/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../inc/MarlinConfigPre.h"
#if ENABLED(PROBE_TEMP_COMPENSATION)
//#define DEBUG_PTC // Print extra debug output with 'M871'
#include "probe_temp_comp.h"
#include
ProbeTempComp temp_comp;
int16_t ProbeTempComp::z_offsets_probe[cali_info_init[TSI_PROBE].measurements], // = {0}
ProbeTempComp::z_offsets_bed[cali_info_init[TSI_BED].measurements]; // = {0}
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
int16_t ProbeTempComp::z_offsets_ext[cali_info_init[TSI_EXT].measurements]; // = {0}
#endif
int16_t *ProbeTempComp::sensor_z_offsets[TSI_COUNT] = {
ProbeTempComp::z_offsets_probe, ProbeTempComp::z_offsets_bed
OPTARG(USE_TEMP_EXT_COMPENSATION, ProbeTempComp::z_offsets_ext)
};
const temp_calib_t ProbeTempComp::cali_info[TSI_COUNT] = {
cali_info_init[TSI_PROBE], cali_info_init[TSI_BED]
OPTARG(USE_TEMP_EXT_COMPENSATION, cali_info_init[TSI_EXT])
};
constexpr xyz_pos_t ProbeTempComp::park_point;
constexpr xy_pos_t ProbeTempComp::measure_point;
constexpr celsius_t ProbeTempComp::probe_calib_bed_temp;
uint8_t ProbeTempComp::calib_idx; // = 0
float ProbeTempComp::init_measurement; // = 0.0
void ProbeTempComp::clear_offsets(const TempSensorID tsi) {
LOOP_L_N(i, cali_info[tsi].measurements)
sensor_z_offsets[tsi][i] = 0;
calib_idx = 0;
}
bool ProbeTempComp::set_offset(const TempSensorID tsi, const uint8_t idx, const int16_t offset) {
if (idx >= cali_info[tsi].measurements) return false;
sensor_z_offsets[tsi][idx] = offset;
return true;
}
void ProbeTempComp::print_offsets() {
LOOP_L_N(s, TSI_COUNT) {
celsius_t temp = cali_info[s].start_temp;
for (int16_t i = -1; i < cali_info[s].measurements; ++i) {
SERIAL_ECHOF(s == TSI_BED ? F("Bed") :
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
s == TSI_EXT ? F("Extruder") :
#endif
F("Probe")
);
SERIAL_ECHOLNPGM(
" temp: ", temp,
"C; Offset: ", i < 0 ? 0.0f : sensor_z_offsets[s][i], " um"
);
temp += cali_info[s].temp_resolution;
}
}
#if ENABLED(DEBUG_PTC)
float meas[4] = { 0, 0, 0, 0 };
compensate_measurement(TSI_PROBE, 27.5, meas[0]);
compensate_measurement(TSI_PROBE, 32.5, meas[1]);
compensate_measurement(TSI_PROBE, 77.5, meas[2]);
compensate_measurement(TSI_PROBE, 82.5, meas[3]);
SERIAL_ECHOLNPGM("DEBUG_PTC 27.5:", meas[0], " 32.5:", meas[1], " 77.5:", meas[2], " 82.5:", meas[3]);
#endif
}
void ProbeTempComp::prepare_new_calibration(const_float_t init_meas_z) {
calib_idx = 0;
init_measurement = init_meas_z;
}
void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const_float_t meas_z) {
switch (tsi) {
case TSI_PROBE:
case TSI_BED:
//case TSI_EXT:
if (calib_idx >= cali_info[tsi].measurements) return;
sensor_z_offsets[tsi][calib_idx++] = static_cast(meas_z * 1000.0f - init_measurement * 1000.0f);
default: break;
}
}
bool ProbeTempComp::finish_calibration(const TempSensorID tsi) {
if (tsi != TSI_PROBE && tsi != TSI_BED) return false;
if (calib_idx < 3) {
SERIAL_ECHOLNPGM("!Insufficient measurements (min. 3).");
clear_offsets(tsi);
return false;
}
const uint8_t measurements = cali_info[tsi].measurements;
const celsius_t start_temp = cali_info[tsi].start_temp,
res_temp = cali_info[tsi].temp_resolution;
int16_t * const data = sensor_z_offsets[tsi];
// Extrapolate
float k, d;
if (calib_idx < measurements) {
SERIAL_ECHOLNPGM("Got ", calib_idx, " measurements. ");
if (linear_regression(tsi, k, d)) {
SERIAL_ECHOPGM("Applying linear extrapolation");
calib_idx--;
for (; calib_idx < measurements; ++calib_idx) {
const celsius_float_t temp = start_temp + float(calib_idx) * res_temp;
data[calib_idx] = static_cast(k * temp + d);
}
}
else {
// Simply use the last measured value for higher temperatures
SERIAL_ECHOPGM("Failed to extrapolate");
const int16_t last_val = data[calib_idx];
for (; calib_idx < measurements; ++calib_idx)
data[calib_idx] = last_val;
}
SERIAL_ECHOLNPGM(" for higher temperatures.");
}
// Sanity check
for (calib_idx = 0; calib_idx < measurements; ++calib_idx) {
// Restrict the max. offset
if (ABS(data[calib_idx]) > 2000) {
SERIAL_ECHOLNPGM("!Invalid Z-offset detected (0-2).");
clear_offsets(tsi);
return false;
}
// Restrict the max. offset difference between two probings
if (calib_idx > 0 && ABS(data[calib_idx - 1] - data[calib_idx]) > 800) {
SERIAL_ECHOLNPGM("!Invalid Z-offset between two probings detected (0-0.8).");
clear_offsets(TSI_PROBE);
return false;
}
}
return true;
}
void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const celsius_t temp, float &meas_z) {
const uint8_t measurements = cali_info[tsi].measurements;
const celsius_t start_temp = cali_info[tsi].start_temp,
end_temp = cali_info[tsi].end_temp,
res_temp = cali_info[tsi].temp_resolution;
const int16_t * const data = sensor_z_offsets[tsi];
// Given a data index, return { celsius, zoffset } in the form { x, y }
auto tpoint = [&](uint8_t i) -> xy_float_t {
return xy_float_t({ static_cast(start_temp) + i * res_temp, i ? static_cast(data[i - 1]) : 0.0f });
};
// Interpolate Z based on a temperature being within a given range
auto linear_interp = [](const_float_t x, xy_float_t p1, xy_float_t p2) {
// zoffs1 + zoffset_per_toffset * toffset
return p1.y + (p2.y - p1.y) / (p2.x - p1.x) * (x - p1.x);
};
// offset in µm
float offset = 0.0f;
#if PTC_LINEAR_EXTRAPOLATION
if (temp < start_temp)
offset = linear_interp(temp, tpoint(0), tpoint(PTC_LINEAR_EXTRAPOLATION));
else if (temp >= end_temp)
offset = linear_interp(temp, tpoint(measurements - PTC_LINEAR_EXTRAPOLATION), tpoint(measurements));
#else
if (temp < start_temp)
offset = 0.0f;
else if (temp >= end_temp)
offset = static_cast(data[measurements - 1]);
#endif
else {
// Linear interpolation
const int8_t idx = static_cast((temp - start_temp) / res_temp);
offset = linear_interp(temp, tpoint(idx), tpoint(idx + 1));
}
// convert offset to mm and apply it
meas_z -= offset / 1000.0f;
}
bool ProbeTempComp::linear_regression(const TempSensorID tsi, float &k, float &d) {
if (tsi != TSI_PROBE && tsi != TSI_BED) return false;
if (!WITHIN(calib_idx, 2, cali_info[tsi].measurements)) return false;
const celsius_t start_temp = cali_info[tsi].start_temp,
res_temp = cali_info[tsi].temp_resolution;
const int16_t * const data = sensor_z_offsets[tsi];
float sum_x = start_temp,
sum_x2 = sq(start_temp),
sum_xy = 0, sum_y = 0;
float xi = static_cast(start_temp);
LOOP_L_N(i, calib_idx) {
const float yi = static_cast(data[i]);
xi += res_temp;
sum_x += xi;
sum_x2 += sq(xi);
sum_xy += xi * yi;
sum_y += yi;
}
const float denom = static_cast(calib_idx + 1) * sum_x2 - sq(sum_x);
if (fabs(denom) <= 10e-5) {
// Singularity - unable to solve
k = d = 0.0;
return false;
}
k = (static_cast(calib_idx + 1) * sum_xy - sum_x * sum_y) / denom;
d = (sum_y - k * sum_x) / static_cast(calib_idx + 1);
return true;
}
#endif // PROBE_TEMP_COMPENSATION