup = true; // Can be interrupted with M108
TERN_(HAS_STATUS_MESSAGE, ui.set_status(F("Wait for heat up...")));
while (wait_for_heatup) {
const millis_t ms = millis();
if (updateTemperaturesIfReady()) { // temp sample ready
// Get the current temperature and constrain it
current_temp = GHV(degChamber(), degBed(), degHotend(heater_id));
NOLESS(maxT, current_temp);
NOMORE(minT, current_temp);
#if ENABLED(PRINTER_EVENT_LEDS)
ONHEATING(start_temp, current_temp, target);
#endif
TERN_(HAS_FAN_LOGIC, manage_extruder_fans(ms));
if (heating && current_temp > target && ELAPSED(ms, t2 + 5000UL)) {
heating = false;
SHV((bias - d) >> 1);
t1 = ms;
t_high = t1 - t2;
maxT = target;
}
if (!heating && current_temp < target && ELAPSED(ms, t1 + 5000UL)) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
const long max_pow = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX);
bias += (d * (t_high - t_low)) / (t_low + t_high);
LIMIT(bias, 20, max_pow - 20);
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
SERIAL_ECHOPGM(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT);
if (cycles > 2) {
const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f),
Tu = float(t_low + t_high) * 0.001f,
pf = (ischamber || isbed) ? 0.2f : 0.6f,
df = (ischamber || isbed) ? 1.0f / 3.0f : 1.0f / 8.0f;
tune_pid.Kp = Ku * pf;
tune_pid.Ki = tune_pid.Kp * 2.0f / Tu;
tune_pid.Kd = tune_pid.Kp * Tu * df;
SERIAL_ECHOLNPGM(STR_KU, Ku, STR_TU, Tu);
if (ischamber || isbed)
SERIAL_ECHOLNPGM(" No overshoot");
else
SERIAL_ECHOLNPGM(STR_CLASSIC_PID);
SERIAL_ECHOLNPGM(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
}
}
SHV((bias + d) >> 1);
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PID_CYCLE), cycles, ncycles));
cycles++;
minT = target;
}
}
// Did the temperature overshoot very far?
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
#define MAX_OVERSHOOT_PID_AUTOTUNE 30
#endif
if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_PidTuning(PID_TEMP_TOO_HIGH));
break;
}
// Report heater states every 2 seconds
if (ELAPSED(ms, next_temp_ms)) {
#if HAS_TEMP_SENSOR
print_heater_states(ischamber ? active_extruder : (isbed ? active_extruder : heater_id));
SERIAL_EOL();
#endif
next_temp_ms = ms + 2000UL;
// Make sure heating is actually working
#if WATCH_PID
if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS) || ischamber == DISABLED(WATCH_HOTENDS)) {
if (!heated) { // If not yet reached target...
if (current_temp > next_watch_temp) { // Over the watch temp?
next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for
temp_change_ms = ms + SEC_TO_MS(watch_temp_period); // - move the expiration timer up
if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached
}
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
_temp_error(heater_id, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
}
else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
_temp_error(heater_id, FPSTR(str_t_thermal_runaway), GET_TEXT_F(MSG_THERMAL_RUNAWAY));
}
#endif
} // every 2 seconds
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
#endif
if ((ms - _MIN(t1, t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0));
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_PidTuning(PID_TUNING_TIMEOUT));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT));
SERIAL_ECHOLNPGM(STR_PID_TIMEOUT);
break;
}
if (cycles > ncycles && cycles > 2) {
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
#if EITHER(PIDTEMPBED, PIDTEMPCHAMBER)
FSTR_P const estring = GHV(F("chamber"), F("bed"), FPSTR(NUL_STR));
say_default_(); SERIAL_ECHOF(estring); SERIAL_ECHOLNPGM("Kp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOF(estring); SERIAL_ECHOLNPGM("Ki ", tune_pid.Ki);
say_default_(); SERIAL_ECHOF(estring); SERIAL_ECHOLNPGM("Kd ", tune_pid.Kd);
#else
say_default_(); SERIAL_ECHOLNPGM("Kp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPGM("Ki ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPGM("Kd ", tune_pid.Kd);
#endif
auto _set_hotend_pid = [](const uint8_t e, const PID_t &in_pid) {
#if ENABLED(PIDTEMP)
PID_PARAM(Kp, e) = in_pid.Kp;
PID_PARAM(Ki, e) = scalePID_i(in_pid.Ki);
PID_PARAM(Kd, e) = scalePID_d(in_pid.Kd);
updatePID();
#else
UNUSED(e); UNUSED(in_pid);
#endif
};
#if ENABLED(PIDTEMPBED)
auto _set_bed_pid = [](const PID_t &in_pid) {
temp_bed.pid.Kp = in_pid.Kp;
temp_bed.pid.Ki = scalePID_i(in_pid.Ki);
temp_bed.pid.Kd = scalePID_d(in_pid.Kd);
};
#endif
#if ENABLED(PIDTEMPCHAMBER)
auto _set_chamber_pid = [](const PID_t &in_pid) {
temp_chamber.pid.Kp = in_pid.Kp;
temp_chamber.pid.Ki = scalePID_i(in_pid.Ki);
temp_chamber.pid.Kd = scalePID_d(in_pid.Kd);
};
#endif
// Use the result? (As with "M303 U1")
if (set_result)
GHV(_set_chamber_pid(tune_pid), _set_bed_pid(tune_pid), _set_hotend_pid(heater_id, tune_pid));
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_PidTuning(PID_DONE));
goto EXIT_M303;
}
// Run HAL idle tasks
TERN_(HAL_IDLETASK, HAL_idletask());
// Run UI update
TERN(HAS_DWIN_E3V2_BASIC, DWIN_Update(), ui.update());
}
wait_for_heatup = false;
disable_all_heaters();
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_PidTuning(PID_DONE));
EXIT_M303:
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = true);
return;
}
#endif // HAS_PID_HEATING
int16_t Temperature::getHeaterPower(const heater_id_t heater_id) {
switch (heater_id) {
#if HAS_HEATED_BED
case H_BED: return temp_bed.soft_pwm_amount;
#endif
#if HAS_HEATED_CHAMBER
case H_CHAMBER: return temp_chamber.soft_pwm_amount;
#endif
#if HAS_COOLER
case H_COOLER: return temp_cooler.soft_pwm_amount;
#endif
default:
return TERN0(HAS_HOTEND, temp_hotend[heater_id].soft_pwm_amount);
}
}
#define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B)
#if HAS_AUTO_FAN
#if EXTRUDER_AUTO_FAN_SPEED != 255
#define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0)
#else
#define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P)
#endif
#if CHAMBER_AUTO_FAN_SPEED != 255
#define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0)
#else
#define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P)
#endif
#ifndef CHAMBER_FAN_INDEX
#define CHAMBER_FAN_INDEX HOTENDS
#endif
void Temperature::update_autofans() {
#define _EFAN(B,A) _EFANOVERLAP(A,B) ? B :
static const uint8_t fanBit[] PROGMEM = {
0
#if HAS_MULTI_HOTEND
#define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N
RREPEAT_S(1, HOTENDS, _NEXT_FAN)
#endif
#if HAS_AUTO_CHAMBER_FAN
#define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B :
, REPEAT(HOTENDS,_CFAN) (HOTENDS)
#endif
};
uint8_t fanState = 0;
HOTEND_LOOP() {
if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE) {
SBI(fanState, pgm_read_byte(&fanBit[e]));
#if MOTHERBOARD == BOARD_ULTIMAIN_2
// For the UM2 the head fan is connected to PJ6, which does not have an Arduino PIN definition. So use direct register access.
// https://github.com/Ultimaker/Ultimaker2Marlin/blob/master/Marlin/temperature.cpp#L553
SBI(DDRJ, 6); SBI(PORTJ, 6);
#endif
}
else {
#if MOTHERBOARD == BOARD_ULTIMAIN_2
SBI(DDRJ, 6); CBI(PORTJ, 6);
#endif
}
}
#if HAS_AUTO_CHAMBER_FAN
if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX]));
#endif
#if HAS_AUTO_COOLER_FAN
if (temp_cooler.celsius >= COOLER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[COOLER_FAN_INDEX]));
#endif
#define _UPDATE_AUTO_FAN(P,D,A) do{ \
if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
set_pwm_duty(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \
else \
WRITE(P##_AUTO_FAN_PIN, D); \
}while(0)
uint8_t fanDone = 0;
LOOP_L_N(f, COUNT(fanBit)) {
const uint8_t realFan = pgm_read_byte(&fanBit[f]);
if (TEST(fanDone, realFan)) continue;
const bool fan_on = TEST(fanState, realFan);
switch (f) {
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
case CHAMBER_FAN_INDEX:
chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0;
break;
#endif
default:
#if EITHER(AUTO_POWER_E_FANS, HAS_FANCHECK)
autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
#endif
break;
}
#if BOTH(HAS_FANCHECK, HAS_PWMFANCHECK)
#define _AUTOFAN_SPEED() fan_check.is_measuring() ? 255 : EXTRUDER_AUTO_FAN_SPEED
#else
#define _AUTOFAN_SPEED() EXTRUDER_AUTO_FAN_SPEED
#endif
#define _AUTOFAN_CASE(N) case N: _UPDATE_AUTO_FAN(E##N, fan_on, _AUTOFAN_SPEED()); break
switch (f) {
#if HAS_AUTO_FAN_0
_AUTOFAN_CASE(0);
#endif
#if HAS_AUTO_FAN_1
_AUTOFAN_CASE(1);
#endif
#if HAS_AUTO_FAN_2
_AUTOFAN_CASE(2);
#endif
#if HAS_AUTO_FAN_3
_AUTOFAN_CASE(3);
#endif
#if HAS_AUTO_FAN_4
_AUTOFAN_CASE(4);
#endif
#if HAS_AUTO_FAN_5
_AUTOFAN_CASE(5);
#endif
#if HAS_AUTO_FAN_6
_AUTOFAN_CASE(6);
#endif
#if HAS_AUTO_FAN_7
_AUTOFAN_CASE(7);
#endif
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break;
#endif
}
SBI(fanDone, realFan);
}
}
#endif // HAS_AUTO_FAN
//
// Temperature Error Handlers
//
inline void loud_kill(FSTR_P const lcd_msg, const heater_id_t heater_id) {
marlin_state = MF_KILLED;
thermalManager.disable_all_heaters();
#if USE_BEEPER
for (uint8_t i = 20; i--;) {
WRITE(BEEPER_PIN, HIGH);
delay(25);
watchdog_refresh();
WRITE(BEEPER_PIN, LOW);
delay(40);
watchdog_refresh();
delay(40);
watchdog_refresh();
}
WRITE(BEEPER_PIN, HIGH);
#endif
#if ENABLED(NOZZLE_PARK_FEATURE)
if (!homing_needed_error()) {
nozzle.park(0);
planner.synchronize();
}
#endif
kill(lcd_msg, HEATER_FSTR(heater_id));
}
void Temperature::_temp_error(const heater_id_t heater_id, FSTR_P const serial_msg, FSTR_P const lcd_msg) {
static uint8_t killed = 0;
if (IsRunning() && TERN1(BOGUS_TEMPERATURE_GRACE_PERIOD, killed == 2)) {
SERIAL_ERROR_START();
SERIAL_ECHOF(serial_msg);
SERIAL_ECHOPGM(STR_STOPPED_HEATER);
heater_id_t real_heater_id = heater_id;
#if HAS_TEMP_REDUNDANT
if (heater_id == H_REDUNDANT) {
SERIAL_ECHOPGM(STR_REDUNDANT); // print redundant and cascade to print target, too.
real_heater_id = (heater_id_t)HEATER_ID(TEMP_SENSOR_REDUNDANT_TARGET);
}
#endif
switch (real_heater_id) {
OPTCODE(HAS_TEMP_COOLER, case H_COOLER: SERIAL_ECHOPGM(STR_COOLER); break)
OPTCODE(HAS_TEMP_PROBE, case H_PROBE: SERIAL_ECHOPGM(STR_PROBE); break)
OPTCODE(HAS_TEMP_BOARD, case H_BOARD: SERIAL_ECHOPGM(STR_MOTHERBOARD); break)
OPTCODE(HAS_TEMP_CHAMBER, case H_CHAMBER: SERIAL_ECHOPGM(STR_HEATER_CHAMBER); break)
OPTCODE(HAS_TEMP_BED, case H_BED: SERIAL_ECHOPGM(STR_HEATER_BED); break)
default:
if (real_heater_id >= 0)
SERIAL_ECHOLNPGM("E", real_heater_id);
}
SERIAL_EOL();
}
disable_all_heaters(); // always disable (even for bogus temp)
watchdog_refresh();
#if BOGUS_TEMPERATURE_GRACE_PERIOD
const millis_t ms = millis();
static millis_t expire_ms;
switch (killed) {
case 0:
expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD;
++killed;
break;
case 1:
if (ELAPSED(ms, expire_ms)) ++killed;
break;
case 2:
loud_kill(lcd_msg, heater_id);
++killed;
break;
}
#elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD)
UNUSED(killed);
#else
if (!killed) { killed = 1; loud_kill(lcd_msg, heater_id); }
#endif
}
void Temperature::max_temp_error(const heater_id_t heater_id) {
#if HAS_DWIN_E3V2_BASIC && (HAS_HOTEND || HAS_HEATED_BED)
DWIN_Popup_Temperature(1);
#endif
_temp_error(heater_id, F(STR_T_MAXTEMP), GET_TEXT_F(MSG_ERR_MAXTEMP));
}
void Temperature::min_temp_error(const heater_id_t heater_id) {
#if HAS_DWIN_E3V2_BASIC && (HAS_HOTEND || HAS_HEATED_BED)
DWIN_Popup_Temperature(0);
#endif
_temp_error(heater_id, F(STR_T_MINTEMP), GET_TEXT_F(MSG_ERR_MINTEMP));
}
#if ANY(PID_DEBUG, PID_BED_DEBUG, PID_CHAMBER_DEBUG)
bool Temperature::pid_debug_flag; // = 0
#endif
#if HAS_HOTEND
float Temperature::get_pid_output_hotend(const uint8_t E_NAME) {
const uint8_t ee = HOTEND_INDEX;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
static hotend_pid_t work_pid[HOTENDS];
static float temp_iState[HOTENDS] = { 0 },
temp_dState[HOTENDS] = { 0 };
static bool pid_reset[HOTENDS] = { false };
const float pid_error = temp_hotend[ee].target - temp_hotend[ee].celsius;
float pid_output;
if (temp_hotend[ee].target == 0
|| pid_error < -(PID_FUNCTIONAL_RANGE)
|| TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out)
) {
pid_output = 0;
pid_reset[ee] = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[ee] = true;
}
else {
if (pid_reset[ee]) {
temp_iState[ee] = 0.0;
work_pid[ee].Kd = 0.0;
pid_reset[ee] = false;
}
work_pid[ee].Kd = work_pid[ee].Kd + PID_K2 * (PID_PARAM(Kd, ee) * (temp_dState[ee] - temp_hotend[ee].celsius) - work_pid[ee].Kd);
const float max_power_over_i_gain = float(PID_MAX) / PID_PARAM(Ki, ee) - float(MIN_POWER);
temp_iState[ee] = constrain(temp_iState[ee] + pid_error, 0, max_power_over_i_gain);
work_pid[ee].Kp = PID_PARAM(Kp, ee) * pid_error;
work_pid[ee].Ki = PID_PARAM(Ki, ee) * temp_iState[ee];
pid_output = work_pid[ee].Kp + work_pid[ee].Ki + work_pid[ee].Kd + float(MIN_POWER);
#if ENABLED(PID_EXTRUSION_SCALING)
#if HOTENDS == 1
constexpr bool this_hotend = true;
#else
const bool this_hotend = (ee == active_extruder);
#endif
work_pid[ee].Kc = 0;
if (this_hotend) {
const long e_position = stepper.position(E_AXIS);
if (e_position > last_e_position) {
lpq[lpq_ptr] = e_position - last_e_position;
last_e_position = e_position;
}
else
lpq[lpq_ptr] = 0;
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
work_pid[ee].Kc = (lpq[lpq_ptr] * planner.mm_per_step[E_AXIS]) * PID_PARAM(Kc, ee);
pid_output += work_pid[ee].Kc;
}
#endif // PID_EXTRUSION_SCALING
#if ENABLED(PID_FAN_SCALING)
if (fan_speed[active_extruder] > PID_FAN_SCALING_MIN_SPEED) {
work_pid[ee].Kf = PID_PARAM(Kf, ee) + (PID_FAN_SCALING_LIN_FACTOR) * fan_speed[active_extruder];
pid_output += work_pid[ee].Kf;
}
//pid_output -= work_pid[ee].Ki;
//pid_output += work_pid[ee].Ki * work_pid[ee].Kf
#endif // PID_FAN_SCALING
LIMIT(pid_output, 0, PID_MAX);
}
temp_dState[ee] = temp_hotend[ee].celsius;
#else // PID_OPENLOOP
const float pid_output = constrain(temp_hotend[ee].target, 0, PID_MAX);
#endif // PID_OPENLOOP
#if ENABLED(PID_DEBUG)
if (ee == active_extruder && pid_debug_flag) {
SERIAL_ECHO_MSG(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output
#if DISABLED(PID_OPENLOOP)
, STR_PID_DEBUG_PTERM, work_pid[ee].Kp
, STR_PID_DEBUG_ITERM, work_pid[ee].Ki
, STR_PID_DEBUG_DTERM, work_pid[ee].Kd
#if ENABLED(PID_EXTRUSION_SCALING)
, STR_PID_DEBUG_CTERM, work_pid[ee].Kc
#endif
#endif
);
}
#endif
#else // No PID enabled
const bool is_idling = TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out);
const float pid_output = (!is_idling && temp_hotend[ee].celsius < temp_hotend[ee].target) ? BANG_MAX : 0;
#endif
return pid_output;
}
#endif // HAS_HOTEND
#if ENABLED(PIDTEMPBED)
float Temperature::get_pid_output_bed() {
#if DISABLED(PID_OPENLOOP)
static PID_t work_pid{0};
static float temp_iState = 0, temp_dState = 0;
static bool pid_reset = true;
float pid_output = 0;
const float max_power_over_i_gain = float(MAX_BED_POWER) / temp_bed.pid.Ki - float(MIN_BED_POWER),
pid_error = temp_bed.target - temp_bed.celsius;
if (!temp_bed.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
pid_output = 0;
pid_reset = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = MAX_BED_POWER;
pid_reset = true;
}
else {
if (pid_reset) {
temp_iState = 0.0;
work_pid.Kd = 0.0;
pid_reset = false;
}
temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
work_pid.Kp = temp_bed.pid.Kp * pid_error;
work_pid.Ki = temp_bed.pid.Ki * temp_iState;
work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.celsius) - work_pid.Kd);
temp_dState = temp_bed.celsius;
pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_BED_POWER), 0, MAX_BED_POWER);
}
#else // PID_OPENLOOP
const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_BED_DEBUG)
if (pid_debug_flag) {
SERIAL_ECHO_MSG(
" PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output
#if DISABLED(PID_OPENLOOP)
, STR_PID_DEBUG_PTERM, work_pid.Kp
, STR_PID_DEBUG_ITERM, work_pid.Ki
, STR_PID_DEBUG_DTERM, work_pid.Kd
#endif
);
}
#endif
return pid_output;
}
#endif // PIDTEMPBED
#if ENABLED(PIDTEMPCHAMBER)
float Temperature::get_pid_output_chamber() {
#if DISABLED(PID_OPENLOOP)
static PID_t work_pid{0};
static float temp_iState = 0, temp_dState = 0;
static bool pid_reset = true;
float pid_output = 0;
const float max_power_over_i_gain = float(MAX_CHAMBER_POWER) / temp_chamber.pid.Ki - float(MIN_CHAMBER_POWER),
pid_error = temp_chamber.target - temp_chamber.celsius;
if (!temp_chamber.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
pid_output = 0;
pid_reset = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = MAX_CHAMBER_POWER;
pid_reset = true;
}
else {
if (pid_reset) {
temp_iState = 0.0;
work_pid.Kd = 0.0;
pid_reset = false;
}
temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
work_pid.Kp = temp_chamber.pid.Kp * pid_error;
work_pid.Ki = temp_chamber.pid.Ki * temp_iState;
work_pid.Kd = work_pid.Kd + PID_K2 * (temp_chamber.pid.Kd * (temp_dState - temp_chamber.celsius) - work_pid.Kd);
temp_dState = temp_chamber.celsius;
pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_CHAMBER_POWER), 0, MAX_CHAMBER_POWER);
}
#else // PID_OPENLOOP
const float pid_output = constrain(temp_chamber.target, 0, MAX_CHAMBER_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_CHAMBER_DEBUG)
{
SERIAL_ECHO_MSG(
" PID_CHAMBER_DEBUG : Input ", temp_chamber.celsius, " Output ", pid_output
#if DISABLED(PID_OPENLOOP)
, STR_PID_DEBUG_PTERM, work_pid.Kp
, STR_PID_DEBUG_ITERM, work_pid.Ki
, STR_PID_DEBUG_DTERM, work_pid.Kd
#endif
);
}
#endif
return pid_output;
}
#endif // PIDTEMPCHAMBER
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Also resets the watchdog timer
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
void Temperature::manage_heater() {
if (marlin_state == MF_INITIALIZING) return watchdog_refresh(); // If Marlin isn't started, at least reset the watchdog!
static bool no_reentry = false; // Prevent recursion
if (no_reentry) return;
REMEMBER(mh, no_reentry, true);
#if ENABLED(EMERGENCY_PARSER)
if (emergency_parser.killed_by_M112) kill(FPSTR(M112_KILL_STR), nullptr, true);
if (emergency_parser.quickstop_by_M410) {
emergency_parser.quickstop_by_M410 = false; // quickstop_stepper may call idle so clear this now!
quickstop_stepper();
}
#endif
if (!updateTemperaturesIfReady()) return; // Will also reset the watchdog if temperatures are ready
#if DISABLED(IGNORE_THERMOCOUPLE_ERRORS)
#if TEMP_SENSOR_0_IS_MAX_TC
if (degHotend(0) > _MIN(HEATER_0_MAXTEMP, TEMP_SENSOR_0_MAX_TC_TMAX - 1.0)) max_temp_error(H_E0);
if (degHotend(0) < _MAX(HEATER_0_MINTEMP, TEMP_SENSOR_0_MAX_TC_TMIN + .01)) min_temp_error(H_E0);
#endif
#if TEMP_SENSOR_1_IS_MAX_TC
if (degHotend(1) > _MIN(HEATER_1_MAXTEMP, TEMP_SENSOR_1_MAX_TC_TMAX - 1.0)) max_temp_error(H_E1);
if (degHotend(1) < _MAX(HEATER_1_MINTEMP, TEMP_SENSOR_1_MAX_TC_TMIN + .01)) min_temp_error(H_E1);
#endif
#if TEMP_SENSOR_REDUNDANT_IS_MAX_TC
if (degRedundant() > TEMP_SENSOR_REDUNDANT_MAX_TC_TMAX - 1.0) max_temp_error(H_REDUNDANT);
if (degRedundant() < TEMP_SENSOR_REDUNDANT_MAX_TC_TMIN + .01) min_temp_error(H_REDUNDANT);
#endif
#else
#warning "Safety Alert! Disable IGNORE_THERMOCOUPLE_ERRORS for the final build!"
#endif
millis_t ms = millis();
#if HAS_HOTEND
HOTEND_LOOP() {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
if (degHotend(e) > temp_range[e].maxtemp) max_temp_error((heater_id_t)e);
#endif
TERN_(HEATER_IDLE_HANDLER, heater_idle[e].update(ms));
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
// Check for thermal runaway
tr_state_machine[e].run(temp_hotend[e].celsius, temp_hotend[e].target, (heater_id_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0;
#if WATCH_HOTENDS
// Make sure temperature is increasing
if (watch_hotend[e].elapsed(ms)) { // Enabled and time to check?
if (watch_hotend[e].check(degHotend(e))) // Increased enough?
start_watching_hotend(e); // If temp reached, turn off elapsed check
else {
TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
_temp_error((heater_id_t)e, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
}
}
#endif
} // HOTEND_LOOP
#endif // HAS_HOTEND
#if HAS_TEMP_REDUNDANT
// Make sure measured temperatures are close together
if (ABS(degRedundantTarget() - degRedundant()) > TEMP_SENSOR_REDUNDANT_MAX_DIFF)
_temp_error((heater_id_t)HEATER_ID(TEMP_SENSOR_REDUNDANT_TARGET), F(STR_REDUNDANCY), GET_TEXT_F(MSG_ERR_REDUNDANT_TEMP));
#endif
// Manage extruder auto fans and/or read fan tachometers
TERN_(HAS_FAN_LOGIC, manage_extruder_fans(ms));
/**
* Dynamically set the volumetric multiplier based
* on the delayed Filament Width measurement.
*/
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_volumetric());
#if HAS_HEATED_BED
#if ENABLED(THERMAL_PROTECTION_BED)
if (degBed() > BED_MAXTEMP) max_temp_error(H_BED);
#endif
#if WATCH_BED
// Make sure temperature is increasing
if (watch_bed.elapsed(ms)) { // Time to check the bed?
if (watch_bed.check(degBed())) // Increased enough?
start_watching_bed(); // If temp reached, turn off elapsed check
else {
TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
_temp_error(H_BED, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
}
}
#endif // WATCH_BED
#if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
#define PAUSE_CHANGE_REQD 1
#endif
#if PAUSE_CHANGE_REQD
static bool last_pause_state;
#endif
do {
#if DISABLED(PIDTEMPBED)
if (PENDING(ms, next_bed_check_ms)
&& TERN1(PAUSE_CHANGE_REQD, paused_for_probing == last_pause_state)
) break;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
TERN_(PAUSE_CHANGE_REQD, last_pause_state = paused_for_probing);
#endif
TERN_(HEATER_IDLE_HANDLER, heater_idle[IDLE_INDEX_BED].update(ms));
#if HAS_THERMALLY_PROTECTED_BED
tr_state_machine[RUNAWAY_IND_BED].run(temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
#if HEATER_IDLE_HANDLER
if (heater_idle[IDLE_INDEX_BED].timed_out) {
temp_bed.soft_pwm_amount = 0;
#if DISABLED(PIDTEMPBED)
WRITE_HEATER_BED(LOW);
#endif
}
else
#endif
{
#if ENABLED(PIDTEMPBED)
temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
#else
// Check if temperature is within the correct band
if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) {
#if ENABLED(BED_LIMIT_SWITCHING)
if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS)
temp_bed.soft_pwm_amount = 0;
else if (temp_bed.celsius <= temp_bed.target - (BED_HYSTERESIS))
temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
temp_bed.soft_pwm_amount = temp_bed.celsius < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
#endif
}
else {
temp_bed.soft_pwm_amount = 0;
WRITE_HEATER_BED(LOW);
}
#endif
}
} while (false);
#endif // HAS_HEATED_BED
#if HAS_HEATED_CHAMBER
#ifndef CHAMBER_CHECK_INTERVAL
#define CHAMBER_CHECK_INTERVAL 1000UL
#endif
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
if (degChamber() > CHAMBER_MAXTEMP) max_temp_error(H_CHAMBER);
#endif
#if WATCH_CHAMBER
// Make sure temperature is increasing
if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
if (watch_chamber.check(degChamber())) // Increased enough? Error below.
start_watching_chamber(); // If temp reached, turn off elapsed check.
else
_temp_error(H_CHAMBER, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
}
#endif
#if EITHER(CHAMBER_FAN, CHAMBER_VENT) || DISABLED(PIDTEMPCHAMBER)
static bool flag_chamber_excess_heat; // = false;
#endif
#if EITHER(CHAMBER_FAN, CHAMBER_VENT)
static bool flag_chamber_off; // = false
if (temp_chamber.target > CHAMBER_MINTEMP) {
flag_chamber_off = false;
#if ENABLED(CHAMBER_FAN)
int16_t fan_chamber_pwm;
#if CHAMBER_FAN_MODE == 0
fan_chamber_pwm = CHAMBER_FAN_BASE;
#elif CHAMBER_FAN_MODE == 1
fan_chamber_pwm = (temp_chamber.celsius > temp_chamber.target) ? (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target) : 0;
#elif CHAMBER_FAN_MODE == 2
fan_chamber_pwm = (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * ABS(temp_chamber.celsius - temp_chamber.target);
if (temp_chamber.soft_pwm_amount)
fan_chamber_pwm += (CHAMBER_FAN_FACTOR) * 2;
#elif CHAMBER_FAN_MODE == 3
fan_chamber_pwm = CHAMBER_FAN_BASE + _MAX((CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target), 0);
#endif
NOMORE(fan_chamber_pwm, 255);
set_fan_speed(CHAMBER_FAN_INDEX, fan_chamber_pwm);
#endif
#if ENABLED(CHAMBER_VENT)
#ifndef MIN_COOLING_SLOPE_TIME_CHAMBER_VENT
#define MIN_COOLING_SLOPE_TIME_CHAMBER_VENT 20
#endif
#ifndef MIN_COOLING_SLOPE_DEG_CHAMBER_VENT
#define MIN_COOLING_SLOPE_DEG_CHAMBER_VENT 1.5
#endif
if (!flag_chamber_excess_heat && temp_chamber.celsius - temp_chamber.target >= HIGH_EXCESS_HEAT_LIMIT) {
// Open vent after MIN_COOLING_SLOPE_TIME_CHAMBER_VENT seconds if the
// temperature didn't drop at least MIN_COOLING_SLOPE_DEG_CHAMBER_VENT
if (next_cool_check_ms_2 == 0 || ELAPSED(ms, next_cool_check_ms_2)) {
if (temp_chamber.celsius - old_temp > MIN_COOLING_SLOPE_DEG_CHAMBER_VENT)
flag_chamber_excess_heat = true; // the bed is heating the chamber too much
next_cool_check_ms_2 = ms + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER_VENT);
old_temp = temp_chamber.celsius;
}
}
else {
next_cool_check_ms_2 = 0;
old_temp = 9999;
}
if (flag_chamber_excess_heat && (temp_chamber.target - temp_chamber.celsius >= LOW_EXCESS_HEAT_LIMIT))
flag_chamber_excess_heat = false;
#endif
}
else if (!flag_chamber_off) {
#if ENABLED(CHAMBER_FAN)
flag_chamber_off = true;
set_fan_speed(CHAMBER_FAN_INDEX, 0);
#endif
#if ENABLED(CHAMBER_VENT)
flag_chamber_excess_heat = false;
MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 90);
#endif
}
#endif
#if ENABLED(PIDTEMPCHAMBER)
// PIDTEMPCHAMBER doesn't support a CHAMBER_VENT yet.
temp_chamber.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
#else
if (ELAPSED(ms, next_chamber_check_ms)) {
next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
if (flag_chamber_excess_heat) {
temp_chamber.soft_pwm_amount = 0;
#if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, temp_chamber.celsius <= temp_chamber.target ? 0 : 90);
#endif
}
else {
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
temp_chamber.soft_pwm_amount = 0;
else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1;
#else
temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? (MAX_CHAMBER_POWER) >> 1 : 0;
#endif
#if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 0);
#endif
}
}
else {
temp_chamber.soft_pwm_amount = 0;
WRITE_HEATER_CHAMBER(LOW);
}
}
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
#endif
#endif
#endif // HAS_HEATED_CHAMBER
#if HAS_COOLER
#ifndef COOLER_CHECK_INTERVAL
#define COOLER_CHECK_INTERVAL 2000UL
#endif
#if ENABLED(THERMAL_PROTECTION_COOLER)
if (degCooler() > COOLER_MAXTEMP) max_temp_error(H_COOLER);
#endif
#if WATCH_COOLER
// Make sure temperature is decreasing
if (watch_cooler.elapsed(ms)) { // Time to check the cooler?
if (degCooler() > watch_cooler.target) // Failed to decrease enough?
_temp_error(H_COOLER, GET_TEXT_F(MSG_COOLING_FAILED), GET_TEXT_F(MSG_COOLING_FAILED));
else
start_watching_cooler(); // Start again if the target is still far off
}
#endif
static bool flag_cooler_state; // = false
if (cooler.enabled) {
flag_cooler_state = true; // used to allow M106 fan control when cooler is disabled
if (temp_cooler.target == 0) temp_cooler.target = COOLER_MIN_TARGET;
if (ELAPSED(ms, next_cooler_check_ms)) {
next_cooler_check_ms = ms + COOLER_CHECK_INTERVAL;
if (temp_cooler.celsius > temp_cooler.target) {
temp_cooler.soft_pwm_amount = temp_cooler.celsius > temp_cooler.target ? MAX_COOLER_POWER : 0;
flag_cooler_state = temp_cooler.soft_pwm_amount > 0 ? true : false; // used to allow M106 fan control when cooler is disabled
#if ENABLED(COOLER_FAN)
int16_t fan_cooler_pwm = (COOLER_FAN_BASE) + (COOLER_FAN_FACTOR) * ABS(temp_cooler.celsius - temp_cooler.target);
NOMORE(fan_cooler_pwm, 255);
set_fan_speed(COOLER_FAN_INDEX, fan_cooler_pwm); // Set cooler fan pwm
cooler_fan_flush_ms = ms + 5000;
#endif
}
else {
temp_cooler.soft_pwm_amount = 0;
#if ENABLED(COOLER_FAN)
set_fan_speed(COOLER_FAN_INDEX, temp_cooler.celsius > temp_cooler.target - 2 ? COOLER_FAN_BASE : 0);
#endif
WRITE_HEATER_COOLER(LOW);
}
}
}
else {
temp_cooler.soft_pwm_amount = 0;
if (flag_cooler_state) {
flag_cooler_state = false;
thermalManager.set_fan_speed(COOLER_FAN_INDEX, 0);
}
WRITE_HEATER_COOLER(LOW);
}
#if ENABLED(THERMAL_PROTECTION_COOLER)
tr_state_machine[RUNAWAY_IND_COOLER].run(temp_cooler.celsius, temp_cooler.target, H_COOLER, THERMAL_PROTECTION_COOLER_PERIOD, THERMAL_PROTECTION_COOLER_HYSTERESIS);
#endif
#endif // HAS_COOLER
#if ENABLED(LASER_COOLANT_FLOW_METER)
cooler.flowmeter_task(ms);
#if ENABLED(FLOWMETER_SAFETY)
if (cutter.enabled() && cooler.check_flow_too_low()) {
cutter.disable();
TERN_(HAS_DISPLAY, ui.flow_fault());
}
#endif
#endif
UNUSED(ms);
}
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
/**
* Bisect search for the range of the 'raw' value, then interpolate
* proportionally between the under and over values.
*/
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
uint8_t l = 0, r = LEN, m; \
for (;;) { \
m = (l + r) >> 1; \
if (!m) return celsius_t(pgm_read_word(&TBL[0].celsius)); \
if (m == l || m == r) return celsius_t(pgm_read_word(&TBL[LEN-1].celsius)); \
int16_t v00 = pgm_read_word(&TBL[m-1].value), \
v10 = pgm_read_word(&TBL[m-0].value); \
if (raw < v00) r = m; \
else if (raw > v10) l = m; \
else { \
const celsius_t v01 = celsius_t(pgm_read_word(&TBL[m-1].celsius)), \
v11 = celsius_t(pgm_read_word(&TBL[m-0].celsius)); \
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
} \
} \
}while(0)
#if HAS_USER_THERMISTORS
user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load()
void Temperature::reset_user_thermistors() {
user_thermistor_t default_user_thermistor[USER_THERMISTORS] = {
#if TEMP_SENSOR_0_IS_CUSTOM
{ true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 },
#endif
#if TEMP_SENSOR_1_IS_CUSTOM
{ true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 },
#endif
#if TEMP_SENSOR_2_IS_CUSTOM
{ true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 },
#endif
#if TEMP_SENSOR_3_IS_CUSTOM
{ true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 },
#endif
#if TEMP_SENSOR_4_IS_CUSTOM
{ true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 },
#endif
#if TEMP_SENSOR_5_IS_CUSTOM
{ true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 },
#endif
#if TEMP_SENSOR_6_IS_CUSTOM
{ true, 0, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 },
#endif
#if TEMP_SENSOR_7_IS_CUSTOM
{ true, 0, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 },
#endif
#if TEMP_SENSOR_BED_IS_CUSTOM
{ true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 },
#endif
#if TEMP_SENSOR_CHAMBER_IS_CUSTOM
{ true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 },
#endif
#if TEMP_SENSOR_COOLER_IS_CUSTOM
{ true, 0, 0, COOLER_PULLUP_RESISTOR_OHMS, COOLER_RESISTANCE_25C_OHMS, 0, 0, COOLER_BETA, 0 },
#endif
#if TEMP_SENSOR_PROBE_IS_CUSTOM
{ true, 0, 0, PROBE_PULLUP_RESISTOR_OHMS, PROBE_RESISTANCE_25C_OHMS, 0, 0, PROBE_BETA, 0 },
#endif
#if TEMP_SENSOR_BOARD_IS_CUSTOM
{ true, 0, 0, BOARD_PULLUP_RESISTOR_OHMS, BOARD_RESISTANCE_25C_OHMS, 0, 0, BOARD_BETA, 0 },
#endif
#if TEMP_SENSOR_REDUNDANT_IS_CUSTOM
{ true, 0, 0, REDUNDANT_PULLUP_RESISTOR_OHMS, REDUNDANT_RESISTANCE_25C_OHMS, 0, 0, REDUNDANT_BETA, 0 },
#endif
};
COPY(user_thermistor, default_user_thermistor);
}
void Temperature::M305_report(const uint8_t t_index, const bool forReplay/*=true*/) {
gcode.report_heading_etc(forReplay, F(STR_USER_THERMISTORS));
SERIAL_ECHOPGM(" M305 P", AS_DIGIT(t_index));
const user_thermistor_t &t = user_thermistor[t_index];
SERIAL_ECHOPAIR_F(" R", t.series_res, 1);
SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1);
SERIAL_ECHOPAIR_F_P(SP_B_STR, t.beta, 1);
SERIAL_ECHOPAIR_F_P(SP_C_STR, t.sh_c_coeff, 9);
SERIAL_ECHOPGM(" ; ");
SERIAL_ECHOF(
TERN_(TEMP_SENSOR_0_IS_CUSTOM, t_index == CTI_HOTEND_0 ? F("HOTEND 0") :)
TERN_(TEMP_SENSOR_1_IS_CUSTOM, t_index == CTI_HOTEND_1 ? F("HOTEND 1") :)
TERN_(TEMP_SENSOR_2_IS_CUSTOM, t_index == CTI_HOTEND_2 ? F("HOTEND 2") :)
TERN_(TEMP_SENSOR_3_IS_CUSTOM, t_index == CTI_HOTEND_3 ? F("HOTEND 3") :)
TERN_(TEMP_SENSOR_4_IS_CUSTOM, t_index == CTI_HOTEND_4 ? F("HOTEND 4") :)
TERN_(TEMP_SENSOR_5_IS_CUSTOM, t_index == CTI_HOTEND_5 ? F("HOTEND 5") :)
TERN_(TEMP_SENSOR_6_IS_CUSTOM, t_index == CTI_HOTEND_6 ? F("HOTEND 6") :)
TERN_(TEMP_SENSOR_7_IS_CUSTOM, t_index == CTI_HOTEND_7 ? F("HOTEND 7") :)
TERN_(TEMP_SENSOR_BED_IS_CUSTOM, t_index == CTI_BED ? F("BED") :)
TERN_(TEMP_SENSOR_CHAMBER_IS_CUSTOM, t_index == CTI_CHAMBER ? F("CHAMBER") :)
TERN_(TEMP_SENSOR_COOLER_IS_CUSTOM, t_index == CTI_COOLER ? F("COOLER") :)
TERN_(TEMP_SENSOR_PROBE_IS_CUSTOM, t_index == CTI_PROBE ? F("PROBE") :)
TERN_(TEMP_SENSOR_BOARD_IS_CUSTOM, t_index == CTI_BOARD ? F("BOARD") :)
TERN_(TEMP_SENSOR_REDUNDANT_IS_CUSTOM, t_index == CTI_REDUNDANT ? F("REDUNDANT") :)
nullptr
);
SERIAL_EOL();
}
celsius_float_t Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int16_t raw) {
if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25;
user_thermistor_t &t = user_thermistor[t_index];
if (t.pre_calc) { // pre-calculate some variables
t.pre_calc = false;
t.res_25_recip = 1.0f / t.res_25;
t.res_25_log = logf(t.res_25);
t.beta_recip = 1.0f / t.beta;
t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C))
- (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log));
}
// maximum adc value .. take into account the over sampling
const int adc_max = MAX_RAW_THERMISTOR_VALUE,
adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero
const float adc_inverse = (adc_max - adc_raw) - 0.5f,
resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse,
log_resistance = logf(resistance);
float value = t.sh_alpha;
value += log_resistance * t.beta_recip;
if (t.sh_c_coeff != 0)
value += t.sh_c_coeff * cu(log_resistance);
value = 1.0f / value;
// Return degrees C (up to 999, as the LCD only displays 3 digits)
return _MIN(value + THERMISTOR_ABS_ZERO_C, 999);
}
#endif
#if HAS_HOTEND
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
celsius_float_t Temperature::analog_to_celsius_hotend(const int16_t raw, const uint8_t e) {
if (e >= HOTENDS) {
SERIAL_ERROR_START();
SERIAL_ECHO(e);
SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM);
kill();
return 0;
}
switch (e) {
case 0:
#if TEMP_SENSOR_0_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_0, raw);
#elif TEMP_SENSOR_0_IS_MAX_TC
#if TEMP_SENSOR_0_IS_MAX31865
return TERN(LIB_INTERNAL_MAX31865,
max31865_0.temperature((uint16_t)raw),
max31865_0.temperature(MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0)
);
#else
return raw * 0.25;
#endif
#elif TEMP_SENSOR_0_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_0_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 1:
#if TEMP_SENSOR_1_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_1, raw);
#elif TEMP_SENSOR_1_IS_MAX_TC
#if TEMP_SENSOR_0_IS_MAX31865
return TERN(LIB_INTERNAL_MAX31865,
max31865_1.temperature((uint16_t)raw),
max31865_1.temperature(MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1)
);
#else
return raw * 0.25;
#endif
#elif TEMP_SENSOR_1_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_1_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 2:
#if TEMP_SENSOR_2_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_2, raw);
#elif TEMP_SENSOR_2_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_2_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 3:
#if TEMP_SENSOR_3_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_3, raw);
#elif TEMP_SENSOR_3_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_3_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 4:
#if TEMP_SENSOR_4_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_4, raw);
#elif TEMP_SENSOR_4_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_4_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 5:
#if TEMP_SENSOR_5_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_5, raw);
#elif TEMP_SENSOR_5_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_5_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 6:
#if TEMP_SENSOR_6_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_6, raw);
#elif TEMP_SENSOR_6_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_6_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
case 7:
#if TEMP_SENSOR_7_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_HOTEND_7, raw);
#elif TEMP_SENSOR_7_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_7_IS_AD8495
return TEMP_AD8495(raw);
#else
break;
#endif
default: break;
}
#if HAS_HOTEND_THERMISTOR
// Thermistor with conversion table?
const temp_entry_t(*tt)[] = (temp_entry_t(*)[])(heater_ttbl_map[e]);
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
#endif
return 0;
}
#endif // HAS_HOTEND
#if HAS_HEATED_BED
// For bed temperature measurement.
celsius_float_t Temperature::analog_to_celsius_bed(const int16_t raw) {
#if TEMP_SENSOR_BED_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_BED, raw);
#elif TEMP_SENSOR_BED_IS_THERMISTOR
SCAN_THERMISTOR_TABLE(TEMPTABLE_BED, TEMPTABLE_BED_LEN);
#elif TEMP_SENSOR_BED_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_BED_IS_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
// For chamber temperature measurement.
celsius_float_t Temperature::analog_to_celsius_chamber(const int16_t raw) {
#if TEMP_SENSOR_CHAMBER_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_CHAMBER, raw);
#elif TEMP_SENSOR_CHAMBER_IS_THERMISTOR
SCAN_THERMISTOR_TABLE(TEMPTABLE_CHAMBER, TEMPTABLE_CHAMBER_LEN);
#elif TEMP_SENSOR_CHAMBER_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_CHAMBER_IS_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_CHAMBER
#if HAS_TEMP_COOLER
// For cooler temperature measurement.
celsius_float_t Temperature::analog_to_celsius_cooler(const int16_t raw) {
#if TEMP_SENSOR_COOLER_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_COOLER, raw);
#elif TEMP_SENSOR_COOLER_IS_THERMISTOR
SCAN_THERMISTOR_TABLE(TEMPTABLE_COOLER, TEMPTABLE_COOLER_LEN);
#elif TEMP_SENSOR_COOLER_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_COOLER_IS_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_COOLER
#if HAS_TEMP_PROBE
// For probe temperature measurement.
celsius_float_t Temperature::analog_to_celsius_probe(const int16_t raw) {
#if TEMP_SENSOR_PROBE_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_PROBE, raw);
#elif TEMP_SENSOR_PROBE_IS_THERMISTOR
SCAN_THERMISTOR_TABLE(TEMPTABLE_PROBE, TEMPTABLE_PROBE_LEN);
#elif TEMP_SENSOR_PROBE_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_PROBE_IS_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_PROBE
#if HAS_TEMP_BOARD
// For motherboard temperature measurement.
celsius_float_t Temperature::analog_to_celsius_board(const int16_t raw) {
#if TEMP_SENSOR_BOARD_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_BOARD, raw);
#elif TEMP_SENSOR_BOARD_IS_THERMISTOR
SCAN_THERMISTOR_TABLE(TEMPTABLE_BOARD, TEMPTABLE_BOARD_LEN);
#elif TEMP_SENSOR_BOARD_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_BOARD_IS_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_BOARD
#if HAS_TEMP_REDUNDANT
// For redundant temperature measurement.
celsius_float_t Temperature::analog_to_celsius_redundant(const int16_t raw) {
#if TEMP_SENSOR_REDUNDANT_IS_CUSTOM
return user_thermistor_to_deg_c(CTI_REDUNDANT, raw);
#elif TEMP_SENSOR_REDUNDANT_IS_MAX_TC && REDUNDANT_TEMP_MATCH(SOURCE, E0)
return TERN(TEMP_SENSOR_REDUNDANT_IS_MAX31865, max31865_0.temperature((uint16_t)raw), raw * 0.25);
#elif TEMP_SENSOR_REDUNDANT_IS_MAX_TC && REDUNDANT_TEMP_MATCH(SOURCE, E1)
return TERN(TEMP_SENSOR_REDUNDANT_IS_MAX31865, max31865_1.temperature((uint16_t)raw), raw * 0.25);
#elif TEMP_SENSOR_REDUNDANT_IS_THERMISTOR
SCAN_THERMISTOR_TABLE(TEMPTABLE_REDUNDANT, TEMPTABLE_REDUNDANT_LEN);
#elif TEMP_SENSOR_REDUNDANT_IS_AD595
return TEMP_AD595(raw);
#elif TEMP_SENSOR_REDUNDANT_IS_AD8495
return TEMP_AD8495(raw);
#else
UNUSED(raw);
return 0;
#endif
}
#endif // HAS_TEMP_REDUNDANT
/**
* Convert the raw sensor readings into actual Celsius temperatures and
* validate raw temperatures. Bad readings generate min/maxtemp errors.
*
* The raw values are generated entirely in interrupt context, and this
* method is called from normal context once 'raw_temps_ready' has been
* set by update_raw_temperatures().
*
* The watchdog is dependent on this method. If 'raw_temps_ready' stops
* being set by the interrupt so that this method is not called for over
* 4 seconds then something has gone afoul and the machine will be reset.
*/
void Temperature::updateTemperaturesFromRawValues() {
watchdog_refresh(); // Reset because raw_temps_ready was set by the interrupt
TERN_(TEMP_SENSOR_0_IS_MAX_TC, temp_hotend[0].raw = READ_MAX_TC(0));
TERN_(TEMP_SENSOR_1_IS_MAX_TC, temp_hotend[1].raw = READ_MAX_TC(1));
TERN_(TEMP_SENSOR_REDUNDANT_IS_MAX_TC, temp_redundant.raw = READ_MAX_TC(HEATER_ID(TEMP_SENSOR_REDUNDANT_SOURCE)));
#if HAS_HOTEND
HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].raw, e);
#endif
TERN_(HAS_HEATED_BED, temp_bed.celsius = analog_to_celsius_bed(temp_bed.raw));
TERN_(HAS_TEMP_CHAMBER, temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.raw));
TERN_(HAS_TEMP_COOLER, temp_cooler.celsius = analog_to_celsius_cooler(temp_cooler.raw));
TERN_(HAS_TEMP_PROBE, temp_probe.celsius = analog_to_celsius_probe(temp_probe.raw));
TERN_(HAS_TEMP_BOARD, temp_board.celsius = analog_to_celsius_board(temp_board.raw));
TERN_(HAS_TEMP_REDUNDANT, temp_redundant.celsius = analog_to_celsius_redundant(temp_redundant.raw));
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_measured_mm());
TERN_(HAS_POWER_MONITOR, power_monitor.capture_values());
#if HAS_HOTEND
static constexpr int8_t temp_dir[] = {
#if TEMP_SENSOR_IS_ANY_MAX_TC(0)
0
#else
TEMPDIR(0)
#endif
#if HAS_MULTI_HOTEND
#if TEMP_SENSOR_IS_ANY_MAX_TC(1)
, 0
#else
, TEMPDIR(1)
#endif
#if HOTENDS > 2
#define _TEMPDIR(N) , TEMPDIR(N)
REPEAT_S(2, HOTENDS, _TEMPDIR)
#endif
#endif
};
LOOP_L_N(e, COUNT(temp_dir)) {
const int8_t tdir = temp_dir[e];
if (tdir) {
const int16_t rawtemp = temp_hotend[e].raw * tdir; // normal direction, +rawtemp, else -rawtemp
if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error((heater_id_t)e);
const bool heater_on = temp_hotend[e].target > 0;
if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
#if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error((heater_id_t)e);
}
#if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
else
consecutive_low_temperature_error[e] = 0;
#endif
}
}
#endif // HAS_HOTEND
#define TP_CMP(S,A,B) (TEMPDIR(S) < 0 ? ((A)<(B)) : ((A)>(B)))
#if ENABLED(THERMAL_PROTECTION_BED)
if (TP_CMP(BED, temp_bed.raw, maxtemp_raw_BED)) max_temp_error(H_BED);
if (temp_bed.target > 0 && TP_CMP(BED, mintemp_raw_BED, temp_bed.raw)) min_temp_error(H_BED);
#endif
#if BOTH(HAS_HEATED_CHAMBER, THERMAL_PROTECTION_CHAMBER)
if (TP_CMP(CHAMBER, temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER);
if (temp_chamber.target > 0 && TP_CMP(CHAMBER, mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(H_CHAMBER);
#endif
#if BOTH(HAS_COOLER, THERMAL_PROTECTION_COOLER)
if (cutter.unitPower > 0 && TP_CMP(COOLER, temp_cooler.raw, maxtemp_raw_COOLER)) max_temp_error(H_COOLER);
if (TP_CMP(COOLER, mintemp_raw_COOLER, temp_cooler.raw)) min_temp_error(H_COOLER);
#endif
#if BOTH(HAS_TEMP_BOARD, THERMAL_PROTECTION_BOARD)
if (TP_CMP(BOARD, temp_board.raw, maxtemp_raw_BOARD)) max_temp_error(H_BOARD);
if (TP_CMP(BOARD, mintemp_raw_BOARD, temp_board.raw)) min_temp_error(H_BOARD);
#endif
#undef TP_CMP
} // Temperature::updateTemperaturesFromRawValues
/**
* Initialize the temperature manager
*
* The manager is implemented by periodic calls to manage_heater()
*
* - Init (and disable) SPI thermocouples like MAX6675 and MAX31865
* - Disable RUMBA JTAG to accommodate a thermocouple extension
* - Read-enable thermistors with a read-enable pin
* - Init HEATER and COOLER pins for OUTPUT in OFF state
* - Init the FAN pins as PWM or OUTPUT
* - Init the SPI interface for SPI thermocouples
* - Init ADC according to the HAL
* - Set thermistor pins to analog inputs according to the HAL
* - Start the Temperature ISR timer
* - Init the AUTO FAN pins as PWM or OUTPUT
* - Wait 250ms for temperatures to settle
* - Init temp_range[], used for catching min/maxtemp
*/
void Temperature::init() {
TERN_(PROBING_HEATERS_OFF, paused_for_probing = false);
#if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
// Init (and disable) SPI thermocouples
#if TEMP_SENSOR_IS_ANY_MAX_TC(0) && PIN_EXISTS(TEMP_0_CS)
OUT_WRITE(TEMP_0_CS_PIN, HIGH);
#endif
#if TEMP_SENSOR_IS_ANY_MAX_TC(1) && PIN_EXISTS(TEMP_1_CS)
OUT_WRITE(TEMP_1_CS_PIN, HIGH);
#endif
// Setup objects for library-based polling of MAX TCs
#if HAS_MAXTC_LIBRARIES
#define _MAX31865_WIRES(n) MAX31865_##n##WIRE
#define MAX31865_WIRES(n) _MAX31865_WIRES(n)
#if TEMP_SENSOR_IS_MAX(0, 6675) && HAS_MAX6675_LIBRARY
max6675_0.begin();
#elif TEMP_SENSOR_IS_MAX(0, 31855) && HAS_MAX31855_LIBRARY
max31855_0.begin();
#elif TEMP_SENSOR_IS_MAX(0, 31865)
max31865_0.begin(
MAX31865_WIRES(MAX31865_SENSOR_WIRES_0) // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
OPTARG(LIB_INTERNAL_MAX31865, MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0)
);
#if defined(LIB_INTERNAL_MAX31865) && ENABLED(MAX31865_50HZ_FILTER)
max31865_0.enable50HzFilter(1);
#endif
#endif
#if TEMP_SENSOR_IS_MAX(1, 6675) && HAS_MAX6675_LIBRARY
max6675_1.begin();
#elif TEMP_SENSOR_IS_MAX(1, 31855) && HAS_MAX31855_LIBRARY
max31855_1.begin();
#elif TEMP_SENSOR_IS_MAX(1, 31865)
max31865_1.begin(
MAX31865_WIRES(MAX31865_SENSOR_WIRES_1) // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
OPTARG(LIB_INTERNAL_MAX31865, MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1)
);
#if defined(LIB_INTERNAL_MAX31865) && ENABLED(MAX31865_50HZ_FILTER)
max31865_1.enable50HzFilter(1);
#endif
#endif
#undef MAX31865_WIRES
#undef _MAX31865_WIRES
#endif
#if MB(RUMBA)
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
#define _AD(N) (TEMP_SENSOR_##N##_IS_AD595 || TEMP_SENSOR_##N##_IS_AD8495)
#if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER) || _AD(REDUNDANT)
MCUCR = _BV(JTD);
MCUCR = _BV(JTD);
#endif
#endif
// Thermistor activation by MCU pin
#if PIN_EXISTS(TEMP_0_TR_ENABLE)
OUT_WRITE(TEMP_0_TR_ENABLE_PIN, (
#if TEMP_SENSOR_IS_ANY_MAX_TC(0)
HIGH
#else
LOW
#endif
));
#endif
#if PIN_EXISTS(TEMP_1_TR_ENABLE)
OUT_WRITE(TEMP_1_TR_ENABLE_PIN, (
#if TEMP_SENSOR_IS_ANY_MAX_TC(1)
HIGH
#else
LOW
#endif
));
#endif
#if HAS_HEATER_0
#ifdef BOARD_OPENDRAIN_MOSFETS
OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING);
#else
OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
#endif
#endif
#if HAS_HEATER_1
OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
#endif
#if HAS_HEATER_2
OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
#endif
#if HAS_HEATER_3
OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
#endif
#if HAS_HEATER_4
OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
#endif
#if HAS_HEATER_5
OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
#endif
#if HAS_HEATER_6
OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING);
#endif
#if HAS_HEATER_7
OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING);
#endif
#if HAS_HEATED_BED
#ifdef BOARD_OPENDRAIN_MOSFETS
OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING);
#else
OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
#endif
#endif
#if HAS_HEATED_CHAMBER
OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
#endif
#if HAS_COOLER
OUT_WRITE(COOLER_PIN, COOLER_INVERTING);
#endif
#if HAS_FAN0
INIT_FAN_PIN(FAN_PIN);
#endif
#if HAS_FAN1
INIT_FAN_PIN(FAN1_PIN);
#endif
#if HAS_FAN2
INIT_FAN_PIN(FAN2_PIN);
#endif
#if HAS_FAN3
INIT_FAN_PIN(FAN3_PIN);
#endif
#if HAS_FAN4
INIT_FAN_PIN(FAN4_PIN);
#endif
#if HAS_FAN5
INIT_FAN_PIN(FAN5_PIN);
#endif
#if HAS_FAN6
INIT_FAN_PIN(FAN6_PIN);
#endif
#if HAS_FAN7
INIT_FAN_PIN(FAN7_PIN);
#endif
#if ENABLED(USE_CONTROLLER_FAN)
INIT_FAN_PIN(CONTROLLER_FAN_PIN);
#endif
TERN_(HAS_MAXTC_SW_SPI, max_tc_spi.init());
HAL_adc_init();
#if HAS_TEMP_ADC_0
HAL_ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_ADC_1
HAL_ANALOG_SELECT(TEMP_1_PIN);
#endif
#if HAS_TEMP_ADC_2
HAL_ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_ADC_3
HAL_ANALOG_SELECT(TEMP_3_PIN);
#endif
#if HAS_TEMP_ADC_4
HAL_ANALOG_SELECT(TEMP_4_PIN);
#endif
#if HAS_TEMP_ADC_5
HAL_ANALOG_SELECT(TEMP_5_PIN);
#endif
#if HAS_TEMP_ADC_6
HAL_ANALOG_SELECT(TEMP_6_PIN);
#endif
#if HAS_TEMP_ADC_7
HAL_ANALOG_SELECT(TEMP_7_PIN);
#endif
#if HAS_JOY_ADC_X
HAL_ANALOG_SELECT(JOY_X_PIN);
#endif
#if HAS_JOY_ADC_Y
HAL_ANALOG_SELECT(JOY_Y_PIN);
#endif
#if HAS_JOY_ADC_Z
HAL_ANALOG_SELECT(JOY_Z_PIN);
#endif
#if HAS_JOY_ADC_EN
SET_INPUT_PULLUP(JOY_EN_PIN);
#endif
#if HAS_TEMP_ADC_BED
HAL_ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if HAS_TEMP_ADC_CHAMBER
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
#endif
#if HAS_TEMP_ADC_COOLER
HAL_ANALOG_SELECT(TEMP_COOLER_PIN);
#endif
#if HAS_TEMP_ADC_PROBE
HAL_ANALOG_SELECT(TEMP_PROBE_PIN);
#endif
#if HAS_TEMP_ADC_BOARD
HAL_ANALOG_SELECT(TEMP_BOARD_PIN);
#endif
#if HAS_TEMP_ADC_REDUNDANT
HAL_ANALOG_SELECT(TEMP_REDUNDANT_PIN);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
HAL_ANALOG_SELECT(FILWIDTH_PIN);
#endif
#if HAS_ADC_BUTTONS
HAL_ANALOG_SELECT(ADC_KEYPAD_PIN);
#endif
#if ENABLED(POWER_MONITOR_CURRENT)
HAL_ANALOG_SELECT(POWER_MONITOR_CURRENT_PIN);
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
HAL_ANALOG_SELECT(POWER_MONITOR_VOLTAGE_PIN);
#endif
HAL_timer_start(MF_TIMER_TEMP, TEMP_TIMER_FREQUENCY);
ENABLE_TEMPERATURE_INTERRUPT();
#if HAS_AUTO_FAN_0
INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0)
INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1))
INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2))
INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3))
INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4))
INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5))
INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6))
INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
#endif
#if HAS_HOTEND
#define _TEMP_MIN_E(NR) do{ \
const celsius_t tmin = _MAX(HEATER_##NR##_MINTEMP, TERN(TEMP_SENSOR_##NR##_IS_CUSTOM, 0, (int)pgm_read_word(&TEMPTABLE_##NR [TEMP_SENSOR_##NR##_MINTEMP_IND].celsius))); \
temp_range[NR].mintemp = tmin; \
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < tmin) \
temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
}while(0)
#define _TEMP_MAX_E(NR) do{ \
const celsius_t tmax = _MIN(HEATER_##NR##_MAXTEMP, TERN(TEMP_SENSOR_##NR##_IS_CUSTOM, 2000, (int)pgm_read_word(&TEMPTABLE_##NR [TEMP_SENSOR_##NR##_MAXTEMP_IND].celsius) - 1)); \
temp_range[NR].maxtemp = tmax; \
while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > tmax) \
temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
}while(0)
#define _MINMAX_TEST(N,M) (HOTENDS > N && TEMP_SENSOR_##N > 0 && TEMP_SENSOR_##N != 998 && TEMP_SENSOR_##N != 999 && defined(HEATER_##N##_##M##TEMP))
#if _MINMAX_TEST(0, MIN)
_TEMP_MIN_E(0);
#endif
#if _MINMAX_TEST(0, MAX)
_TEMP_MAX_E(0);
#endif
#if _MINMAX_TEST(1, MIN)
_TEMP_MIN_E(1);
#endif
#if _MINMAX_TEST(1, MAX)
_TEMP_MAX_E(1);
#endif
#if _MINMAX_TEST(2, MIN)
_TEMP_MIN_E(2);
#endif
#if _MINMAX_TEST(2, MAX)
_TEMP_MAX_E(2);
#endif
#if _MINMAX_TEST(3, MIN)
_TEMP_MIN_E(3);
#endif
#if _MINMAX_TEST(3, MAX)
_TEMP_MAX_E(3);
#endif
#if _MINMAX_TEST(4, MIN)
_TEMP_MIN_E(4);
#endif
#if _MINMAX_TEST(4, MAX)
_TEMP_MAX_E(4);
#endif
#if _MINMAX_TEST(5, MIN)
_TEMP_MIN_E(5);
#endif
#if _MINMAX_TEST(5, MAX)
_TEMP_MAX_E(5);
#endif
#if _MINMAX_TEST(6, MIN)
_TEMP_MIN_E(6);
#endif
#if _MINMAX_TEST(6, MAX)
_TEMP_MAX_E(6);
#endif
#if _MINMAX_TEST(7, MIN)
_TEMP_MIN_E(7);
#endif
#if _MINMAX_TEST(7, MAX)
_TEMP_MAX_E(7);
#endif
#endif // HAS_HOTEND
// TODO: combine these into the macros above
#if HAS_HEATED_BED
while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
#endif
#if HAS_HEATED_CHAMBER
while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
#endif
#if HAS_COOLER
while (analog_to_celsius_cooler(mintemp_raw_COOLER) > COOLER_MINTEMP) mintemp_raw_COOLER += TEMPDIR(COOLER) * (OVERSAMPLENR);
while (analog_to_celsius_cooler(maxtemp_raw_COOLER) < COOLER_MAXTEMP) maxtemp_raw_COOLER -= TEMPDIR(COOLER) * (OVERSAMPLENR);
#endif
#if BOTH(HAS_TEMP_BOARD, THERMAL_PROTECTION_BOARD)
while (analog_to_celsius_board(mintemp_raw_BOARD) < BOARD_MINTEMP) mintemp_raw_BOARD += TEMPDIR(BOARD) * (OVERSAMPLENR);
while (analog_to_celsius_board(maxtemp_raw_BOARD) > BOARD_MAXTEMP) maxtemp_raw_BOARD -= TEMPDIR(BOARD) * (OVERSAMPLENR);
#endif
#if HAS_TEMP_REDUNDANT
temp_redundant.target = &(
#if REDUNDANT_TEMP_MATCH(TARGET, COOLER) && HAS_TEMP_COOLER
temp_cooler
#elif REDUNDANT_TEMP_MATCH(TARGET, PROBE) && HAS_TEMP_PROBE
temp_probe
#elif REDUNDANT_TEMP_MATCH(TARGET, BOARD) && HAS_TEMP_BOARD
temp_board
#elif REDUNDANT_TEMP_MATCH(TARGET, CHAMBER) && HAS_TEMP_CHAMBER
temp_chamber
#elif REDUNDANT_TEMP_MATCH(TARGET, BED) && HAS_TEMP_BED
temp_bed
#else
temp_hotend[HEATER_ID(TEMP_SENSOR_REDUNDANT_TARGET)]
#endif
);
#endif
}
#if HAS_THERMAL_PROTECTION
Temperature::tr_state_machine_t Temperature::tr_state_machine[NR_HEATER_RUNAWAY]; // = { { TRInactive, 0 } };
/**
* @brief Thermal Runaway state machine for a single heater
* @param current current measured temperature
* @param target current target temperature
* @param heater_id extruder index
* @param period_seconds missed temperature allowed time
* @param hysteresis_degc allowed distance from target
*
* TODO: Embed the last 3 parameters during init, if not less optimal
*/
void Temperature::tr_state_machine_t::run(const_celsius_float_t current, const_celsius_float_t target, const heater_id_t heater_id, const uint16_t period_seconds, const celsius_t hysteresis_degc) {
#if HEATER_IDLE_HANDLER
// Convert the given heater_id_t to an idle array index
const IdleIndex idle_index = idle_index_for_id(heater_id);
#endif
/**
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Thermal Runaway Running. Heater ID: ");
switch (heater_id) {
case H_BED: SERIAL_ECHOPGM("bed"); break;
case H_CHAMBER: SERIAL_ECHOPGM("chamber"); break;
default: SERIAL_ECHO(heater_id);
}
SERIAL_ECHOLNPGM(
" ; sizeof(running_temp):", sizeof(running_temp),
" ; State:", state, " ; Timer:", timer, " ; Temperature:", current, " ; Target Temp:", target
#if HEATER_IDLE_HANDLER
, " ; Idle Timeout:", heater_idle[idle_index].timed_out
#endif
);
*/
#if HEATER_IDLE_HANDLER
// If the heater idle timeout expires, restart
if (heater_idle[idle_index].timed_out) {
state = TRInactive;
running_temp = 0;
}
else
#endif
{
// If the target temperature changes, restart
if (running_temp != target) {
running_temp = target;
state = target > 0 ? TRFirstHeating : TRInactive;
}
}
switch (state) {
// Inactive state waits for a target temperature to be set
case TRInactive: break;
// When first heating, wait for the temperature to be reached then go to Stable state
case TRFirstHeating:
if (current < running_temp) break;
state = TRStable;
// While the temperature is stable watch for a bad temperature
case TRStable:
#if ENABLED(ADAPTIVE_FAN_SLOWING)
if (adaptive_fan_slowing && heater_id >= 0) {
const int fan_index = _MIN(heater_id, FAN_COUNT - 1);
if (fan_speed[fan_index] == 0 || current >= running_temp - (hysteresis_degc * 0.25f))
fan_speed_scaler[fan_index] = 128;
else if (current >= running_temp - (hysteresis_degc * 0.3335f))
fan_speed_scaler[fan_index] = 96;
else if (current >= running_temp - (hysteresis_degc * 0.5f))
fan_speed_scaler[fan_index] = 64;
else if (current >= running_temp - (hysteresis_degc * 0.8f))
fan_speed_scaler[fan_index] = 32;
else
fan_speed_scaler[fan_index] = 0;
}
#endif
if (current >= running_temp - hysteresis_degc) {
timer = millis() + SEC_TO_MS(period_seconds);
break;
}
else if (PENDING(millis(), timer)) break;
state = TRRunaway;
case TRRunaway:
TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
_temp_error(heater_id, FPSTR(str_t_thermal_runaway), GET_TEXT_F(MSG_THERMAL_RUNAWAY));
}
}
#endif // HAS_THERMAL_PROTECTION
void Temperature::disable_all_heaters() {
// Disable autotemp, unpause and reset everything
TERN_(AUTOTEMP, planner.autotemp_enabled = false);
TERN_(PROBING_HEATERS_OFF, pause_heaters(false));
#if HAS_HOTEND
HOTEND_LOOP() {
setTargetHotend(0, e);
temp_hotend[e].soft_pwm_amount = 0;
}
#endif
#if HAS_TEMP_HOTEND
#define DISABLE_HEATER(N) WRITE_HEATER_##N(LOW);
REPEAT(HOTENDS, DISABLE_HEATER);
#endif
#if HAS_HEATED_BED
setTargetBed(0);
temp_bed.soft_pwm_amount = 0;
WRITE_HEATER_BED(LOW);
#endif
#if HAS_HEATED_CHAMBER
setTargetChamber(0);
temp_chamber.soft_pwm_amount = 0;
WRITE_HEATER_CHAMBER(LOW);
#endif
#if HAS_COOLER
setTargetCooler(0);
temp_cooler.soft_pwm_amount = 0;
WRITE_HEATER_COOLER(LOW);
#endif
}
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
bool Temperature::auto_job_over_threshold() {
#if HAS_HOTEND
HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true;
#endif
return TERN0(HAS_HEATED_BED, degTargetBed() > BED_MINTEMP)
|| TERN0(HAS_HEATED_CHAMBER, degTargetChamber() > CHAMBER_MINTEMP);
}
void Temperature::auto_job_check_timer(const bool can_start, const bool can_stop) {
if (auto_job_over_threshold()) {
if (can_start) startOrResumeJob();
}
else if (can_stop) {
print_job_timer.stop();
ui.reset_status();
}
}
#endif // PRINTJOB_TIMER_AUTOSTART
#if ENABLED(PROBING_HEATERS_OFF)
void Temperature::pause_heaters(const bool p) {
if (p != paused_for_probing) {
paused_for_probing = p;
if (p) {
HOTEND_LOOP() heater_idle[e].expire(); // Timeout immediately
TERN_(HAS_HEATED_BED, heater_idle[IDLE_INDEX_BED].expire()); // Timeout immediately
}
else {
HOTEND_LOOP() reset_hotend_idle_timer(e);
TERN_(HAS_HEATED_BED, reset_bed_idle_timer());
}
}
}
#endif // PROBING_HEATERS_OFF
#if EITHER(SINGLENOZZLE_STANDBY_TEMP, SINGLENOZZLE_STANDBY_FAN)
void Temperature::singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool) {
#if ENABLED(SINGLENOZZLE_STANDBY_FAN)
singlenozzle_fan_speed[old_tool] = fan_speed[0];
fan_speed[0] = singlenozzle_fan_speed[new_tool];
#endif
#if ENABLED(SINGLENOZZLE_STANDBY_TEMP)
singlenozzle_temp[old_tool] = temp_hotend[0].target;
if (singlenozzle_temp[new_tool] && singlenozzle_temp[new_tool] != singlenozzle_temp[old_tool]) {
setTargetHotend(singlenozzle_temp[new_tool], 0);
TERN_(AUTOTEMP, planner.autotemp_update());
set_heating_message(0);
(void)wait_for_hotend(0, false); // Wait for heating or cooling
}
#endif
}
#endif // SINGLENOZZLE_STANDBY_TEMP || SINGLENOZZLE_STANDBY_FAN
#if HAS_MAX_TC
#ifndef THERMOCOUPLE_MAX_ERRORS
#define THERMOCOUPLE_MAX_ERRORS 15
#endif
/**
* @brief Read MAX Thermocouple temperature.
*
* Reads the thermocouple board via HW or SW SPI, using a library (LIB_USR_x) or raw SPI reads.
* Doesn't strictly return a temperature; returns an "ADC Value" (i.e. raw register content).
*
* @param hindex the hotend we're referencing (if MULTI_MAX_TC)
* @return integer representing the board's buffer, to be converted later if needed
*/
int16_t Temperature::read_max_tc(TERN_(HAS_MULTI_MAX_TC, const uint8_t hindex/*=0*/)) {
#define MAXTC_HEAT_INTERVAL 250UL
#if HAS_MAX31855
#define MAX_TC_ERROR_MASK 7 // D2-0: SCV, SCG, OC
#define MAX_TC_DISCARD_BITS 18 // Data D31-18; sign bit D31
#define MAX_TC_SPEED_BITS 3 // ~1MHz
#elif HAS_MAX31865
#define MAX_TC_ERROR_MASK 1 // D0 Bit on fault only
#define MAX_TC_DISCARD_BITS 1 // Data is in D15-D1
#define MAX_TC_SPEED_BITS 3 // ~1MHz
#else // MAX6675
#define MAX_TC_ERROR_MASK 3 // D2 only; 1 = open circuit
#define MAX_TC_DISCARD_BITS 3 // Data D15-D1
#define MAX_TC_SPEED_BITS 2 // ~2MHz
#endif
#if HAS_MULTI_MAX_TC
// Needed to return the correct temp when this is called between readings
static int16_t max_tc_temp_previous[MAX_TC_COUNT] = { 0 };
#define THERMO_TEMP(I) max_tc_temp_previous[I]
#define THERMO_SEL(A,B) (hindex ? (B) : (A))
#define MAXTC_CS_WRITE(V) do{ switch (hindex) { case 1: WRITE(TEMP_1_CS_PIN, V); break; default: WRITE(TEMP_0_CS_PIN, V); } }while(0)
#else
// When we have only 1 max tc, THERMO_SEL will pick the appropriate sensor
// variable, and MAXTC_*() macros will be hardcoded to the correct CS pin.
constexpr uint8_t hindex = 0;
#define THERMO_TEMP(I) max_tc_temp
#if TEMP_SENSOR_IS_ANY_MAX_TC(0)
#define THERMO_SEL(A,B) A
#define MAXTC_CS_WRITE(V) WRITE(TEMP_0_CS_PIN, V)
#else
#define THERMO_SEL(A,B) B
#define MAXTC_CS_WRITE(V) WRITE(TEMP_1_CS_PIN, V)
#endif
#endif
static TERN(HAS_MAX31855, uint32_t, uint16_t) max_tc_temp = THERMO_SEL(
TEMP_SENSOR_0_MAX_TC_TMAX,
TEMP_SENSOR_1_MAX_TC_TMAX
);
static uint8_t max_tc_errors[MAX_TC_COUNT] = { 0 };
static millis_t next_max_tc_ms[MAX_TC_COUNT] = { 0 };
// Return last-read value between readings
millis_t ms = millis();
if (PENDING(ms, next_max_tc_ms[hindex]))
return (int16_t)THERMO_TEMP(hindex);
next_max_tc_ms[hindex] = ms + MAXTC_HEAT_INTERVAL;
#if !HAS_MAXTC_LIBRARIES
max_tc_temp = 0;
#if !HAS_MAXTC_SW_SPI
// Initialize SPI using the default Hardware SPI bus.
// FIXME: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
spiBegin();
spiInit(MAX_TC_SPEED_BITS);
#endif
MAXTC_CS_WRITE(LOW); // enable MAXTC
DELAY_NS(100); // Ensure 100ns delay
// Read a big-endian temperature value without using a library
for (uint8_t i = sizeof(max_tc_temp); i--;) {
max_tc_temp |= TERN(HAS_MAXTC_SW_SPI, max_tc_spi.receive(), spiRec());
if (i > 0) max_tc_temp <<= 8; // shift left if not the last byte
}
MAXTC_CS_WRITE(HIGH); // disable MAXTC
#else
#if HAS_MAX6675_LIBRARY
MAX6675 &max6675ref = THERMO_SEL(max6675_0, max6675_1);
max_tc_temp = max6675ref.readRaw16();
#endif
#if HAS_MAX31855_LIBRARY
MAX31855 &max855ref = THERMO_SEL(max31855_0, max31855_1);
max_tc_temp = max855ref.readRaw32();
#endif
#if HAS_MAX31865
MAX31865 &max865ref = THERMO_SEL(max31865_0, max31865_1);
max_tc_temp = TERN(LIB_INTERNAL_MAX31865, max865ref.readRaw(), max865ref.readRTD_with_Fault());
#endif
#endif
// Handle an error. If there have been more than THERMOCOUPLE_MAX_ERRORS, send an error over serial.
// Either way, return the TMAX for the thermocouple to trigger a max_temp_error()
if (max_tc_temp & MAX_TC_ERROR_MASK) {
max_tc_errors[hindex]++;
if (max_tc_errors[hindex] > THERMOCOUPLE_MAX_ERRORS) {
SERIAL_ERROR_START();
SERIAL_ECHOPGM("Temp measurement error! ");
#if HAS_MAX31855
SERIAL_ECHOPGM("MAX31855 Fault: (", max_tc_temp & 0x7, ") >> ");
if (max_tc_temp & 0x1)
SERIAL_ECHOLNPGM("Open Circuit");
else if (max_tc_temp & 0x2)
SERIAL_ECHOLNPGM("Short to GND");
else if (max_tc_temp & 0x4)
SERIAL_ECHOLNPGM("Short to VCC");
#elif HAS_MAX31865
const uint8_t fault_31865 = max865ref.readFault();
max865ref.clearFault();
if (fault_31865) {
SERIAL_EOL();
SERIAL_ECHOLNPGM("\nMAX31865 Fault: (", fault_31865, ") >>");
if (fault_31865 & MAX31865_FAULT_HIGHTHRESH)
SERIAL_ECHOLNPGM("RTD High Threshold");
if (fault_31865 & MAX31865_FAULT_LOWTHRESH)
SERIAL_ECHOLNPGM("RTD Low Threshold");
if (fault_31865 & MAX31865_FAULT_REFINLOW)
SERIAL_ECHOLNPGM("REFIN- > 0.85 x V bias");
if (fault_31865 & MAX31865_FAULT_REFINHIGH)
SERIAL_ECHOLNPGM("REFIN- < 0.85 x V bias (FORCE- open)");
if (fault_31865 & MAX31865_FAULT_RTDINLOW)
SERIAL_ECHOLNPGM("REFIN- < 0.85 x V bias (FORCE- open)");
if (fault_31865 & MAX31865_FAULT_OVUV)
SERIAL_ECHOLNPGM("Under/Over voltage");
}
#else // MAX6675
SERIAL_ECHOLNPGM("MAX6675 Fault: Open Circuit");
#endif
// Set thermocouple above max temperature (TMAX)
max_tc_temp = THERMO_SEL(TEMP_SENSOR_0_MAX_TC_TMAX, TEMP_SENSOR_1_MAX_TC_TMAX) << (MAX_TC_DISCARD_BITS + 1);
}
}
else {
max_tc_errors[hindex] = 0; // No error bit, reset error count
}
max_tc_temp >>= MAX_TC_DISCARD_BITS;
#if HAS_MAX31855
// Support negative temperature for MAX38155
if (max_tc_temp & 0x00002000) max_tc_temp |= 0xFFFFC000;
#endif
THERMO_TEMP(hindex) = max_tc_temp;
return (int16_t)max_tc_temp;
}
#endif // HAS_MAX_TC
/**
* Update raw temperatures
*
* Called by ISR => readings_ready when new temperatures have been set by updateTemperaturesFromRawValues.
* Applies all the accumulators to the current raw temperatures.
*/
void Temperature::update_raw_temperatures() {
// TODO: can this be collapsed into a HOTEND_LOOP()?
#if HAS_TEMP_ADC_0 && !TEMP_SENSOR_0_IS_MAX_TC
temp_hotend[0].update();
#endif
#if HAS_TEMP_ADC_1 && !TEMP_SENSOR_1_IS_MAX_TC
temp_hotend[1].update();
#endif
#if HAS_TEMP_ADC_REDUNDANT && !TEMP_SENSOR_REDUNDANT_IS_MAX_TC
temp_redundant.update();
#endif
TERN_(HAS_TEMP_ADC_2, temp_hotend[2].update());
TERN_(HAS_TEMP_ADC_3, temp_hotend[3].update());
TERN_(HAS_TEMP_ADC_4, temp_hotend[4].update());
TERN_(HAS_TEMP_ADC_5, temp_hotend[5].update());
TERN_(HAS_TEMP_ADC_6, temp_hotend[6].update());
TERN_(HAS_TEMP_ADC_7, temp_hotend[7].update());
TERN_(HAS_TEMP_ADC_BED, temp_bed.update());
TERN_(HAS_TEMP_ADC_CHAMBER, temp_chamber.update());
TERN_(HAS_TEMP_ADC_PROBE, temp_probe.update());
TERN_(HAS_TEMP_ADC_BOARD, temp_board.update());
TERN_(HAS_TEMP_ADC_COOLER, temp_cooler.update());
TERN_(HAS_JOY_ADC_X, joystick.x.update());
TERN_(HAS_JOY_ADC_Y, joystick.y.update());
TERN_(HAS_JOY_ADC_Z, joystick.z.update());
}
/**
* Called by the Temperature ISR when all the ADCs have been processed.
* Reset all the ADC accumulators for another round of updates.
*/
void Temperature::readings_ready() {
// Update raw values only if they're not already set.
if (!raw_temps_ready) {
update_raw_temperatures();
raw_temps_ready = true;
}
// Filament Sensor - can be read any time since IIR filtering is used
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.reading_ready());
#if HAS_HOTEND
HOTEND_LOOP() temp_hotend[e].reset();
#endif
TERN_(HAS_HEATED_BED, temp_bed.reset());
TERN_(HAS_TEMP_CHAMBER, temp_chamber.reset());
TERN_(HAS_TEMP_PROBE, temp_probe.reset());
TERN_(HAS_TEMP_COOLER, temp_cooler.reset());
TERN_(HAS_TEMP_BOARD, temp_board.reset());
TERN_(HAS_TEMP_REDUNDANT, temp_redundant.reset());
TERN_(HAS_JOY_ADC_X, joystick.x.reset());
TERN_(HAS_JOY_ADC_Y, joystick.y.reset());
TERN_(HAS_JOY_ADC_Z, joystick.z.reset());
}
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
* On AVR this ISR uses the compare method so it runs at the base
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs).
*
* - Manage PWM to all the heaters and fan
* - Prepare or Measure one of the raw ADC sensor values
* - Check new temperature values for MIN/MAX errors (kill on error)
* - Step the babysteps value for each axis towards 0
* - For PINS_DEBUGGING, monitor and report endstop pins
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
* - Call planner.isr to count down its "ignore" time
*/
HAL_TEMP_TIMER_ISR() {
HAL_timer_isr_prologue(MF_TIMER_TEMP);
Temperature::isr();
HAL_timer_isr_epilogue(MF_TIMER_TEMP);
}
#if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
class SoftPWM {
public:
uint8_t count;
inline bool add(const uint8_t mask, const uint8_t amount) {
count = (count & mask) + amount; return (count > mask);
}
#if ENABLED(SLOW_PWM_HEATERS)
bool state_heater;
uint8_t state_timer_heater;
inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
inline bool ready(const bool v) {
const bool rdy = !state_timer_heater;
if (rdy && state_heater != v) {
state_heater = v;
state_timer_heater = MIN_STATE_TIME;
}
return rdy;
}
#endif
};
/**
* Handle various ~1KHz tasks associated with temperature
* - Heater PWM (~1KHz with scaler)
* - LCD Button polling (~500Hz)
* - Start / Read one ADC sensor
* - Advance Babysteps
* - Endstop polling
* - Planner clean buffer
*/
void Temperature::isr() {
static int8_t temp_count = -1;
static ADCSensorState adc_sensor_state = StartupDelay;
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
// avoid multiple loads of pwm_count
uint8_t pwm_count_tmp = pwm_count;
#if HAS_ADC_BUTTONS
static unsigned int raw_ADCKey_value = 0;
static bool ADCKey_pressed = false;
#endif
#if HAS_HOTEND
static SoftPWM soft_pwm_hotend[HOTENDS];
#endif
#if HAS_HEATED_BED
static SoftPWM soft_pwm_bed;
#endif
#if HAS_HEATED_CHAMBER
static SoftPWM soft_pwm_chamber;
#endif
#if HAS_COOLER
static SoftPWM soft_pwm_cooler;
#endif
#if BOTH(FAN_SOFT_PWM, USE_CONTROLLER_FAN)
static SoftPWM soft_pwm_controller;
#endif
#define WRITE_FAN(n, v) WRITE(FAN##n##_PIN, (v) ^ FAN_INVERTING)
#if DISABLED(SLOW_PWM_HEATERS)
#if ANY(HAS_HOTEND, HAS_HEATED_BED, HAS_HEATED_CHAMBER, HAS_COOLER, FAN_SOFT_PWM)
constexpr uint8_t pwm_mask = TERN0(SOFT_PWM_DITHER, _BV(SOFT_PWM_SCALE) - 1);
#define _PWM_MOD(N,S,T) do{ \
const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
WRITE_HEATER_##N(on); \
}while(0)
#endif
/**
* Standard heater PWM modulation
*/
if (pwm_count_tmp >= 127) {
pwm_count_tmp -= 127;
#if HAS_HOTEND
#define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]);
REPEAT(HOTENDS, _PWM_MOD_E);
#endif
#if HAS_HEATED_BED
_PWM_MOD(BED, soft_pwm_bed, temp_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_MOD(CHAMBER, soft_pwm_chamber, temp_chamber);
#endif
#if HAS_COOLER
_PWM_MOD(COOLER, soft_pwm_cooler, temp_cooler);
#endif
#if BOTH(USE_CONTROLLER_FAN, FAN_SOFT_PWM)
WRITE(CONTROLLER_FAN_PIN, soft_pwm_controller.add(pwm_mask, soft_pwm_controller_speed));
#endif
#if ENABLED(FAN_SOFT_PWM)
#define _FAN_PWM(N) do{ \
uint8_t &spcf = soft_pwm_count_fan[N]; \
spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \
}while(0)
#if HAS_FAN0
_FAN_PWM(0);
#endif
#if HAS_FAN1
_FAN_PWM(1);
#endif
#if HAS_FAN2
_FAN_PWM(2);
#endif
#if HAS_FAN3
_FAN_PWM(3);
#endif
#if HAS_FAN4
_FAN_PWM(4);
#endif
#if HAS_FAN5
_FAN_PWM(5);
#endif
#if HAS_FAN6
_FAN_PWM(6);
#endif
#if HAS_FAN7
_FAN_PWM(7);
#endif
#endif
}
else {
#define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
#if HAS_HOTEND
#define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]);
REPEAT(HOTENDS, _PWM_LOW_E);
#endif
#if HAS_HEATED_BED
_PWM_LOW(BED, soft_pwm_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_LOW(CHAMBER, soft_pwm_chamber);
#endif
#if HAS_COOLER
_PWM_LOW(COOLER, soft_pwm_cooler);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
#endif
#if HAS_FAN3
if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
#endif
#if HAS_FAN4
if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
#endif
#if HAS_FAN5
if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
#endif
#if HAS_FAN6
if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
#endif
#if HAS_FAN7
if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
#endif
#if ENABLED(USE_CONTROLLER_FAN)
if (soft_pwm_controller.count <= pwm_count_tmp) WRITE(CONTROLLER_FAN_PIN, LOW);
#endif
#endif
}
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
#else // SLOW_PWM_HEATERS
/**
* SLOW PWM HEATERS
*
* For relay-driven heaters
*/
#define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
#define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
#define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
static uint8_t slow_pwm_count = 0;
if (slow_pwm_count == 0) {
#if HAS_HOTEND
#define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]);
REPEAT(HOTENDS, _SLOW_PWM_E);
#endif
#if HAS_HEATED_BED
_SLOW_PWM(BED, soft_pwm_bed, temp_bed);
#endif
#if HAS_HEATED_CHAMBER
_SLOW_PWM(CHAMBER, soft_pwm_chamber, temp_chamber);
#endif
#if HAS_COOLER
_SLOW_PWM(COOLER, soft_pwm_cooler, temp_cooler);
#endif
} // slow_pwm_count == 0
#if HAS_HOTEND
#define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
REPEAT(HOTENDS, _PWM_OFF_E);
#endif
#if HAS_HEATED_BED
_PWM_OFF(BED, soft_pwm_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_OFF(CHAMBER, soft_pwm_chamber);
#endif
#if HAS_COOLER
_PWM_OFF(COOLER, soft_pwm_cooler, temp_cooler);
#endif
#if ENABLED(FAN_SOFT_PWM)
if (pwm_count_tmp >= 127) {
pwm_count_tmp = 0;
#define _PWM_FAN(N) do{ \
soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \
WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \
}while(0)
#if HAS_FAN0
_PWM_FAN(0);
#endif
#if HAS_FAN1
_PWM_FAN(1);
#endif
#if HAS_FAN2
_PWM_FAN(2);
#endif
#if HAS_FAN3
_FAN_PWM(3);
#endif
#if HAS_FAN4
_FAN_PWM(4);
#endif
#if HAS_FAN5
_FAN_PWM(5);
#endif
#if HAS_FAN6
_FAN_PWM(6);
#endif
#if HAS_FAN7
_FAN_PWM(7);
#endif
}
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
#endif
#if HAS_FAN3
if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
#endif
#if HAS_FAN4
if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
#endif
#if HAS_FAN5
if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
#endif
#if HAS_FAN6
if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
#endif
#if HAS_FAN7
if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
#endif
#endif // FAN_SOFT_PWM
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
// increment slow_pwm_count only every 64th pwm_count,
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7F;
#if HAS_HOTEND
HOTEND_LOOP() soft_pwm_hotend[e].dec();
#endif
TERN_(HAS_HEATED_BED, soft_pwm_bed.dec());
TERN_(HAS_HEATED_CHAMBER, soft_pwm_chamber.dec());
TERN_(HAS_COOLER, soft_pwm_cooler.dec());
}
#endif // SLOW_PWM_HEATERS
//
// Update lcd buttons 488 times per second
//
static bool do_buttons;
if ((do_buttons ^= true)) ui.update_buttons();
/**
* One sensor is sampled on every other call of the ISR.
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
*
* On each Prepare pass, ADC is started for a sensor pin.
* On the next pass, the ADC value is read and accumulated.
*
* This gives each ADC 0.9765ms to charge up.
*/
#define ACCUMULATE_ADC(obj) do{ \
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
else obj.sample(HAL_READ_ADC()); \
}while(0)
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
switch (adc_sensor_state) {
case SensorsReady: {
// All sensors have been read. Stay in this state for a few
// ISRs to save on calls to temp update/checking code below.
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
break;
}
else {
adc_sensor_state = StartSampling; // Fall-through to start sampling
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
}
}
case StartSampling: // Start of sampling loops. Do updates/checks.
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
readings_ready();
}
break;
#if HAS_TEMP_ADC_0
case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break;
case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break;
#endif
#if HAS_TEMP_ADC_BED
case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break;
case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break;
#endif
#if HAS_TEMP_ADC_CHAMBER
case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break;
case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break;
#endif
#if HAS_TEMP_ADC_COOLER
case PrepareTemp_COOLER: HAL_START_ADC(TEMP_COOLER_PIN); break;
case MeasureTemp_COOLER: ACCUMULATE_ADC(temp_cooler); break;
#endif
#if HAS_TEMP_ADC_PROBE
case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break;
case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break;
#endif
#if HAS_TEMP_ADC_BOARD
case PrepareTemp_BOARD: HAL_START_ADC(TEMP_BOARD_PIN); break;
case MeasureTemp_BOARD: ACCUMULATE_ADC(temp_board); break;
#endif
#if HAS_TEMP_ADC_REDUNDANT
case PrepareTemp_REDUNDANT: HAL_START_ADC(TEMP_REDUNDANT_PIN); break;
case MeasureTemp_REDUNDANT: ACCUMULATE_ADC(temp_redundant); break;
#endif
#if HAS_TEMP_ADC_1
case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break;
case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break;
#endif
#if HAS_TEMP_ADC_2
case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break;
case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break;
#endif
#if HAS_TEMP_ADC_3
case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break;
case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break;
#endif
#if HAS_TEMP_ADC_4
case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break;
case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break;
#endif
#if HAS_TEMP_ADC_5
case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break;
case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break;
#endif
#if HAS_TEMP_ADC_6
case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break;
case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break;
#endif
#if HAS_TEMP_ADC_7
case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break;
case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break;
case Measure_FILWIDTH:
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
else filwidth.accumulate(HAL_READ_ADC());
break;
#endif
#if ENABLED(POWER_MONITOR_CURRENT)
case Prepare_POWER_MONITOR_CURRENT:
HAL_START_ADC(POWER_MONITOR_CURRENT_PIN);
break;
case Measure_POWER_MONITOR_CURRENT:
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
else power_monitor.add_current_sample(HAL_READ_ADC());
break;
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
case Prepare_POWER_MONITOR_VOLTAGE:
HAL_START_ADC(POWER_MONITOR_VOLTAGE_PIN);
break;
case Measure_POWER_MONITOR_VOLTAGE:
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
else power_monitor.add_voltage_sample(HAL_READ_ADC());
break;
#endif
#if HAS_JOY_ADC_X
case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break;
case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break;
#endif
#if HAS_JOY_ADC_Y
case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break;
case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break;
#endif
#if HAS_JOY_ADC_Z
case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break;
case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break;
#endif
#if HAS_ADC_BUTTONS
#ifndef ADC_BUTTON_DEBOUNCE_DELAY
#define ADC_BUTTON_DEBOUNCE_DELAY 16
#endif
case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break;
case Measure_ADC_KEY:
if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) {
raw_ADCKey_value = HAL_READ_ADC();
if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) {
NOMORE(current_ADCKey_raw, raw_ADCKey_value);
ADCKey_count++;
}
else { //ADC Key release
if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
if (ADCKey_pressed) {
ADCKey_count = 0;
current_ADCKey_raw = HAL_ADC_RANGE;
}
}
}
if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true;
break;
#endif // HAS_ADC_BUTTONS
case StartupDelay: break;
} // switch(adc_sensor_state)
// Go to the next state
adc_sensor_state = next_sensor_state;
//
// Additional ~1KHz Tasks
//
#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
babystep.task();
#endif
// Check fan tachometers
TERN_(HAS_FANCHECK, fan_check.update_tachometers());
// Poll endstops state, if required
endstops.poll();
// Periodically call the planner timer service routine
planner.isr();
}
#if HAS_TEMP_SENSOR
/**
* Print a single heater state in the form:
* Bed: " B:nnn.nn /nnn.nn"
* Chamber: " C:nnn.nn /nnn.nn"
* Probe: " P:nnn.nn /nnn.nn"
* Cooler: " L:nnn.nn /nnn.nn"
* Redundant: " R:nnn.nn /nnn.nn"
* Extruder: " T0:nnn.nn /nnn.nn"
* With ADC: " T0:nnn.nn /nnn.nn (nnn.nn)"
*/
static void print_heater_state(const heater_id_t e, const_celsius_float_t c, const_celsius_float_t t
OPTARG(SHOW_TEMP_ADC_VALUES, const float r)
) {
char k;
switch (e) {
default:
#if HAS_TEMP_HOTEND
k = 'T'; break;
#endif
#if HAS_TEMP_BED
case H_BED: k = 'B'; break;
#endif
#if HAS_TEMP_CHAMBER
case H_CHAMBER: k = 'C'; break;
#endif
#if HAS_TEMP_PROBE
case H_PROBE: k = 'P'; break;
#endif
#if HAS_TEMP_COOLER
case H_COOLER: k = 'L'; break;
#endif
#if HAS_TEMP_BOARD
case H_BOARD: k = 'M'; break;
#endif
#if HAS_TEMP_REDUNDANT
case H_REDUNDANT: k = 'R'; break;
#endif
}
SERIAL_CHAR(' ', k);
#if HAS_MULTI_HOTEND
if (e >= 0) SERIAL_CHAR('0' + e);
#endif
#ifdef SERIAL_FLOAT_PRECISION
#define SFP _MIN(SERIAL_FLOAT_PRECISION, 2)
#else
#define SFP 2
#endif
SERIAL_CHAR(':');
SERIAL_PRINT(c, SFP);
SERIAL_ECHOPGM(" /");
SERIAL_PRINT(t, SFP);
#if ENABLED(SHOW_TEMP_ADC_VALUES)
// Temperature MAX SPI boards do not have an OVERSAMPLENR defined
SERIAL_ECHOPGM(" (", TERN(HAS_MAXTC_LIBRARIES, k == 'T', false) ? r : r * RECIPROCAL(OVERSAMPLENR));
SERIAL_CHAR(')');
#endif
delay(2);
}
void Temperature::print_heater_states(const uint8_t target_extruder
OPTARG(HAS_TEMP_REDUNDANT, const bool include_r/*=false*/)
) {
#if HAS_TEMP_HOTEND
print_heater_state(H_E0, degHotend(target_extruder), degTargetHotend(target_extruder) OPTARG(SHOW_TEMP_ADC_VALUES, rawHotendTemp(target_extruder)));
#endif
#if HAS_HEATED_BED
print_heater_state(H_BED, degBed(), degTargetBed() OPTARG(SHOW_TEMP_ADC_VALUES, rawBedTemp()));
#endif
#if HAS_TEMP_CHAMBER
print_heater_state(H_CHAMBER, degChamber(), TERN0(HAS_HEATED_CHAMBER, degTargetChamber()) OPTARG(SHOW_TEMP_ADC_VALUES, rawChamberTemp()));
#endif
#if HAS_TEMP_COOLER
print_heater_state(H_COOLER, degCooler(), TERN0(HAS_COOLER, degTargetCooler()) OPTARG(SHOW_TEMP_ADC_VALUES, rawCoolerTemp()));
#endif
#if HAS_TEMP_PROBE
print_heater_state(H_PROBE, degProbe(), 0 OPTARG(SHOW_TEMP_ADC_VALUES, rawProbeTemp()));
#endif
#if HAS_TEMP_BOARD
print_heater_state(H_BOARD, degBoard(), 0 OPTARG(SHOW_TEMP_ADC_VALUES, rawBoardTemp()));
#endif
#if HAS_TEMP_REDUNDANT
if (include_r) print_heater_state(H_REDUNDANT, degRedundant(), degRedundantTarget() OPTARG(SHOW_TEMP_ADC_VALUES, rawRedundantTemp()));
#endif
#if HAS_MULTI_HOTEND
HOTEND_LOOP() print_heater_state((heater_id_t)e, degHotend(e), degTargetHotend(e) OPTARG(SHOW_TEMP_ADC_VALUES, rawHotendTemp(e)));
#endif
SERIAL_ECHOPGM(" @:", getHeaterPower((heater_id_t)target_extruder));
#if HAS_HEATED_BED
SERIAL_ECHOPGM(" B@:", getHeaterPower(H_BED));
#endif
#if HAS_HEATED_CHAMBER
SERIAL_ECHOPGM(" C@:", getHeaterPower(H_CHAMBER));
#endif
#if HAS_COOLER
SERIAL_ECHOPGM(" C@:", getHeaterPower(H_COOLER));
#endif
#if HAS_MULTI_HOTEND
HOTEND_LOOP() {
SERIAL_ECHOPGM(" @", e);
SERIAL_CHAR(':');
SERIAL_ECHO(getHeaterPower((heater_id_t)e));
}
#endif
}
#if ENABLED(AUTO_REPORT_TEMPERATURES)
AutoReporter<Temperature::AutoReportTemp> Temperature::auto_reporter;
void Temperature::AutoReportTemp::report() { print_heater_states(active_extruder); SERIAL_EOL(); }
#endif
#if HAS_HOTEND && HAS_STATUS_MESSAGE
void Temperature::set_heating_message(const uint8_t e) {
const bool heating = isHeatingHotend(e);
ui.status_printf(0,
#if HAS_MULTI_HOTEND
F("E%c " S_FMT), '1' + e
#else
F("E1 " S_FMT)
#endif
, heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING)
);
}
#endif
#if HAS_TEMP_HOTEND
#ifndef MIN_COOLING_SLOPE_DEG
#define MIN_COOLING_SLOPE_DEG 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME
#define MIN_COOLING_SLOPE_TIME 60
#endif
bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel/*=false*/)
) {
#if ENABLED(AUTOTEMP)
REMEMBER(1, planner.autotemp_enabled, false);
#endif
#if TEMP_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const celsius_float_t start_temp = degHotend(target_extruder);
printerEventLEDs.onHotendHeatingStart();
#endif
bool wants_to_cool = false;
celsius_float_t target_temp = -1.0, old_temp = 9999.0;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetHotend(target_extruder)) {
wants_to_cool = isCoolingHotend(target_extruder);
target_temp = degTargetHotend(target_extruder);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL;
print_heater_states(target_extruder);
#if TEMP_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const celsius_float_t temp = degHotend(target_extruder);
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from violet to red as nozzle heats up
if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
#endif
#if TEMP_RESIDENCY_TIME > 0
const celsius_float_t temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
first_loop = false;
#endif
// Prevent a wait-forever situation if R is misused i.e. M109 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME);
old_temp = temp;
}
}
#if G26_CLICK_CAN_CANCEL
if (click_to_cancel && ui.use_click()) {
wait_for_heatup = false;
TERN_(HAS_LCD_MENU, ui.quick_feedback());
}
#endif
} while (wait_for_heatup && TEMP_CONDITIONS);
if (wait_for_heatup) {
wait_for_heatup = false;
#if HAS_DWIN_E3V2_BASIC
HMI_flag.heat_flag = 0;
duration_t elapsed = print_job_timer.duration(); // print timer
dwin_heat_time = elapsed.value;
#else
ui.reset_status();
#endif
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onHeatingDone());
return true;
}
return false;
}
#if ENABLED(WAIT_FOR_HOTEND)
void Temperature::wait_for_hotend_heating(const uint8_t target_extruder) {
if (isHeatingHotend(target_extruder)) {
SERIAL_ECHOLNPGM("Wait for hotend heating...");
LCD_MESSAGE(MSG_HEATING);
wait_for_hotend(target_extruder);
ui.reset_status();
}
}
#endif
#endif // HAS_TEMP_HOTEND
#if HAS_HEATED_BED
#ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.00
#endif
#ifndef MIN_COOLING_SLOPE_TIME_BED
#define MIN_COOLING_SLOPE_TIME_BED 60
#endif
bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel/*=false*/)
) {
#if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_BED_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const celsius_float_t start_temp = degBed();
printerEventLEDs.onBedHeatingStart();
#endif
bool wants_to_cool = false;
celsius_float_t target_temp = -1, old_temp = 9999;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetBed()) {
wants_to_cool = isCoolingBed();
target_temp = degTargetBed();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heater_states(active_extruder);
#if TEMP_BED_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const celsius_float_t temp = degBed();
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from blue to violet as bed heats up
if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
const celsius_float_t temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_BED_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_BED_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
#endif // TEMP_BED_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M190 R0
if (wants_to_cool) {
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_BED);
old_temp = temp;
}
}
#if G26_CLICK_CAN_CANCEL
if (click_to_cancel && ui.use_click()) {
wait_for_heatup = false;
TERN_(HAS_LCD_MENU, ui.quick_feedback());
}
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
first_loop = false;
#endif
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
return false;
}
void Temperature::wait_for_bed_heating() {
if (isHeatingBed()) {
SERIAL_ECHOLNPGM("Wait for bed heating...");
LCD_MESSAGE(MSG_BED_HEATING);
wait_for_bed();
ui.reset_status();
}
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_PROBE
#ifndef MIN_DELTA_SLOPE_DEG_PROBE
#define MIN_DELTA_SLOPE_DEG_PROBE 1.0
#endif
#ifndef MIN_DELTA_SLOPE_TIME_PROBE
#define MIN_DELTA_SLOPE_TIME_PROBE 600
#endif
bool Temperature::wait_for_probe(const celsius_t target_temp, bool no_wait_for_cooling/*=true*/) {
const bool wants_to_cool = isProbeAboveTemp(target_temp),
will_wait = !(wants_to_cool && no_wait_for_cooling);
if (will_wait)
SERIAL_ECHOLNPGM("Waiting for probe to ", wants_to_cool ? F("cool down") : F("heat up"), " to ", target_temp, " degrees.");
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
float old_temp = 9999;
millis_t next_temp_ms = 0, next_delta_check_ms = 0;
wait_for_heatup = true;
while (will_wait && wait_for_heatup) {
// Print Temp Reading every 10 seconds while heating up.
millis_t now = millis();
if (!next_temp_ms || ELAPSED(now, next_temp_ms)) {
next_temp_ms = now + 10000UL;
print_heater_states(active_extruder);
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
// Break after MIN_DELTA_SLOPE_TIME_PROBE seconds if the temperature
// did not drop at least MIN_DELTA_SLOPE_DEG_PROBE. This avoids waiting
// forever as the probe is not actively heated.
if (!next_delta_check_ms || ELAPSED(now, next_delta_check_ms)) {
const float temp = degProbe(),
delta_temp = old_temp > temp ? old_temp - temp : temp - old_temp;
if (delta_temp < float(MIN_DELTA_SLOPE_DEG_PROBE)) {
SERIAL_ECHOLNPGM("Timed out waiting for probe temperature.");
break;
}
next_delta_check_ms = now + SEC_TO_MS(MIN_DELTA_SLOPE_TIME_PROBE);
old_temp = temp;
}
// Loop until the temperature is very close target
if (!(wants_to_cool ? isProbeAboveTemp(target_temp) : isProbeBelowTemp(target_temp))) {
SERIAL_ECHOLN(wants_to_cool ? PSTR("Cooldown") : PSTR("Heatup"));
SERIAL_ECHOLNPGM(" complete, target probe temperature reached.");
break;
}
}
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
else if (will_wait)
SERIAL_ECHOLNPGM("Canceled wait for probe temperature.");
return false;
}
#endif // HAS_TEMP_PROBE
#if HAS_HEATED_CHAMBER
#ifndef MIN_COOLING_SLOPE_DEG_CHAMBER
#define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME_CHAMBER
#define MIN_COOLING_SLOPE_TIME_CHAMBER 120
#endif
bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) {
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber())
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
bool wants_to_cool = false;
float target_temp = -1, old_temp = 9999;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetChamber()) {
wants_to_cool = isCoolingChamber();
target_temp = degTargetChamber();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heater_states(active_extruder);
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const float temp = degChamber();
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_CHAMBER_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
first_loop = false;
#endif // TEMP_CHAMBER_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M191 R0
if (wants_to_cool) {
// Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break;
next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER);
old_temp = temp;
}
}
} while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS);
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
return false;
}
#endif // HAS_HEATED_CHAMBER
#if HAS_COOLER
#ifndef MIN_COOLING_SLOPE_DEG_COOLER
#define MIN_COOLING_SLOPE_DEG_COOLER 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME_COOLER
#define MIN_COOLING_SLOPE_TIME_COOLER 120
#endif
bool Temperature::wait_for_cooler(const bool no_wait_for_cooling/*=true*/) {
#if TEMP_COOLER_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_COOLER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME)))
#else
// Loop until the temperature is very close target
#define TEMP_COOLER_CONDITIONS (wants_to_cool ? isLaserHeating() : isLaserCooling())
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
KEEPALIVE_STATE(NOT_BUSY);
#endif
bool wants_to_cool = false;
float target_temp = -1, previous_temp = 9999;
millis_t now, next_temp_ms = 0, next_cooling_check_ms = 0;
wait_for_heatup = true;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetCooler()) {
wants_to_cool = isLaserHeating();
target_temp = degTargetCooler();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heater_states(active_extruder);
#if TEMP_COOLER_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const celsius_float_t current_temp = degCooler();
#if TEMP_COOLER_RESIDENCY_TIME > 0
const celsius_float_t temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_COOLER_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_COOLER_WINDOW)
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME) / 3 : 0);
}
else if (temp_diff > TEMP_COOLER_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
first_loop = false;
#endif // TEMP_COOLER_RESIDENCY_TIME > 0
if (wants_to_cool) {
// Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
if (!next_cooling_check_ms || ELAPSED(now, next_cooling_check_ms)) {
if (previous_temp - current_temp < float(MIN_COOLING_SLOPE_DEG_COOLER)) break;
next_cooling_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_COOLER);
previous_temp = current_temp;
}
}
} while (wait_for_heatup && TEMP_COOLER_CONDITIONS);
// Prevent a wait-forever situation if R is misused i.e. M191 R0
if (wait_for_heatup) {
wait_for_heatup = false;
ui.reset_status();
return true;
}
return false;
}
#endif // HAS_COOLER
#endif // HAS_TEMP_SENSOR