1725 lines
73 KiB
C++
1725 lines
73 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "MarlinConfig.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
//#include "vector_3.h"
|
|
//#include "qr_solve.h"
|
|
|
|
#include "ubl.h"
|
|
#include "Marlin.h"
|
|
#include "hex_print_routines.h"
|
|
#include "configuration_store.h"
|
|
#include "ultralcd.h"
|
|
#include "stepper.h"
|
|
|
|
#include <math.h>
|
|
#include "least_squares_fit.h"
|
|
|
|
extern float destination[XYZE];
|
|
extern float current_position[XYZE];
|
|
|
|
void lcd_return_to_status();
|
|
bool lcd_clicked();
|
|
void lcd_implementation_clear();
|
|
void lcd_mesh_edit_setup(float initial);
|
|
float lcd_mesh_edit();
|
|
void lcd_z_offset_edit_setup(float);
|
|
float lcd_z_offset_edit();
|
|
extern float meshedit_done;
|
|
extern long babysteps_done;
|
|
extern float code_value_float();
|
|
extern uint8_t code_value_byte();
|
|
extern bool code_value_bool();
|
|
extern bool code_has_value();
|
|
extern float probe_pt(float x, float y, bool, int);
|
|
extern bool set_probe_deployed(bool);
|
|
void smart_fill_mesh();
|
|
float measure_business_card_thickness(float &in_height);
|
|
void manually_probe_remaining_mesh(const float &lx, const float &ly, float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map);
|
|
|
|
bool ProbeStay = true;
|
|
|
|
#define SIZE_OF_LITTLE_RAISE 1
|
|
#define BIG_RAISE_NOT_NEEDED 0
|
|
extern void lcd_status_screen();
|
|
typedef void (*screenFunc_t)();
|
|
extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
|
|
|
|
/**
|
|
* G29: Unified Bed Leveling by Roxy
|
|
*
|
|
* Parameters understood by this leveling system:
|
|
*
|
|
* A Activate Activate the Unified Bed Leveling system.
|
|
*
|
|
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
|
|
* G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
|
|
* as a shim that the nozzle will pinch as it is lowered. The idea is that you
|
|
* can easily feel the nozzle getting to the same height by the amount of resistance
|
|
* the business card exhibits to movement. You should try to achieve the same amount
|
|
* of resistance on each probed point to facilitate accurate and repeatable measurements.
|
|
* You should be very careful not to drive the nozzle into the bussiness card with a
|
|
* lot of force as it is very possible to cause damage to your printer if your are
|
|
* careless. If you use the B option with G29 P2 B you can leave the number parameter off
|
|
* on its first use to enable measurement of the business card thickness. Subsequent usage
|
|
* of the B parameter can have the number previously measured supplied to the command.
|
|
* Incidently, you are much better off using something like a Spark Gap feeler gauge than
|
|
* something that compresses like a Business Card.
|
|
*
|
|
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
|
|
* further refine the behaviour of several other commands. Issuing a G29 P1 C will
|
|
* continue the generation of a partially constructed Mesh without invalidating what has
|
|
* been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
|
|
* location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
|
|
* it indicates to use the current location instead of defaulting to the center of the print bed.
|
|
*
|
|
* D Disable Disable the Unified Bed Leveling system.
|
|
*
|
|
* E Stow_probe Stow the probe after each sampled point.
|
|
*
|
|
* F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
|
|
* specified height, no correction is applied and natural printer kenimatics take over. If no
|
|
* number is specified for the command, 10mm is assumed to be reasonable.
|
|
*
|
|
* H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
|
|
* default is 5mm.
|
|
*
|
|
* I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
|
|
* the X and Y parameter are used. If no number is specified, only the closest Mesh
|
|
* point to the location is invalidated. The M parameter is available as well to produce
|
|
* a map after the operation. This command is useful to invalidate a portion of the
|
|
* Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
|
|
* attempting to invalidate an isolated bad point in the mesh, the M option will indicate
|
|
* where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
|
|
* the bed and use this feature to select the center of the area (or cell) you want to
|
|
* invalidate.
|
|
*
|
|
* J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
|
|
*
|
|
* j EEPROM Dump This function probably goes away after debug is complete.
|
|
*
|
|
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
|
|
* command literally performs a diff between two Meshes.
|
|
*
|
|
* L Load * Load Mesh from the previously activated location in the EEPROM.
|
|
*
|
|
* L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
|
|
* for subsequent Load and Store operations.
|
|
*
|
|
* O Map * Display the Mesh Map Topology.
|
|
* The parameter can be specified alone (ie. G29 O) or in combination with many of the
|
|
* other commands. The Mesh Map option works with all of the Phase
|
|
* commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
|
|
* specified. A map type of 0 is the default is user readable. A map type of 1 can
|
|
* be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
|
|
* mesh.
|
|
*
|
|
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
|
|
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
|
|
* each additional Phase that processes it.
|
|
*
|
|
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
|
|
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
|
|
* was turned on. Setting the entire Mesh to Zero is a special case that allows
|
|
* a subsequent G or T leveling operation for backward compatibility.
|
|
*
|
|
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
|
|
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
|
|
* DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
|
|
* generated. This will be handled in Phase 2. If the Phase 1 command is given the
|
|
* C (Continue) parameter it does not invalidate the Mesh prior to automatically
|
|
* probing needed locations. This allows you to invalidate portions of the Mesh but still
|
|
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
|
|
* parameter can be given to prioritize where the command should be trying to measure points.
|
|
* If the X and Y parameters are not specified the current probe position is used. Phase 1
|
|
* allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
|
|
* Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
|
|
* It will suspend generation of the Mesh if it sees the user request that. (This check is
|
|
* only done between probe points. You will need to press and hold the switch until the
|
|
* Phase 1 command can detect it.)
|
|
*
|
|
* P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
|
|
* parameter to control the height between Mesh points. The default height for movement
|
|
* between Mesh points is 5mm. A smaller number can be used to make this part of the
|
|
* calibration less time consuming. You will be running the nozzle down until it just barely
|
|
* touches the glass. You should have the nozzle clean with no plastic obstructing your view.
|
|
* Use caution and move slowly. It is possible to damage your printer if you are careless.
|
|
* Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
|
|
* nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
|
|
*
|
|
* The H parameter can be set negative if your Mesh dips in a large area. You can press
|
|
* and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
|
|
* can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
|
|
* area you are manually probing. Note that the command tries to start you in a corner
|
|
* of the bed where movement will be predictable. You can force the location to be used in
|
|
* the distance calculations by using the X and Y parameters. You may find it is helpful to
|
|
* print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
|
|
* the nozzle will need to move in order to complete the command. The C parameter is
|
|
* available on the Phase 2 command also and indicates the search for points to measure should
|
|
* be done based on the current location of the nozzle.
|
|
*
|
|
* A B parameter is also available for this command and described up above. It places the
|
|
* manual probe subsystem into Business Card mode where the thickness of a business care is
|
|
* measured and then used to accurately set the nozzle height in all manual probing for the
|
|
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed
|
|
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
|
|
* better results if you use a flexible Shim that does not compress very much. That makes it
|
|
* easier for you to get the nozzle to press with similar amounts of force against the shim so you
|
|
* can get accurate measurements. As you are starting to touch the nozzle against the shim try
|
|
* to get it to grasp the shim with the same force as when you measured the thickness of the
|
|
* shim at the start of the command.
|
|
*
|
|
* Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
|
|
* of the Mesh being built.
|
|
*
|
|
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
|
|
* user can go down. If the user specifies the value using the C parameter, the closest invalid
|
|
* mesh points to the nozzle will be filled. The user can specify a repeat count using the R
|
|
* parameter with the C version of the command.
|
|
*
|
|
* A second version of the fill command is available if no C constant is specified. Not
|
|
* specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
|
|
* from the edges of the mesh inward looking for invalid mesh points. It will look at the next
|
|
* several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
|
|
* upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
|
|
* If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
|
|
* puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
|
|
* usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
|
|
* Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
|
|
* numbers. You should use some scrutiny and caution.
|
|
*
|
|
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
|
|
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
|
|
* (More work and details on doing this later!)
|
|
* The System will search for the closest Mesh Point to the nozzle. It will move the
|
|
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
|
|
* so it is just barely touching the bed. When the user clicks the control, the System
|
|
* will lock in that height for that point in the Mesh Compensation System.
|
|
*
|
|
* Phase 4 has several additional parameters that the user may find helpful. Phase 4
|
|
* can be started at a specific location by specifying an X and Y parameter. Phase 4
|
|
* can be requested to continue the adjustment of Mesh Points by using the R(epeat)
|
|
* parameter. If the Repetition count is not specified, it is assumed the user wishes
|
|
* to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
|
|
* The command can be terminated early (or after the area of interest has been edited) by
|
|
* pressing and holding the encoder wheel until the system recognizes the exit request.
|
|
* Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
|
|
*
|
|
* Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
|
|
* information left on the printer's bed from the G26 command it is very straight forward
|
|
* and easy to fine tune the Mesh. One concept that is important to remember and that
|
|
* will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
|
|
* If you have too little clearance and not much plastic was extruded in an area, you want to
|
|
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
|
|
* RAISE the Mesh Point at that location.
|
|
*
|
|
*
|
|
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
|
|
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
|
|
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
|
|
* execute a G29 P6 C <mean height>.
|
|
*
|
|
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
|
|
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
|
|
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
|
|
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
|
|
* 0.000 at the Z Home location.
|
|
*
|
|
* Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
|
|
* command is not anticipated to be of much value to the typical user. It is intended
|
|
* for developers to help them verify correct operation of the Unified Bed Leveling System.
|
|
*
|
|
* R # Repeat Repeat this command the specified number of times. If no number is specified the
|
|
* command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
|
|
*
|
|
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
|
|
* current state of the Unified Bed Leveling system in the EEPROM.
|
|
*
|
|
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
|
|
* for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
|
|
* extend to a limit related to the available EEPROM storage.
|
|
*
|
|
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
|
|
* at a later date. The GCode output can be saved and later replayed by the host software
|
|
* to reconstruct the current mesh on another machine.
|
|
*
|
|
* T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
|
|
*
|
|
* U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
|
|
* Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
|
|
* is useful when the entire bed does not need to be probed because it will be adjusted.
|
|
*
|
|
* W What? Display valuable data the Unified Bed Leveling System knows.
|
|
*
|
|
* X # * * X Location for this line of commands
|
|
*
|
|
* Y # * * Y Location for this line of commands
|
|
*
|
|
* Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
|
|
* by just doing a G29 Z
|
|
*
|
|
* Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
|
|
* zprobe_zoffset is added to the calculation.
|
|
*
|
|
*
|
|
* Release Notes:
|
|
* You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
|
|
* kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
|
|
* of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
|
|
* respectively.)
|
|
*
|
|
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
|
|
* the Unified Bed Leveling probes points further and further away from the starting location. (The
|
|
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
|
|
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
|
|
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
|
|
* perform a small print and check out your settings quicker. You do not need to populate the
|
|
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
|
|
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
|
|
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
|
|
*
|
|
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
|
|
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as
|
|
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
|
|
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
|
|
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but
|
|
* this is going to be helpful to the users!)
|
|
*
|
|
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
|
|
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
|
|
* we now have the functionality and features of all three systems combined.
|
|
*/
|
|
|
|
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
|
|
static int g29_verbose_level, phase_value, repetition_cnt,
|
|
storage_slot = 0, map_type, grid_size;
|
|
static bool repeat_flag, c_flag, x_flag, y_flag;
|
|
static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
|
|
|
|
extern void lcd_setstatus(const char* message, const bool persist);
|
|
extern void lcd_setstatuspgm(const char* message, const uint8_t level);
|
|
|
|
void __attribute__((optimize("O0"))) gcode_G29() {
|
|
|
|
if (ubl.eeprom_start < 0) {
|
|
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
|
|
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
|
|
return;
|
|
}
|
|
|
|
// Don't allow auto-leveling without homing first
|
|
if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Warning! Use of 'N' flouts established standards.
|
|
home_all_axes();
|
|
|
|
if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
|
|
|
|
// Invalidate Mesh Points. This command is a little bit asymetrical because
|
|
// it directly specifies the repetition count and does not use the 'R' parameter.
|
|
if (code_seen('I')) {
|
|
uint8_t cnt = 0;
|
|
repetition_cnt = code_has_value() ? code_value_int() : 1;
|
|
while (repetition_cnt--) {
|
|
if (cnt > 20) { cnt = 0; idle(); }
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
|
if (location.x_index < 0) {
|
|
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
|
|
break; // No more invalid Mesh Points to populate
|
|
}
|
|
ubl.z_values[location.x_index][location.y_index] = NAN;
|
|
cnt++;
|
|
}
|
|
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
|
|
}
|
|
|
|
if (code_seen('Q')) {
|
|
const int test_pattern = code_has_value() ? code_value_int() : -1;
|
|
if (!WITHIN(test_pattern, 0, 2)) {
|
|
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
|
|
return;
|
|
}
|
|
SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
|
|
switch (test_pattern) {
|
|
case 0:
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
|
|
const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
|
|
p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
|
|
ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
|
|
}
|
|
}
|
|
break;
|
|
case 1:
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
|
|
ubl.z_values[x][x] += 9.999;
|
|
ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
|
|
}
|
|
break;
|
|
case 2:
|
|
// Allow the user to specify the height because 10mm is a little extreme in some cases.
|
|
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
|
|
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
|
|
ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (code_seen('J')) {
|
|
ubl.save_ubl_active_state_and_disable();
|
|
ubl.tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M')); // Warning! Use of 'M' flouts established standards.
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
}
|
|
|
|
if (code_seen('P')) {
|
|
if (WITHIN(phase_value, 0, 1) && ubl.state.eeprom_storage_slot == -1) {
|
|
ubl.state.eeprom_storage_slot = 0;
|
|
SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.\n");
|
|
}
|
|
|
|
switch (phase_value) {
|
|
case 0:
|
|
//
|
|
// Zero Mesh Data
|
|
//
|
|
ubl.reset();
|
|
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
|
|
break;
|
|
|
|
case 1:
|
|
//
|
|
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
|
|
//
|
|
if (!code_seen('C')) {
|
|
ubl.invalidate();
|
|
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
|
|
}
|
|
if (g29_verbose_level > 1) {
|
|
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL(y_pos);
|
|
SERIAL_PROTOCOLLNPGM(").\n");
|
|
}
|
|
ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); // Warning! Use of 'M' flouts established standards.
|
|
break;
|
|
|
|
case 2: {
|
|
//
|
|
// Manually Probe Mesh in areas that can't be reached by the probe
|
|
//
|
|
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
if (!x_flag && !y_flag) {
|
|
/**
|
|
* Use a good default location for the path.
|
|
* The flipped > and < operators in these comparisons is intentional.
|
|
* It should cause the probed points to follow a nice path on Cartesian printers.
|
|
* It may make sense to have Delta printers default to the center of the bed.
|
|
* Until that is decided, this can be forced with the X and Y parameters.
|
|
*/
|
|
#if IS_KINEMATIC
|
|
x_pos = X_HOME_POS;
|
|
y_pos = Y_HOME_POS;
|
|
#else // cartesian
|
|
x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
|
|
y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
|
|
#endif
|
|
}
|
|
|
|
if (code_seen('C')) {
|
|
x_pos = current_position[X_AXIS];
|
|
y_pos = current_position[Y_AXIS];
|
|
}
|
|
|
|
float height = Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
|
if (code_seen('B')) {
|
|
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
|
|
|
|
if (fabs(card_thickness) > 1.5) {
|
|
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (code_seen('H') && code_has_value()) height = code_value_float();
|
|
|
|
if ( !position_is_reachable_xy( x_pos, y_pos )) {
|
|
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
|
|
return;
|
|
}
|
|
|
|
manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M')); // Warning! Use of 'M' flouts established standards.
|
|
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
|
|
} break;
|
|
|
|
case 3: {
|
|
/**
|
|
* Populate invalid mesh areas. Proceed with caution.
|
|
* Two choices are available:
|
|
* - Specify a constant with the 'C' parameter.
|
|
* - Allow 'G29 P3' to choose a 'reasonable' constant.
|
|
*/
|
|
if (c_flag) {
|
|
|
|
if ( repetition_cnt >= ( GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y )) {
|
|
for ( uint8_t x = 0; x < GRID_MAX_POINTS_X; x++ ) {
|
|
for ( uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++ ) {
|
|
ubl.z_values[x][y] = ubl_constant;
|
|
}
|
|
}
|
|
} else {
|
|
while (repetition_cnt--) { // this only populates reachable mesh points near
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
|
if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
|
|
ubl.z_values[location.x_index][location.y_index] = ubl_constant;
|
|
}
|
|
}
|
|
} else {
|
|
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 4:
|
|
//
|
|
// Fine Tune (i.e., Edit) the Mesh
|
|
//
|
|
fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); // Warning! Use of 'M' flouts established standards.
|
|
break;
|
|
|
|
case 5: ubl.find_mean_mesh_height(); break;
|
|
|
|
case 6: ubl.shift_mesh_height(); break;
|
|
}
|
|
|
|
}
|
|
|
|
if (code_seen('T')) {
|
|
|
|
float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
|
|
z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
|
|
z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
|
|
|
|
if ( isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
|
|
goto LEAVE;
|
|
}
|
|
|
|
// We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
|
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
|
|
|
|
ubl.save_ubl_active_state_and_disable();
|
|
z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
|
|
z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
|
|
z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
|
|
|
|
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
|
|
ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
}
|
|
|
|
//
|
|
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
|
// good to have the extra information. Soon... we prune this to just a few items
|
|
//
|
|
if (code_seen('W')) ubl.g29_what_command();
|
|
|
|
//
|
|
// When we are fully debugged, the EEPROM dump command will get deleted also. But
|
|
// right now, it is good to have the extra information. Soon... we prune this.
|
|
//
|
|
if (code_seen('j')) g29_eeprom_dump(); // Warning! Use of lowercase flouts established standards.
|
|
|
|
//
|
|
// When we are fully debugged, this may go away. But there are some valid
|
|
// use cases for the users. So we can wait and see what to do with it.
|
|
//
|
|
|
|
if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
|
|
g29_compare_current_mesh_to_stored_mesh();
|
|
|
|
//
|
|
// Load a Mesh from the EEPROM
|
|
//
|
|
|
|
if (code_seen('L')) { // Load Current Mesh Data
|
|
storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
|
|
|
|
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
|
|
|
|
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
|
return;
|
|
}
|
|
ubl.load_mesh(storage_slot);
|
|
ubl.state.eeprom_storage_slot = storage_slot;
|
|
SERIAL_PROTOCOLLNPGM("Done.\n");
|
|
}
|
|
|
|
//
|
|
// Store a Mesh in the EEPROM
|
|
//
|
|
|
|
if (code_seen('S')) { // Store (or Save) Current Mesh Data
|
|
storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
|
|
|
|
if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
|
|
SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
if (!isnan(ubl.z_values[x][y])) {
|
|
SERIAL_ECHOPAIR("M421 I ", x);
|
|
SERIAL_ECHOPAIR(" J ", y);
|
|
SERIAL_ECHOPGM(" Z ");
|
|
SERIAL_ECHO_F(ubl.z_values[x][y], 6);
|
|
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
|
|
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
|
|
SERIAL_EOL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
|
|
|
|
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
|
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
|
|
goto LEAVE;
|
|
}
|
|
ubl.store_mesh(storage_slot);
|
|
ubl.state.eeprom_storage_slot = storage_slot;
|
|
|
|
SERIAL_PROTOCOLLNPGM("Done.\n");
|
|
}
|
|
|
|
if (code_seen('O') || code_seen('M')) // Warning! Use of 'M' flouts established standards.
|
|
ubl.display_map(code_has_value() ? code_value_int() : 0);
|
|
|
|
if (code_seen('Z')) {
|
|
if (code_has_value())
|
|
ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
|
|
else {
|
|
ubl.save_ubl_active_state_and_disable();
|
|
//measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
|
|
|
|
ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
|
|
measured_z = 1.5;
|
|
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
|
|
// The user is not going to be locking in a new Z-Offset very often so
|
|
// it won't be that painful to spin the Encoder Wheel for 1.5mm
|
|
lcd_implementation_clear();
|
|
lcd_z_offset_edit_setup(measured_z);
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
do {
|
|
measured_z = lcd_z_offset_edit();
|
|
idle();
|
|
do_blocking_move_to_z(measured_z);
|
|
} while (!ubl_lcd_clicked());
|
|
|
|
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
|
// we need to take control of the panel
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
lcd_return_to_status();
|
|
|
|
const millis_t nxt = millis() + 1500UL;
|
|
while (ubl_lcd_clicked()) { // debounce and watch for abort
|
|
idle();
|
|
if (ELAPSED(millis(), nxt)) {
|
|
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
LCD_MESSAGEPGM("Z-Offset Stopped");
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
goto LEAVE;
|
|
}
|
|
}
|
|
ubl.has_control_of_lcd_panel = false;
|
|
safe_delay(20); // We don't want any switch noise.
|
|
|
|
ubl.state.z_offset = measured_z;
|
|
|
|
lcd_implementation_clear();
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
}
|
|
}
|
|
|
|
LEAVE:
|
|
|
|
lcd_reset_alert_level();
|
|
LCD_MESSAGEPGM("");
|
|
lcd_quick_feedback();
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
}
|
|
|
|
void unified_bed_leveling::find_mean_mesh_height() {
|
|
float sum = 0.0;
|
|
int n = 0;
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
if (!isnan(ubl.z_values[x][y])) {
|
|
sum += ubl.z_values[x][y];
|
|
n++;
|
|
}
|
|
|
|
const float mean = sum / n;
|
|
|
|
//
|
|
// Now do the sumation of the squares of difference from mean
|
|
//
|
|
float sum_of_diff_squared = 0.0;
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
if (!isnan(ubl.z_values[x][y]))
|
|
sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
|
|
|
|
SERIAL_ECHOLNPAIR("# of samples: ", n);
|
|
SERIAL_ECHOPGM("Mean Mesh Height: ");
|
|
SERIAL_ECHO_F(mean, 6);
|
|
SERIAL_EOL;
|
|
|
|
const float sigma = sqrt(sum_of_diff_squared / (n + 1));
|
|
SERIAL_ECHOPGM("Standard Deviation: ");
|
|
SERIAL_ECHO_F(sigma, 6);
|
|
SERIAL_EOL;
|
|
|
|
if (c_flag)
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
if (!isnan(ubl.z_values[x][y]))
|
|
ubl.z_values[x][y] -= mean + ubl_constant;
|
|
}
|
|
|
|
void unified_bed_leveling::shift_mesh_height() {
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
if (!isnan(ubl.z_values[x][y]))
|
|
ubl.z_values[x][y] += ubl_constant;
|
|
}
|
|
|
|
/**
|
|
* Probe all invalidated locations of the mesh that can be reached by the probe.
|
|
* This attempts to fill in locations closest to the nozzle's start location first.
|
|
*/
|
|
void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
|
|
mesh_index_pair location;
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
DEPLOY_PROBE();
|
|
|
|
uint16_t max_iterations = ( GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y );
|
|
|
|
do {
|
|
if (ubl_lcd_clicked()) {
|
|
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
|
|
lcd_quick_feedback();
|
|
STOW_PROBE();
|
|
while (ubl_lcd_clicked()) idle();
|
|
ubl.has_control_of_lcd_panel = false;
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
safe_delay(50); // Debounce the Encoder wheel
|
|
return;
|
|
}
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
|
|
|
|
if (location.x_index >= 0) { // mesh point found and is reachable by probe
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
|
|
ubl.z_values[location.x_index][location.y_index] = measured_z;
|
|
}
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type);
|
|
|
|
} while ((location.x_index >= 0) && (--max_iterations));
|
|
|
|
STOW_PROBE();
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
|
|
do_blocking_move_to_xy(
|
|
constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
|
|
constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
|
|
);
|
|
}
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
|
|
matrix_3x3 rotation;
|
|
vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
|
|
(UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
|
|
(z1 - z2) ),
|
|
|
|
v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
|
|
(UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
|
|
(z3 - z2) ),
|
|
|
|
normal = vector_3::cross(v1, v2);
|
|
|
|
normal = normal.get_normal();
|
|
|
|
/**
|
|
* This vector is normal to the tilted plane.
|
|
* However, we don't know its direction. We need it to point up. So if
|
|
* Z is negative, we need to invert the sign of all components of the vector
|
|
*/
|
|
if (normal.z < 0.0) {
|
|
normal.x = -normal.x;
|
|
normal.y = -normal.y;
|
|
normal.z = -normal.z;
|
|
}
|
|
|
|
rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
|
|
|
|
if (g29_verbose_level > 2) {
|
|
SERIAL_ECHOPGM("bed plane normal = [");
|
|
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
SERIAL_ECHOLNPGM("]");
|
|
rotation.debug(PSTR("rotation matrix:"));
|
|
}
|
|
|
|
//
|
|
// All of 3 of these points should give us the same d constant
|
|
//
|
|
|
|
float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
|
|
d = t + normal.z * z1;
|
|
|
|
if (g29_verbose_level>2) {
|
|
SERIAL_ECHOPGM("D constant: ");
|
|
SERIAL_PROTOCOL_F(d, 7);
|
|
SERIAL_ECHOLNPGM(" ");
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("d from 1st point: ");
|
|
SERIAL_ECHO_F(d, 6);
|
|
SERIAL_EOL;
|
|
t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
|
|
d = t + normal.z * z2;
|
|
SERIAL_ECHOPGM("d from 2nd point: ");
|
|
SERIAL_ECHO_F(d, 6);
|
|
SERIAL_EOL;
|
|
t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
|
|
d = t + normal.z * z3;
|
|
SERIAL_ECHOPGM("d from 3rd point: ");
|
|
SERIAL_ECHO_F(d, 6);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
|
|
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
|
|
z_tmp = ubl.z_values[i][j];
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("before rotation = [");
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
SERIAL_ECHOPGM("] ---> ");
|
|
safe_delay(20);
|
|
}
|
|
#endif
|
|
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("after rotation = [");
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
SERIAL_ECHOLNPGM("]");
|
|
safe_delay(55);
|
|
}
|
|
#endif
|
|
ubl.z_values[i][j] += z_tmp - d;
|
|
}
|
|
}
|
|
}
|
|
|
|
float use_encoder_wheel_to_measure_point() {
|
|
|
|
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
|
|
delay(50); // debounce
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
idle();
|
|
if (ubl.encoder_diff) {
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
|
|
ubl.encoder_diff = 0;
|
|
}
|
|
}
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
return current_position[Z_AXIS];
|
|
}
|
|
|
|
static void say_and_take_a_measurement() {
|
|
SERIAL_PROTOCOLLNPGM(" and take a measurement.");
|
|
}
|
|
|
|
float measure_business_card_thickness(float &in_height) {
|
|
ubl.has_control_of_lcd_panel = true;
|
|
ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
|
|
|
|
do_blocking_move_to_z(in_height);
|
|
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
|
|
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
|
|
stepper.synchronize();
|
|
|
|
SERIAL_PROTOCOLPGM("Place shim under nozzle");
|
|
LCD_MESSAGEPGM("Place shim & measure");
|
|
lcd_goto_screen(lcd_status_screen);
|
|
say_and_take_a_measurement();
|
|
|
|
const float z1 = use_encoder_wheel_to_measure_point();
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
|
stepper.synchronize();
|
|
|
|
SERIAL_PROTOCOLPGM("Remove shim");
|
|
LCD_MESSAGEPGM("Remove & measure bed");
|
|
say_and_take_a_measurement();
|
|
|
|
const float z2 = use_encoder_wheel_to_measure_point();
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
|
const float thickness = abs(z1 - z2);
|
|
|
|
if (g29_verbose_level > 1) {
|
|
SERIAL_PROTOCOLPGM("Business Card is ");
|
|
SERIAL_PROTOCOL_F(thickness, 4);
|
|
SERIAL_PROTOCOLLNPGM("mm thick.");
|
|
}
|
|
|
|
in_height = current_position[Z_AXIS]; // do manual probing at lower height
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
|
|
return thickness;
|
|
}
|
|
|
|
void manually_probe_remaining_mesh(const float &lx, const float &ly, float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
do_blocking_move_to_xy(lx, ly);
|
|
|
|
lcd_goto_screen(lcd_status_screen);
|
|
mesh_index_pair location;
|
|
do {
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
|
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
|
if (location.x_index < 0 && location.y_index < 0) continue;
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
const float xProbe = LOGICAL_X_POSITION(rawx),
|
|
yProbe = LOGICAL_Y_POSITION(rawy);
|
|
|
|
if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
|
|
break;
|
|
}
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
|
LCD_MESSAGEPGM("Moving to next");
|
|
|
|
do_blocking_move_to_xy(xProbe, yProbe);
|
|
do_blocking_move_to_z(z_clearance);
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
|
|
|
|
if (code_seen('B')) {LCD_MESSAGEPGM("Place shim & measure");}
|
|
else {LCD_MESSAGEPGM("Measure");}
|
|
|
|
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
|
|
delay(50); // debounce
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
idle();
|
|
if (ubl.encoder_diff) {
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
|
|
ubl.encoder_diff = 0;
|
|
}
|
|
}
|
|
|
|
const millis_t nxt = millis() + 1500L;
|
|
while (ubl_lcd_clicked()) { // debounce and watch for abort
|
|
idle();
|
|
if (ELAPSED(millis(), nxt)) {
|
|
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
lcd_quick_feedback();
|
|
while (ubl_lcd_clicked()) idle();
|
|
ubl.has_control_of_lcd_panel = false;
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
return;
|
|
}
|
|
}
|
|
|
|
ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
|
|
if (g29_verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
|
|
SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
|
|
SERIAL_EOL;
|
|
}
|
|
} while (location.x_index >= 0 && location.y_index >= 0);
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type);
|
|
|
|
LEAVE:
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
do_blocking_move_to_xy(lx, ly);
|
|
}
|
|
|
|
static void say_ubl_name() {
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
|
|
}
|
|
|
|
static void report_ubl_state() {
|
|
say_ubl_name();
|
|
SERIAL_PROTOCOLPGM("System ");
|
|
if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
|
|
SERIAL_PROTOCOLLNPGM("activated.\n");
|
|
}
|
|
|
|
bool g29_parameter_parsing() {
|
|
bool err_flag = false;
|
|
|
|
LCD_MESSAGEPGM("Doing G29 UBL!");
|
|
lcd_quick_feedback();
|
|
|
|
ubl_constant = 0.0;
|
|
repetition_cnt = 0;
|
|
|
|
x_flag = code_seen('X') && code_has_value();
|
|
x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
|
|
y_flag = code_seen('Y') && code_has_value();
|
|
y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
|
|
|
|
repeat_flag = code_seen('R');
|
|
if (repeat_flag) {
|
|
repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
|
|
NOMORE(repetition_cnt, GRID_MAX_POINTS);
|
|
if (repetition_cnt < 1) {
|
|
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
g29_verbose_level = code_seen('V') ? code_value_int() : 0;
|
|
if (!WITHIN(g29_verbose_level, 0, 4)) {
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
|
|
err_flag = true;
|
|
}
|
|
|
|
if (code_seen('P')) {
|
|
phase_value = code_value_int();
|
|
if (!WITHIN(phase_value, 0, 6)) {
|
|
SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
|
|
err_flag = true;
|
|
}
|
|
}
|
|
|
|
if (code_seen('J')) {
|
|
grid_size = code_has_value() ? code_value_int() : 3;
|
|
if (!WITHIN(grid_size, 2, 9)) {
|
|
SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
|
|
err_flag = true;
|
|
}
|
|
}
|
|
|
|
if (x_flag != y_flag) {
|
|
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
|
|
err_flag = true;
|
|
}
|
|
if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
|
|
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
|
|
err_flag = true;
|
|
}
|
|
|
|
if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
|
|
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
|
|
err_flag = true;
|
|
}
|
|
|
|
if (err_flag) return UBL_ERR;
|
|
|
|
// Activate or deactivate UBL
|
|
if (code_seen('A')) {
|
|
if (code_seen('D')) {
|
|
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
|
|
return UBL_ERR;
|
|
}
|
|
ubl.state.active = 1;
|
|
report_ubl_state();
|
|
}
|
|
else if (code_seen('D')) {
|
|
ubl.state.active = 0;
|
|
report_ubl_state();
|
|
}
|
|
|
|
// Set global 'C' flag and its value
|
|
if ((c_flag = code_seen('C')))
|
|
ubl_constant = code_value_float();
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
if (code_seen('F') && code_has_value()) {
|
|
const float fh = code_value_float();
|
|
if (!WITHIN(fh, 0.0, 100.0)) {
|
|
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
|
|
return UBL_ERR;
|
|
}
|
|
set_z_fade_height(fh);
|
|
}
|
|
#endif
|
|
|
|
map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
|
|
if (!WITHIN(map_type, 0, 1)) {
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
|
|
return UBL_ERR;
|
|
}
|
|
// Check if a map type was specified
|
|
if (code_seen('M')) { // Warning! Use of 'M' flouts established standards.
|
|
map_type = code_has_value() ? code_value_int() : 0;
|
|
if (!WITHIN(map_type, 0, 1)) {
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
|
|
return UBL_ERR;
|
|
}
|
|
}
|
|
|
|
return UBL_OK;
|
|
}
|
|
|
|
/**
|
|
* This function goes away after G29 debug is complete. But for right now, it is a handy
|
|
* routine to dump binary data structures.
|
|
*/
|
|
/*
|
|
void dump(char * const str, const float &f) {
|
|
char *ptr;
|
|
|
|
SERIAL_PROTOCOL(str);
|
|
SERIAL_PROTOCOL_F(f, 8);
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
ptr = (char*)&f;
|
|
for (uint8_t i = 0; i < 4; i++)
|
|
SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
|
|
SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
|
|
SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
|
|
|
|
if (f == -INFINITY)
|
|
SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
|
|
|
|
SERIAL_EOL;
|
|
}
|
|
//*/
|
|
|
|
static int ubl_state_at_invocation = 0,
|
|
ubl_state_recursion_chk = 0;
|
|
|
|
void unified_bed_leveling::save_ubl_active_state_and_disable() {
|
|
ubl_state_recursion_chk++;
|
|
if (ubl_state_recursion_chk != 1) {
|
|
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
|
|
LCD_MESSAGEPGM("save_UBL_active() error");
|
|
lcd_quick_feedback();
|
|
return;
|
|
}
|
|
ubl_state_at_invocation = ubl.state.active;
|
|
ubl.state.active = 0;
|
|
}
|
|
|
|
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
|
|
if (--ubl_state_recursion_chk) {
|
|
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
|
|
LCD_MESSAGEPGM("restore_UBL_active() error");
|
|
lcd_quick_feedback();
|
|
return;
|
|
}
|
|
ubl.state.active = ubl_state_at_invocation;
|
|
}
|
|
|
|
/**
|
|
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
|
* good to have the extra information. Soon... we prune this to just a few items
|
|
*/
|
|
void unified_bed_leveling::g29_what_command() {
|
|
const uint16_t k = E2END - ubl.eeprom_start;
|
|
|
|
say_ubl_name();
|
|
SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
|
|
if (ubl.state.active)
|
|
SERIAL_PROTOCOLCHAR('A');
|
|
else
|
|
SERIAL_PROTOCOLPGM("Ina");
|
|
SERIAL_PROTOCOLLNPGM("ctive.\n");
|
|
safe_delay(50);
|
|
|
|
if (ubl.state.eeprom_storage_slot == -1)
|
|
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
|
|
else {
|
|
SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
|
|
SERIAL_PROTOCOLPGM(" Loaded.");
|
|
}
|
|
SERIAL_EOL;
|
|
safe_delay(50);
|
|
|
|
SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
SERIAL_PROTOCOL("planner.z_fade_height : ");
|
|
SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
|
|
SERIAL_EOL;
|
|
#endif
|
|
SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
|
|
SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start));
|
|
|
|
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
|
|
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
|
|
safe_delay(25);
|
|
|
|
SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
|
|
SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
|
|
safe_delay(25);
|
|
|
|
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 3);
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
safe_delay(25);
|
|
}
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
|
|
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 3);
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
safe_delay(25);
|
|
}
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
|
|
SERIAL_PROTOCOLLNPAIR("end of EEPROM: ", hex_address((void*)E2END));
|
|
safe_delay(25);
|
|
|
|
SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
|
|
SERIAL_EOL;
|
|
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
|
|
SERIAL_EOL;
|
|
safe_delay(25);
|
|
|
|
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
|
|
safe_delay(25);
|
|
|
|
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
|
|
SERIAL_PROTOCOLLNPGM(" meshes.\n");
|
|
safe_delay(25);
|
|
|
|
SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
|
|
SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
|
|
safe_delay(25);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_ECHOPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_X );
|
|
SERIAL_ECHOPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_Y );
|
|
safe_delay(25);
|
|
|
|
SERIAL_ECHOPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_X);
|
|
SERIAL_ECHOPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_Y);
|
|
safe_delay(25);
|
|
|
|
if (!ubl.sanity_check()) {
|
|
say_ubl_name();
|
|
SERIAL_PROTOCOLLNPGM("sanity checks passed.");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* When we are fully debugged, the EEPROM dump command will get deleted also. But
|
|
* right now, it is good to have the extra information. Soon... we prune this.
|
|
*/
|
|
void g29_eeprom_dump() {
|
|
unsigned char cccc;
|
|
uint16_t kkkk;
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("EEPROM Dump:");
|
|
for (uint16_t i = 0; i < E2END + 1; i += 16) {
|
|
if (!(i & 0x3)) idle();
|
|
print_hex_word(i);
|
|
SERIAL_ECHOPGM(": ");
|
|
for (uint16_t j = 0; j < 16; j++) {
|
|
kkkk = i + j;
|
|
eeprom_read_block(&cccc, (void *)kkkk, 1);
|
|
print_hex_byte(cccc);
|
|
SERIAL_ECHO(' ');
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
/**
|
|
* When we are fully debugged, this may go away. But there are some valid
|
|
* use cases for the users. So we can wait and see what to do with it.
|
|
*/
|
|
void g29_compare_current_mesh_to_stored_mesh() {
|
|
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
|
if (!code_has_value()) {
|
|
SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
|
|
return;
|
|
}
|
|
storage_slot = code_value_int();
|
|
|
|
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
|
|
|
|
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
|
return;
|
|
}
|
|
|
|
j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
|
|
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
|
|
|
|
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
|
|
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
|
|
// the address in the EEPROM where the Mesh is stored.
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
ubl.z_values[x][y] -= tmp_z_values[x][y];
|
|
}
|
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
|
|
mesh_index_pair out_mesh;
|
|
out_mesh.x_index = out_mesh.y_index = -1;
|
|
|
|
const float current_x = current_position[X_AXIS],
|
|
current_y = current_position[Y_AXIS];
|
|
|
|
// Get our reference position. Either the nozzle or probe location.
|
|
const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
|
|
py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
|
|
|
|
float closest = far_flag ? -99999.99 : 99999.99;
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
|
|
|| (type == REAL && !isnan(ubl.z_values[i][j]))
|
|
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
|
|
) {
|
|
|
|
// We only get here if we found a Mesh Point of the specified type
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
|
|
|
|
// If using the probe as the reference there are some unreachable locations.
|
|
// Also for round beds, there are grid points outside the bed that nozzle can't reach.
|
|
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
|
|
|
bool reachable = probe_as_reference ?
|
|
position_is_reachable_by_probe_raw_xy( rawx, rawy ) :
|
|
position_is_reachable_raw_xy( rawx, rawy );
|
|
|
|
if ( ! reachable )
|
|
continue;
|
|
|
|
// Reachable. Check if it's the closest location to the nozzle.
|
|
// Add in a weighting factor that considers the current location of the nozzle.
|
|
|
|
const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
|
|
my = LOGICAL_Y_POSITION(rawy);
|
|
|
|
float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
|
|
|
|
/**
|
|
* If doing the far_flag action, we want to be as far as possible
|
|
* from the starting point and from any other probed points. We
|
|
* want the next point spread out and filling in any blank spaces
|
|
* in the mesh. So we add in some of the distance to every probed
|
|
* point we can find.
|
|
*/
|
|
if (far_flag) {
|
|
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
|
|
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
|
|
if (!isnan(ubl.z_values[k][l])) {
|
|
distance += sq(i - k) * (MESH_X_DIST) * .05
|
|
+ sq(j - l) * (MESH_Y_DIST) * .05;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if far_flag, look for farthest point
|
|
if (far_flag == (distance > closest) && distance != closest) {
|
|
closest = distance; // We found a closer/farther location with
|
|
out_mesh.x_index = i; // the specified type of mesh value.
|
|
out_mesh.y_index = j;
|
|
out_mesh.distance = closest;
|
|
}
|
|
}
|
|
} // for j
|
|
} // for i
|
|
|
|
return out_mesh;
|
|
}
|
|
|
|
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
|
|
if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
|
|
repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
|
|
|
|
mesh_index_pair location;
|
|
uint16_t not_done[16];
|
|
int32_t round_off;
|
|
|
|
if ( ! position_is_reachable_xy( lx, ly )) {
|
|
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
|
|
return;
|
|
}
|
|
|
|
ubl.save_ubl_active_state_and_disable();
|
|
|
|
memset(not_done, 0xFF, sizeof(not_done));
|
|
|
|
LCD_MESSAGEPGM("Fine Tuning Mesh");
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
do_blocking_move_to_xy(lx, ly);
|
|
do {
|
|
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
|
|
|
|
if (location.x_index < 0 ) break; // stop when we can't find any more reachable points.
|
|
|
|
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
|
// different location the next time through the loop
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
|
|
break;
|
|
}
|
|
|
|
float new_z = ubl.z_values[location.x_index][location.y_index];
|
|
|
|
if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
|
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
|
|
|
|
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
|
|
new_z = float(round_off) / 1000.0;
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
|
|
|
|
lcd_implementation_clear();
|
|
|
|
lcd_mesh_edit_setup(new_z);
|
|
|
|
do {
|
|
new_z = lcd_mesh_edit();
|
|
idle();
|
|
} while (!ubl_lcd_clicked());
|
|
|
|
lcd_return_to_status();
|
|
|
|
// There is a race condition for the Encoder Wheel getting clicked.
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
// or here.
|
|
ubl.has_control_of_lcd_panel = true;
|
|
}
|
|
|
|
const millis_t nxt = millis() + 1500UL;
|
|
while (ubl_lcd_clicked()) { // debounce and watch for abort
|
|
idle();
|
|
if (ELAPSED(millis(), nxt)) {
|
|
lcd_return_to_status();
|
|
//SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
LCD_MESSAGEPGM("Mesh Editing Stopped");
|
|
|
|
while (ubl_lcd_clicked()) idle();
|
|
|
|
goto FINE_TUNE_EXIT;
|
|
}
|
|
}
|
|
|
|
safe_delay(20); // We don't want any switch noise.
|
|
|
|
ubl.z_values[location.x_index][location.y_index] = new_z;
|
|
|
|
lcd_implementation_clear();
|
|
|
|
} while (( location.x_index >= 0 ) && (--repetition_cnt>0));
|
|
|
|
FINE_TUNE_EXIT:
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type);
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
|
do_blocking_move_to_xy(lx, ly);
|
|
|
|
LCD_MESSAGEPGM("Done Editing Mesh");
|
|
SERIAL_ECHOLNPGM("Done Editing Mesh");
|
|
}
|
|
|
|
/**
|
|
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.
|
|
* If an invalid location is found, use the next two points (if valid) to
|
|
* calculate a 'reasonable' value for the unprobed mesh point.
|
|
*/
|
|
|
|
bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
|
|
const int8_t x1 = x + xdir, x2 = x1 + xdir,
|
|
y1 = y + ydir, y2 = y1 + ydir;
|
|
// A NAN next to a pair of real values?
|
|
if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
|
|
if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
|
|
ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
|
|
else
|
|
ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
|
|
|
|
void smart_fill_mesh() {
|
|
const smart_fill_info info[] = {
|
|
{ 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
|
|
{ 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
|
|
{ 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
|
|
{ GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
|
|
};
|
|
for (uint8_t i = 0; i < COUNT(info); ++i) {
|
|
const smart_fill_info &f = info[i];
|
|
if (f.yfirst) {
|
|
const int8_t dir = f.ex > f.sx ? 1 : -1;
|
|
for (uint8_t y = f.sy; y != f.ey; ++y)
|
|
for (uint8_t x = f.sx; x != f.ex; x += dir)
|
|
if (smart_fill_one(x, y, dir, 0)) break;
|
|
}
|
|
else {
|
|
const int8_t dir = f.ey > f.sy ? 1 : -1;
|
|
for (uint8_t x = f.sx; x != f.ex; ++x)
|
|
for (uint8_t y = f.sy; y != f.ey; y += dir)
|
|
if (smart_fill_one(x, y, 0, dir)) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
|
|
constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
|
|
x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
|
|
y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
|
|
y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
|
|
|
|
const float dx = float(x_max - x_min) / (grid_size - 1.0),
|
|
dy = float(y_max - y_min) / (grid_size - 1.0);
|
|
|
|
struct linear_fit_data lsf_results;
|
|
incremental_LSF_reset(&lsf_results);
|
|
|
|
bool zig_zag = false;
|
|
for (uint8_t ix = 0; ix < grid_size; ix++) {
|
|
const float x = float(x_min) + ix * dx;
|
|
for (int8_t iy = 0; iy < grid_size; iy++) {
|
|
const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
|
|
float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_CHAR('(');
|
|
SERIAL_PROTOCOL_F(x, 7);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_PROTOCOL_F(y, 7);
|
|
SERIAL_ECHOPGM(") logical: ");
|
|
SERIAL_CHAR('(');
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
|
|
SERIAL_ECHOPGM(") measured: ");
|
|
SERIAL_PROTOCOL_F(measured_z, 7);
|
|
SERIAL_ECHOPGM(" correction: ");
|
|
SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
|
|
}
|
|
#endif
|
|
|
|
measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM(" final >>>---> ");
|
|
SERIAL_PROTOCOL_F(measured_z, 7);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
incremental_LSF(&lsf_results, x, y, measured_z);
|
|
}
|
|
|
|
zig_zag ^= true;
|
|
}
|
|
|
|
if (finish_incremental_LSF(&lsf_results)) {
|
|
SERIAL_ECHOPGM("Could not complete LSF!");
|
|
return;
|
|
}
|
|
|
|
if (g29_verbose_level > 3) {
|
|
SERIAL_ECHOPGM("LSF Results A=");
|
|
SERIAL_PROTOCOL_F(lsf_results.A, 7);
|
|
SERIAL_ECHOPGM(" B=");
|
|
SERIAL_PROTOCOL_F(lsf_results.B, 7);
|
|
SERIAL_ECHOPGM(" D=");
|
|
SERIAL_PROTOCOL_F(lsf_results.D, 7);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
|
|
|
|
if (g29_verbose_level > 2) {
|
|
SERIAL_ECHOPGM("bed plane normal = [");
|
|
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
SERIAL_ECHOLNPGM("]");
|
|
}
|
|
|
|
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
|
|
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
|
|
z_tmp = ubl.z_values[i][j];
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("before rotation = [");
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
SERIAL_ECHOPGM("] ---> ");
|
|
safe_delay(20);
|
|
}
|
|
#endif
|
|
|
|
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("after rotation = [");
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
SERIAL_ECHOLNPGM("]");
|
|
safe_delay(55);
|
|
}
|
|
#endif
|
|
|
|
ubl.z_values[i][j] += z_tmp - lsf_results.D;
|
|
}
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
rotation.debug(PSTR("rotation matrix:"));
|
|
SERIAL_ECHOPGM("LSF Results A=");
|
|
SERIAL_PROTOCOL_F(lsf_results.A, 7);
|
|
SERIAL_ECHOPGM(" B=");
|
|
SERIAL_PROTOCOL_F(lsf_results.B, 7);
|
|
SERIAL_ECHOPGM(" D=");
|
|
SERIAL_PROTOCOL_F(lsf_results.D, 7);
|
|
SERIAL_EOL;
|
|
safe_delay(55);
|
|
|
|
SERIAL_ECHOPGM("bed plane normal = [");
|
|
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
SERIAL_ECHOPGM("]\n");
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|