/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfigPre.h" #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN) #include "../../feature/z_stepper_align.h" #include "../gcode.h" #include "../../module/motion.h" #include "../../module/stepper.h" #include "../../module/planner.h" #include "../../module/probe.h" #include "../../lcd/marlinui.h" // for LCD_MESSAGE #if HAS_LEVELING #include "../../feature/bedlevel/bedlevel.h" #endif #if HAS_MULTI_HOTEND #include "../../module/tool_change.h" #endif #if HAS_Z_STEPPER_ALIGN_STEPPER_XY #include "../../libs/least_squares_fit.h" #endif #if ENABLED(BLTOUCH) #include "../../feature/bltouch.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../../core/debug_out.h" #if NUM_Z_STEPPERS >= 3 #define TRIPLE_Z 1 #if NUM_Z_STEPPERS >= 4 #define QUAD_Z 1 #endif #endif /** * G34: Z-Stepper automatic alignment * * Manual stepper lock controls (reset by G28): * L Unlock all steppers * Z<1-4> Z stepper to lock / unlock * S 0=UNLOCKED 1=LOCKED. If omitted, assume LOCKED. * * Examples: * G34 Z1 ; Lock Z1 * G34 L Z2 ; Unlock all, then lock Z2 * G34 Z2 S0 ; Unlock Z2 * * With Z_STEPPER_AUTO_ALIGN: * I Number of tests. If omitted, Z_STEPPER_ALIGN_ITERATIONS. * T Target Accuracy factor. If omitted, Z_STEPPER_ALIGN_ACC. * A Provide an Amplification value. If omitted, Z_STEPPER_ALIGN_AMP. * R Flag to recalculate points based on current probe offsets */ void GcodeSuite::G34() { DEBUG_SECTION(log_G34, "G34", DEBUGGING(LEVELING)); if (DEBUGGING(LEVELING)) log_machine_info(); planner.synchronize(); // Prevent damage const bool seenL = parser.seen('L'); if (seenL) stepper.set_all_z_lock(false); const bool seenZ = parser.seenval('Z'); if (seenZ) { const bool state = parser.boolval('S', true); switch (parser.intval('Z')) { case 1: stepper.set_z1_lock(state); break; case 2: stepper.set_z2_lock(state); break; #if TRIPLE_Z case 3: stepper.set_z3_lock(state); break; #if QUAD_Z case 4: stepper.set_z4_lock(state); break; #endif #endif } } if (seenL || seenZ) { stepper.set_separate_multi_axis(seenZ); return; } #if ENABLED(Z_STEPPER_AUTO_ALIGN) do { // break out on error const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS); if (!WITHIN(z_auto_align_iterations, 1, 30)) { SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30)."); break; } const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC); if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) { SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0)."); break; } const float z_auto_align_amplification = TERN(HAS_Z_STEPPER_ALIGN_STEPPER_XY, Z_STEPPER_ALIGN_AMP, parser.floatval('A', Z_STEPPER_ALIGN_AMP)); if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) { SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0)."); break; } if (parser.seen('R')) z_stepper_align.reset_to_default(); const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; // Disable the leveling matrix before auto-aligning #if HAS_LEVELING #if ENABLED(RESTORE_LEVELING_AFTER_G34) const bool leveling_was_active = planner.leveling_active; #endif set_bed_leveling_enabled(false); #endif TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY); // Always home with tool 0 active #if HAS_MULTI_HOTEND const uint8_t old_tool_index = active_extruder; tool_change(0, true); #endif TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false)); // In BLTOUCH HS mode, the probe travels in a deployed state. // Users of G34 might have a badly misaligned bed, so raise Z by the // length of the deployed pin (BLTOUCH stroke < 7mm) #define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + TERN0(BLTOUCH, bltouch.z_extra_clearance())) // Compute a worst-case clearance height to probe from. After the first // iteration this will be re-calculated based on the actual bed position auto magnitude2 = [&](const uint8_t i, const uint8_t j) { const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j]; return HYPOT2(diff.x, diff.y); }; float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(_MAX(0, magnitude2(0, 1) #if TRIPLE_Z , magnitude2(2, 1), magnitude2(2, 0) #if QUAD_Z , magnitude2(3, 2), magnitude2(3, 1), magnitude2(3, 0) #endif #endif )); // Home before the alignment procedure home_if_needed(); // Move the Z coordinate realm towards the positive - dirty trick current_position.z += z_probe * 0.5f; sync_plan_position(); // Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error. // This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration. #if !HAS_Z_STEPPER_ALIGN_STEPPER_XY float last_z_align_move[NUM_Z_STEPPERS] = ARRAY_N_1(NUM_Z_STEPPERS, 10000.0f); #else float last_z_align_level_indicator = 10000.0f; #endif float z_measured[NUM_Z_STEPPERS] = { 0 }, z_maxdiff = 0.0f, amplification = z_auto_align_amplification; #if !HAS_Z_STEPPER_ALIGN_STEPPER_XY bool adjustment_reverse = false; #endif #if HAS_STATUS_MESSAGE PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION); const uint8_t iter_str_len = strlen_P(msg_iteration); #endif // Final z and iteration values will be used after breaking the loop float z_measured_min; uint8_t iteration = 0; bool err_break = false; // To break out of nested loops while (iteration < z_auto_align_iterations) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions."); const int iter = iteration + 1; SERIAL_ECHOLNPGM("\nG34 Iteration: ", iter); #if HAS_STATUS_MESSAGE char str[iter_str_len + 2 + 1]; sprintf_P(str, msg_iteration, iter); ui.set_status(str); #endif // Initialize minimum value z_measured_min = 100000.0f; float z_measured_max = -100000.0f; // Probe all positions (one per Z-Stepper) LOOP_L_N(i, NUM_Z_STEPPERS) { // iteration odd/even --> downward / upward stepper sequence const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPERS - 1 - i : i; // Safe clearance even on an incline if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y); // Probe a Z height for each stepper. // Probing sanity check is disabled, as it would trigger even in normal cases because // current_position.z has been manually altered in the "dirty trick" above. const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false); if (isnan(z_probed_height)) { SERIAL_ECHOLNPGM("Probing failed"); LCD_MESSAGE(MSG_LCD_PROBING_FAILED); err_break = true; break; } // Add height to each value, to provide a more useful target height for // the next iteration of probing. This allows adjustments to be made away from the bed. z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Z", iprobe + 1, " measured position is ", z_measured[iprobe]); // Remember the minimum measurement to calculate the correction later on z_measured_min = _MIN(z_measured_min, z_measured[iprobe]); z_measured_max = _MAX(z_measured_max, z_measured[iprobe]); } // for (i) if (err_break) break; // Adapt the next probe clearance height based on the new measurements. // Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment. z_maxdiff = z_measured_max - z_measured_min; z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff; #if HAS_Z_STEPPER_ALIGN_STEPPER_XY // Replace the initial values in z_measured with calculated heights at // each stepper position. This allows the adjustment algorithm to be // shared between both possible probing mechanisms. // This must be done after the next z_probe height is calculated, so that // the height is calculated from actual print area positions, and not // extrapolated motor movements. // Compute the least-squares fit for all probed points. // Calculate the Z position of each stepper and store it in z_measured. // This allows the actual adjustment logic to be shared by both algorithms. linear_fit_data lfd; incremental_LSF_reset(&lfd); LOOP_L_N(i, NUM_Z_STEPPERS) { SERIAL_ECHOLNPGM("PROBEPT_", i, ": ", z_measured[i]); incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]); } finish_incremental_LSF(&lfd); z_measured_min = 100000.0f; LOOP_L_N(i, NUM_Z_STEPPERS) { z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D); z_measured_min = _MIN(z_measured_min, z_measured[i]); } SERIAL_ECHOLNPGM( LIST_N(DOUBLE(NUM_Z_STEPPERS), "Calculated Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2], " Z4=", z_measured[3] ) ); #endif SERIAL_ECHOLNPGM("\n" "Z2-Z1=", ABS(z_measured[1] - z_measured[0]) #if TRIPLE_Z , " Z3-Z2=", ABS(z_measured[2] - z_measured[1]) , " Z3-Z1=", ABS(z_measured[2] - z_measured[0]) #if QUAD_Z , " Z4-Z3=", ABS(z_measured[3] - z_measured[2]) , " Z4-Z2=", ABS(z_measured[3] - z_measured[1]) , " Z4-Z1=", ABS(z_measured[3] - z_measured[0]) #endif #endif ); #if HAS_STATUS_MESSAGE char fstr1[10]; char msg[6 + (6 + 5) * NUM_Z_STEPPERS + 1] #if TRIPLE_Z , fstr2[10], fstr3[10] #if QUAD_Z , fstr4[10], fstr5[10], fstr6[10] #endif #endif ; sprintf_P(msg, PSTR("1:2=%s" TERN_(TRIPLE_Z, " 3-2=%s 3-1=%s") TERN_(QUAD_Z, " 4-3=%s 4-2=%s 4-1=%s")), dtostrf(ABS(z_measured[1] - z_measured[0]), 1, 3, fstr1) OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[1]), 1, 3, fstr2), dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)) OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[2]), 1, 3, fstr4), dtostrf(ABS(z_measured[3] - z_measured[1]), 1, 3, fstr5), dtostrf(ABS(z_measured[3] - z_measured[0]), 1, 3, fstr6)) ); ui.set_status(msg); #endif auto decreasing_accuracy = [](const_float_t v1, const_float_t v2) { if (v1 < v2 * 0.7f) { SERIAL_ECHOLNPGM("Decreasing Accuracy Detected."); LCD_MESSAGE(MSG_DECREASING_ACCURACY); return true; } return false; }; #if HAS_Z_STEPPER_ALIGN_STEPPER_XY // Check if the applied corrections go in the correct direction. // Calculate the sum of the absolute deviations from the mean of the probe measurements. // Compare to the last iteration to ensure it's getting better. // Calculate mean value as a reference float z_measured_mean = 0.0f; LOOP_L_N(zstepper, NUM_Z_STEPPERS) z_measured_mean += z_measured[zstepper]; z_measured_mean /= NUM_Z_STEPPERS; // Calculate the sum of the absolute deviations from the mean value float z_align_level_indicator = 0.0f; LOOP_L_N(zstepper, NUM_Z_STEPPERS) z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean); // If it's getting worse, stop and throw an error err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator); if (err_break) break; last_z_align_level_indicator = z_align_level_indicator; #endif // The following correction actions are to be enabled for select Z-steppers only stepper.set_separate_multi_axis(true); bool success_break = true; // Correct the individual stepper offsets LOOP_L_N(zstepper, NUM_Z_STEPPERS) { // Calculate current stepper move float z_align_move = z_measured[zstepper] - z_measured_min; const float z_align_abs = ABS(z_align_move); #if !HAS_Z_STEPPER_ALIGN_STEPPER_XY // Optimize one iteration's correction based on the first measurements if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification; // Check for less accuracy compared to last move if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Z", zstepper + 1, " last_z_align_move = ", last_z_align_move[zstepper]); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Z", zstepper + 1, " z_align_abs = ", z_align_abs); adjustment_reverse = !adjustment_reverse; } // Remember the alignment for the next iteration, but only if steppers move, // otherwise it would be just zero (in case this stepper was at z_measured_min already) if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs; #endif // Stop early if all measured points achieve accuracy target if (z_align_abs > z_auto_align_accuracy) success_break = false; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Z", zstepper + 1, " corrected by ", z_align_move); // Lock all steppers except one stepper.set_all_z_lock(true, zstepper); #if !HAS_Z_STEPPER_ALIGN_STEPPER_XY // Decreasing accuracy was detected so move was inverted. // Will match reversed Z steppers on dual steppers. Triple will need more work to map. if (adjustment_reverse) { z_align_move = -z_align_move; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Z", zstepper + 1, " correction reversed to ", z_align_move); } #endif // Do a move to correct part of the misalignment for the current stepper do_blocking_move_to_z(amplification * z_align_move + current_position.z); } // for (zstepper) // Back to normal stepper operations stepper.set_all_z_lock(false); stepper.set_separate_multi_axis(false); if (err_break) break; if (success_break) { SERIAL_ECHOLNPGM("Target accuracy achieved."); LCD_MESSAGE(MSG_ACCURACY_ACHIEVED); break; } iteration++; } // while (iteration < z_auto_align_iterations) if (err_break) SERIAL_ECHOLNPGM("G34 aborted."); else { SERIAL_ECHOLNPGM("Did ", iteration + (iteration != z_auto_align_iterations), " of ", z_auto_align_iterations); SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff); } // Stow the probe because the last call to probe.probe_at_point(...) // leaves the probe deployed when it's successful. IF_DISABLED(TOUCH_MI_PROBE, probe.stow()); #if ENABLED(HOME_AFTER_G34) // After this operation the z position needs correction set_axis_never_homed(Z_AXIS); // Home Z after the alignment procedure process_subcommands_now(F("G28Z")); #else // Use the probed height from the last iteration to determine the Z height. // z_measured_min is used, because all steppers are aligned to z_measured_min. // Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier. current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES; sync_plan_position(); #endif // Restore the active tool after homing TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder #if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34) set_bed_leveling_enabled(leveling_was_active); #endif }while(0); #endif // Z_STEPPER_AUTO_ALIGN } #endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN #if ENABLED(Z_STEPPER_AUTO_ALIGN) /** * M422: Set a Z-Stepper automatic alignment XY point. * Use repeatedly to set multiple points. * * S : Index of the probe point to set * * With Z_STEPPER_ALIGN_STEPPER_XY: * W : Index of the Z stepper position to set * The W and S parameters may not be combined. * * S and W require an X and/or Y parameter * X : X position to set (Unchanged if omitted) * Y : Y position to set (Unchanged if omitted) * * R : Recalculate points based on current probe offsets */ void GcodeSuite::M422() { if (!parser.seen_any()) return M422_report(); if (parser.seen('R')) { z_stepper_align.reset_to_default(); return; } const bool is_probe_point = parser.seen_test('S'); if (TERN0(HAS_Z_STEPPER_ALIGN_STEPPER_XY, is_probe_point && parser.seen_test('W'))) { SERIAL_ECHOLNPGM("?(S) and (W) may not be combined."); return; } xy_pos_t * const pos_dest = ( TERN_(HAS_Z_STEPPER_ALIGN_STEPPER_XY, !is_probe_point ? z_stepper_align.stepper_xy :) z_stepper_align.xy ); if (!is_probe_point && TERN1(HAS_Z_STEPPER_ALIGN_STEPPER_XY, !parser.seen_test('W'))) { SERIAL_ECHOLNPGM("?(S)" TERN_(HAS_Z_STEPPER_ALIGN_STEPPER_XY, " or (W)") " is required."); return; } // Get the Probe Position Index or Z Stepper Index int8_t position_index = 1; FSTR_P err_string = F("?(S) Probe-position"); if (is_probe_point) position_index = parser.intval('S'); else { #if HAS_Z_STEPPER_ALIGN_STEPPER_XY err_string = F("?(W) Z-stepper"); position_index = parser.intval('W'); #endif } if (!WITHIN(position_index, 1, NUM_Z_STEPPERS)) { SERIAL_ECHOF(err_string); SERIAL_ECHOLNPGM(" index invalid (1.." STRINGIFY(NUM_Z_STEPPERS) ")."); return; } --position_index; const xy_pos_t pos = { parser.floatval('X', pos_dest[position_index].x), parser.floatval('Y', pos_dest[position_index].y) }; if (is_probe_point) { if (!probe.can_reach(pos.x, Y_CENTER)) { SERIAL_ECHOLNPGM("?(X) out of bounds."); return; } if (!probe.can_reach(pos)) { SERIAL_ECHOLNPGM("?(Y) out of bounds."); return; } } pos_dest[position_index] = pos; } void GcodeSuite::M422_report(const bool forReplay/*=true*/) { report_heading(forReplay, F(STR_Z_AUTO_ALIGN)); LOOP_L_N(i, NUM_Z_STEPPERS) { report_echo_start(forReplay); SERIAL_ECHOLNPGM_P( PSTR(" M422 S"), i + 1, SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y ); } #if HAS_Z_STEPPER_ALIGN_STEPPER_XY LOOP_L_N(i, NUM_Z_STEPPERS) { report_echo_start(forReplay); SERIAL_ECHOLNPGM_P( PSTR(" M422 W"), i + 1, SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y ); } #endif } #endif // Z_STEPPER_AUTO_ALIGN