/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * temperature.cpp - temperature control */ #include "Marlin.h" #include "ultralcd.h" #include "temperature.h" #include "thermistortables.h" #include "language.h" #if ENABLED(HEATER_0_USES_MAX6675) #include "spi.h" #endif #if ENABLED(BABYSTEPPING) #include "stepper.h" #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #include "endstops.h" #endif #if ENABLED(USE_WATCHDOG) #include "watchdog.h" #endif #ifdef K1 // Defined in Configuration.h in the PID settings #define K2 (1.0-K1) #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE }; static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN }; #else static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE); static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN); #endif Temperature thermalManager; // public: float Temperature::current_temperature[HOTENDS] = { 0.0 }, Temperature::current_temperature_bed = 0.0; int Temperature::current_temperature_raw[HOTENDS] = { 0 }, Temperature::target_temperature[HOTENDS] = { 0 }, Temperature::current_temperature_bed_raw = 0, Temperature::target_temperature_bed = 0; #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) float Temperature::redundant_temperature = 0.0; #endif uint8_t Temperature::soft_pwm_bed; #if ENABLED(FAN_SOFT_PWM) uint8_t Temperature::fanSpeedSoftPwm[FAN_COUNT]; #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1 float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp), Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)), Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT)); #if ENABLED(PID_EXTRUSION_SCALING) float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc); #endif #else float Temperature::Kp = DEFAULT_Kp, Temperature::Ki = (DEFAULT_Ki) * (PID_dT), Temperature::Kd = (DEFAULT_Kd) / (PID_dT); #if ENABLED(PID_EXTRUSION_SCALING) float Temperature::Kc = DEFAULT_Kc; #endif #endif #endif #if ENABLED(PIDTEMPBED) float Temperature::bedKp = DEFAULT_bedKp, Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT), Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT); #endif #if ENABLED(BABYSTEPPING) volatile int Temperature::babystepsTodo[XYZ] = { 0 }; #endif #if WATCH_HOTENDS int Temperature::watch_target_temp[HOTENDS] = { 0 }; millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 }; #endif #if WATCH_THE_BED int Temperature::watch_target_bed_temp = 0; millis_t Temperature::watch_bed_next_ms = 0; #endif #if ENABLED(PREVENT_COLD_EXTRUSION) bool Temperature::allow_cold_extrude = false; float Temperature::extrude_min_temp = EXTRUDE_MINTEMP; #endif // private: #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) int Temperature::redundant_temperature_raw = 0; float Temperature::redundant_temperature = 0.0; #endif volatile bool Temperature::temp_meas_ready = false; #if ENABLED(PIDTEMP) float Temperature::temp_iState[HOTENDS] = { 0 }, Temperature::temp_dState[HOTENDS] = { 0 }, Temperature::pTerm[HOTENDS], Temperature::iTerm[HOTENDS], Temperature::dTerm[HOTENDS]; #if ENABLED(PID_EXTRUSION_SCALING) float Temperature::cTerm[HOTENDS]; long Temperature::last_e_position; long Temperature::lpq[LPQ_MAX_LEN]; int Temperature::lpq_ptr = 0; #endif float Temperature::pid_error[HOTENDS]; bool Temperature::pid_reset[HOTENDS]; #endif #if ENABLED(PIDTEMPBED) float Temperature::temp_iState_bed = { 0 }, Temperature::temp_dState_bed = { 0 }, Temperature::pTerm_bed, Temperature::iTerm_bed, Temperature::dTerm_bed, Temperature::pid_error_bed; #else millis_t Temperature::next_bed_check_ms; #endif unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 }; unsigned long Temperature::raw_temp_bed_value = 0; // Init min and max temp with extreme values to prevent false errors during startup int Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP), Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP), Temperature::minttemp[HOTENDS] = { 0 }, Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383); #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED int Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 }; #endif #ifdef MILLISECONDS_PREHEAT_TIME unsigned long Temperature::preheat_end_time[HOTENDS] = { 0 }; #endif #ifdef BED_MINTEMP int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; #endif #ifdef BED_MAXTEMP int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) int Temperature::meas_shift_index; // Index of a delayed sample in buffer #endif #if HAS_AUTO_FAN millis_t Temperature::next_auto_fan_check_ms = 0; #endif uint8_t Temperature::soft_pwm[HOTENDS]; #if ENABLED(FAN_SOFT_PWM) uint8_t Temperature::soft_pwm_fan[FAN_COUNT]; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only #endif #if HAS_PID_HEATING void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) { float input = 0.0; int cycles = 0; bool heating = true; millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms; long t_high = 0, t_low = 0; long bias, d; float Ku, Tu; float workKp = 0, workKi = 0, workKd = 0; float max = 0, min = 10000; #if HAS_AUTO_FAN next_auto_fan_check_ms = temp_ms + 2500UL; #endif if (hotend >= #if ENABLED(PIDTEMP) HOTENDS #else 0 #endif || hotend < #if ENABLED(PIDTEMPBED) -1 #else 0 #endif ) { SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM); return; } SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START); disable_all_heaters(); // switch off all heaters. #if HAS_PID_FOR_BOTH if (hotend < 0) soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1; else soft_pwm[hotend] = bias = d = (PID_MAX) >> 1; #elif ENABLED(PIDTEMP) soft_pwm[hotend] = bias = d = (PID_MAX) >> 1; #else soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1; #endif wait_for_heatup = true; // PID Tuning loop while (wait_for_heatup) { millis_t ms = millis(); if (temp_meas_ready) { // temp sample ready updateTemperaturesFromRawValues(); input = #if HAS_PID_FOR_BOTH hotend < 0 ? current_temperature_bed : current_temperature[hotend] #elif ENABLED(PIDTEMP) current_temperature[hotend] #else current_temperature_bed #endif ; NOLESS(max, input); NOMORE(min, input); #if HAS_AUTO_FAN if (ELAPSED(ms, next_auto_fan_check_ms)) { checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500UL; } #endif if (heating && input > temp) { if (ELAPSED(ms, t2 + 5000UL)) { heating = false; #if HAS_PID_FOR_BOTH if (hotend < 0) soft_pwm_bed = (bias - d) >> 1; else soft_pwm[hotend] = (bias - d) >> 1; #elif ENABLED(PIDTEMP) soft_pwm[hotend] = (bias - d) >> 1; #elif ENABLED(PIDTEMPBED) soft_pwm_bed = (bias - d) >> 1; #endif t1 = ms; t_high = t1 - t2; max = temp; } } if (!heating && input < temp) { if (ELAPSED(ms, t1 + 5000UL)) { heating = true; t2 = ms; t_low = t2 - t1; if (cycles > 0) { long max_pow = #if HAS_PID_FOR_BOTH hotend < 0 ? MAX_BED_POWER : PID_MAX #elif ENABLED(PIDTEMP) PID_MAX #else MAX_BED_POWER #endif ; bias += (d * (t_high - t_low)) / (t_low + t_high); bias = constrain(bias, 20, max_pow - 20); d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias; SERIAL_PROTOCOLPAIR(MSG_BIAS, bias); SERIAL_PROTOCOLPAIR(MSG_D, d); SERIAL_PROTOCOLPAIR(MSG_T_MIN, min); SERIAL_PROTOCOLPAIR(MSG_T_MAX, max); if (cycles > 2) { Ku = (4.0 * d) / (M_PI * (max - min) * 0.5); Tu = ((float)(t_low + t_high) * 0.001); SERIAL_PROTOCOLPAIR(MSG_KU, Ku); SERIAL_PROTOCOLPAIR(MSG_TU, Tu); workKp = 0.6 * Ku; workKi = 2 * workKp / Tu; workKd = workKp * Tu * 0.125; SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID); SERIAL_PROTOCOLPAIR(MSG_KP, workKp); SERIAL_PROTOCOLPAIR(MSG_KI, workKi); SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd); /** workKp = 0.33*Ku; workKi = workKp/Tu; workKd = workKp*Tu/3; SERIAL_PROTOCOLLNPGM(" Some overshoot"); SERIAL_PROTOCOLPAIR(" Kp: ", workKp); SERIAL_PROTOCOLPAIR(" Ki: ", workKi); SERIAL_PROTOCOLPAIR(" Kd: ", workKd); workKp = 0.2*Ku; workKi = 2*workKp/Tu; workKd = workKp*Tu/3; SERIAL_PROTOCOLLNPGM(" No overshoot"); SERIAL_PROTOCOLPAIR(" Kp: ", workKp); SERIAL_PROTOCOLPAIR(" Ki: ", workKi); SERIAL_PROTOCOLPAIR(" Kd: ", workKd); */ } } #if HAS_PID_FOR_BOTH if (hotend < 0) soft_pwm_bed = (bias + d) >> 1; else soft_pwm[hotend] = (bias + d) >> 1; #elif ENABLED(PIDTEMP) soft_pwm[hotend] = (bias + d) >> 1; #else soft_pwm_bed = (bias + d) >> 1; #endif cycles++; min = temp; } } } #define MAX_OVERSHOOT_PID_AUTOTUNE 20 if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) { SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH); return; } // Every 2 seconds... if (ELAPSED(ms, temp_ms + 2000UL)) { #if HAS_TEMP_HOTEND || HAS_TEMP_BED print_heaterstates(); SERIAL_EOL; #endif temp_ms = ms; } // every 2 seconds // Over 2 minutes? if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) { SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT); return; } if (cycles > ncycles) { SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED); #if HAS_PID_FOR_BOTH const char* estring = hotend < 0 ? "bed" : ""; SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL; SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL; SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL; #elif ENABLED(PIDTEMP) SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL; SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL; SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL; #else SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL; SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL; SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL; #endif #define _SET_BED_PID() do { \ bedKp = workKp; \ bedKi = scalePID_i(workKi); \ bedKd = scalePID_d(workKd); \ updatePID(); } while(0) #define _SET_EXTRUDER_PID() do { \ PID_PARAM(Kp, hotend) = workKp; \ PID_PARAM(Ki, hotend) = scalePID_i(workKi); \ PID_PARAM(Kd, hotend) = scalePID_d(workKd); \ updatePID(); } while(0) // Use the result? (As with "M303 U1") if (set_result) { #if HAS_PID_FOR_BOTH if (hotend < 0) _SET_BED_PID(); else _SET_EXTRUDER_PID(); #elif ENABLED(PIDTEMP) _SET_EXTRUDER_PID(); #else _SET_BED_PID(); #endif } return; } lcd_update(); } if (!wait_for_heatup) disable_all_heaters(); } #endif // HAS_PID_HEATING /** * Class and Instance Methods */ Temperature::Temperature() { } void Temperature::updatePID() { #if ENABLED(PIDTEMP) #if ENABLED(PID_EXTRUSION_SCALING) last_e_position = 0; #endif #endif } int Temperature::getHeaterPower(int heater) { return heater < 0 ? soft_pwm_bed : soft_pwm[heater]; } #if HAS_AUTO_FAN void Temperature::checkExtruderAutoFans() { constexpr int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN }; constexpr int fanBit[] = { 0, AUTO_1_IS_0 ? 0 : 1, AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2, AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3, AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4 }; uint8_t fanState = 0; HOTEND_LOOP() { if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE) SBI(fanState, fanBit[e]); } uint8_t fanDone = 0; for (uint8_t f = 0; f < COUNT(fanPin); f++) { int8_t pin = fanPin[f]; if (pin >= 0 && !TEST(fanDone, fanBit[f])) { uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0; // this idiom allows both digital and PWM fan outputs (see M42 handling). digitalWrite(pin, newFanSpeed); analogWrite(pin, newFanSpeed); SBI(fanDone, fanBit[f]); } } } #endif // HAS_AUTO_FAN // // Temperature Error Handlers // void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) { static bool killed = false; if (IsRunning()) { SERIAL_ERROR_START; serialprintPGM(serial_msg); SERIAL_ERRORPGM(MSG_STOPPED_HEATER); if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED); } #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE) if (!killed) { Running = false; killed = true; kill(lcd_msg); } else disable_all_heaters(); // paranoia #endif } void Temperature::max_temp_error(int8_t e) { #if HAS_TEMP_BED _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED)); #else _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP)); #if HOTENDS == 1 UNUSED(e); #endif #endif } void Temperature::min_temp_error(int8_t e) { #if HAS_TEMP_BED _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED)); #else _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP)); #if HOTENDS == 1 UNUSED(e); #endif #endif } float Temperature::get_pid_output(int e) { #if HOTENDS == 1 UNUSED(e); #define _HOTEND_TEST true #else #define _HOTEND_TEST e == active_extruder #endif float pid_output; #if ENABLED(PIDTEMP) #if DISABLED(PID_OPENLOOP) pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX]; dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX]; temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX]; if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) { pid_output = BANG_MAX; pid_reset[HOTEND_INDEX] = true; } else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) { pid_output = 0; pid_reset[HOTEND_INDEX] = true; } else { if (pid_reset[HOTEND_INDEX]) { temp_iState[HOTEND_INDEX] = 0.0; pid_reset[HOTEND_INDEX] = false; } pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX]; temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX]; iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX]; pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX]; #if ENABLED(PID_EXTRUSION_SCALING) cTerm[HOTEND_INDEX] = 0; if (_HOTEND_TEST) { long e_position = stepper.position(E_AXIS); if (e_position > last_e_position) { lpq[lpq_ptr] = e_position - last_e_position; last_e_position = e_position; } else { lpq[lpq_ptr] = 0; } if (++lpq_ptr >= lpq_len) lpq_ptr = 0; cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX); pid_output += cTerm[HOTEND_INDEX]; } #endif // PID_EXTRUSION_SCALING if (pid_output > PID_MAX) { if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration pid_output = PID_MAX; } else if (pid_output < 0) { if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration pid_output = 0; } } #else pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX); #endif //PID_OPENLOOP #if ENABLED(PID_DEBUG) SERIAL_ECHO_START; SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX); SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]); SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output); SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]); SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]); SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]); #endif SERIAL_EOL; #endif //PID_DEBUG #else /* PID off */ pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0; #endif return pid_output; } #if ENABLED(PIDTEMPBED) float Temperature::get_pid_output_bed() { float pid_output; #if DISABLED(PID_OPENLOOP) pid_error_bed = target_temperature_bed - current_temperature_bed; pTerm_bed = bedKp * pid_error_bed; temp_iState_bed += pid_error_bed; iTerm_bed = bedKi * temp_iState_bed; dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed; temp_dState_bed = current_temperature_bed; pid_output = pTerm_bed + iTerm_bed - dTerm_bed; if (pid_output > MAX_BED_POWER) { if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output = MAX_BED_POWER; } else if (pid_output < 0) { if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output = 0; } #else pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); #endif // PID_OPENLOOP #if ENABLED(PID_BED_DEBUG) SERIAL_ECHO_START; SERIAL_ECHOPGM(" PID_BED_DEBUG "); SERIAL_ECHOPGM(": Input "); SERIAL_ECHO(current_temperature_bed); SERIAL_ECHOPGM(" Output "); SERIAL_ECHO(pid_output); SERIAL_ECHOPGM(" pTerm "); SERIAL_ECHO(pTerm_bed); SERIAL_ECHOPGM(" iTerm "); SERIAL_ECHO(iTerm_bed); SERIAL_ECHOPGM(" dTerm "); SERIAL_ECHOLN(dTerm_bed); #endif //PID_BED_DEBUG return pid_output; } #endif //PIDTEMPBED /** * Manage heating activities for extruder hot-ends and a heated bed * - Acquire updated temperature readings * - Also resets the watchdog timer * - Invoke thermal runaway protection * - Manage extruder auto-fan * - Apply filament width to the extrusion rate (may move) * - Update the heated bed PID output value */ /** * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'" * compile error. * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS); * * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1. * * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater() */ //void Temperature::manage_heater() __attribute__((__optimize__("O2"))); void Temperature::manage_heater() { if (!temp_meas_ready) return; updateTemperaturesFromRawValues(); // also resets the watchdog #if ENABLED(HEATER_0_USES_MAX6675) if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0); if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0); #endif #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN millis_t ms = millis(); #endif // Loop through all hotends HOTEND_LOOP() { #if ENABLED(THERMAL_PROTECTION_HOTENDS) thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS); #endif float pid_output = get_pid_output(e); // Check if temperature is within the correct range soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; // Check if the temperature is failing to increase #if WATCH_HOTENDS // Is it time to check this extruder's heater? if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) { // Has it failed to increase enough? if (degHotend(e) < watch_target_temp[e]) { // Stop! _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD)); } else { // Start again if the target is still far off start_watching_heater(e); } } #endif // THERMAL_PROTECTION_HOTENDS // Check if the temperature is failing to increase #if WATCH_THE_BED // Is it time to check the bed? if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) { // Has it failed to increase enough? if (degBed() < watch_target_bed_temp) { // Stop! _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD)); } else { // Start again if the target is still far off start_watching_bed(); } } #endif // THERMAL_PROTECTION_HOTENDS #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) { _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP)); } #endif } // HOTEND_LOOP #if HAS_AUTO_FAN if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500UL; } #endif // Control the extruder rate based on the width sensor #if ENABLED(FILAMENT_WIDTH_SENSOR) if (filament_sensor) { meas_shift_index = filwidth_delay_index[0] - meas_delay_cm; if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed // Get the delayed info and add 100 to reconstitute to a percent of // the nominal filament diameter then square it to get an area meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY); float vm = pow((measurement_delay[meas_shift_index] + 100.0) * 0.01, 2); NOLESS(vm, 0.01); volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm; } #endif //FILAMENT_WIDTH_SENSOR #if DISABLED(PIDTEMPBED) if (PENDING(ms, next_bed_check_ms)) return; next_bed_check_ms = ms + BED_CHECK_INTERVAL; #endif #if TEMP_SENSOR_BED != 0 #if HAS_THERMALLY_PROTECTED_BED thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS); #endif #if ENABLED(PIDTEMPBED) float pid_output = get_pid_output_bed(); soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0; #elif ENABLED(BED_LIMIT_SWITCHING) // Check if temperature is within the correct band if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS) soft_pwm_bed = 0; else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS)) soft_pwm_bed = MAX_BED_POWER >> 1; } else { soft_pwm_bed = 0; WRITE_HEATER_BED(LOW); } #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING // Check if temperature is within the correct range if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0; } else { soft_pwm_bed = 0; WRITE_HEATER_BED(LOW); } #endif #endif //TEMP_SENSOR_BED != 0 } #define PGM_RD_W(x) (short)pgm_read_word(&x) // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. float Temperature::analog2temp(int raw, uint8_t e) { #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) if (e > HOTENDS) #else if (e >= HOTENDS) #endif { SERIAL_ERROR_START; SERIAL_ERROR((int)e); SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM); kill(PSTR(MSG_KILLED)); return 0.0; } #if ENABLED(HEATER_0_USES_MAX6675) if (e == 0) return 0.25 * raw; #endif if (heater_ttbl_map[e] != NULL) { float celsius = 0; uint8_t i; short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]); for (i = 1; i < heater_ttbllen_map[e]; i++) { if (PGM_RD_W((*tt)[i][0]) > raw) { celsius = PGM_RD_W((*tt)[i - 1][1]) + (raw - PGM_RD_W((*tt)[i - 1][0])) * (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) / (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0])); break; } } // Overflow: Set to last value in the table if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]); return celsius; } return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET; } // Derived from RepRap FiveD extruder::getTemperature() // For bed temperature measurement. float Temperature::analog2tempBed(int raw) { #if ENABLED(BED_USES_THERMISTOR) float celsius = 0; byte i; for (i = 1; i < BEDTEMPTABLE_LEN; i++) { if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) { celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) + (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) * (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) / (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0])); break; } } // Overflow: Set to last value in the table if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]); return celsius; #elif defined(BED_USES_AD595) return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET; #else UNUSED(raw); return 0; #endif } /** * Get the raw values into the actual temperatures. * The raw values are created in interrupt context, * and this function is called from normal context * as it would block the stepper routine. */ void Temperature::updateTemperaturesFromRawValues() { #if ENABLED(HEATER_0_USES_MAX6675) current_temperature_raw[0] = read_max6675(); #endif HOTEND_LOOP() current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e); current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw); #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1); #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) filament_width_meas = analog2widthFil(); #endif #if ENABLED(USE_WATCHDOG) // Reset the watchdog after we know we have a temperature measurement. watchdog_reset(); #endif CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; } #if ENABLED(FILAMENT_WIDTH_SENSOR) // Convert raw Filament Width to millimeters float Temperature::analog2widthFil() { return current_raw_filwidth / 16383.0 * 5.0; //return current_raw_filwidth; } // Convert raw Filament Width to a ratio int Temperature::widthFil_to_size_ratio() { float temp = filament_width_meas; if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out else NOMORE(temp, MEASURED_UPPER_LIMIT); return filament_width_nominal / temp * 100; } #endif #if ENABLED(HEATER_0_USES_MAX6675) #ifndef MAX6675_SCK_PIN #define MAX6675_SCK_PIN SCK_PIN #endif #ifndef MAX6675_DO_PIN #define MAX6675_DO_PIN MISO_PIN #endif Spi<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi; #endif /** * Initialize the temperature manager * The manager is implemented by periodic calls to manage_heater() */ void Temperature::init() { #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector MCUCR = _BV(JTD); MCUCR = _BV(JTD); #endif // Finish init of mult hotend arrays HOTEND_LOOP() maxttemp[e] = maxttemp[0]; #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING) last_e_position = 0; #endif #if HAS_HEATER_0 SET_OUTPUT(HEATER_0_PIN); #endif #if HAS_HEATER_1 SET_OUTPUT(HEATER_1_PIN); #endif #if HAS_HEATER_2 SET_OUTPUT(HEATER_2_PIN); #endif #if HAS_HEATER_3 SET_OUTPUT(HEATER_3_PIN); #endif #if HAS_HEATER_4 SET_OUTPUT(HEATER_3_PIN); #endif #if HAS_HEATER_BED SET_OUTPUT(HEATER_BED_PIN); #endif #if HAS_FAN0 SET_OUTPUT(FAN_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #endif #if HAS_FAN1 SET_OUTPUT(FAN1_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #endif #if HAS_FAN2 SET_OUTPUT(FAN2_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #endif #if ENABLED(HEATER_0_USES_MAX6675) OUT_WRITE(SCK_PIN, LOW); OUT_WRITE(MOSI_PIN, HIGH); SET_INPUT_PULLUP(MISO_PIN); max6675_spi.init(); OUT_WRITE(SS_PIN, HIGH); OUT_WRITE(MAX6675_SS, HIGH); #endif // HEATER_0_USES_MAX6675 #ifdef DIDR2 #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0) #else #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0) #endif // Set analog inputs ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07; DIDR0 = 0; #ifdef DIDR2 DIDR2 = 0; #endif #if HAS_TEMP_0 ANALOG_SELECT(TEMP_0_PIN); #endif #if HAS_TEMP_1 ANALOG_SELECT(TEMP_1_PIN); #endif #if HAS_TEMP_2 ANALOG_SELECT(TEMP_2_PIN); #endif #if HAS_TEMP_3 ANALOG_SELECT(TEMP_3_PIN); #endif #if HAS_TEMP_4 ANALOG_SELECT(TEMP_4_PIN); #endif #if HAS_TEMP_BED ANALOG_SELECT(TEMP_BED_PIN); #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) ANALOG_SELECT(FILWIDTH_PIN); #endif #if HAS_AUTO_FAN_0 #if E0_AUTO_FAN_PIN == FAN1_PIN SET_OUTPUT(E0_AUTO_FAN_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #else SET_OUTPUT(E0_AUTO_FAN_PIN); #endif #endif #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0 #if E1_AUTO_FAN_PIN == FAN1_PIN SET_OUTPUT(E1_AUTO_FAN_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #else SET_OUTPUT(E1_AUTO_FAN_PIN); #endif #endif #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1 #if E2_AUTO_FAN_PIN == FAN1_PIN SET_OUTPUT(E2_AUTO_FAN_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #else SET_OUTPUT(E2_AUTO_FAN_PIN); #endif #endif #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2 #if E3_AUTO_FAN_PIN == FAN1_PIN SET_OUTPUT(E3_AUTO_FAN_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #else SET_OUTPUT(E3_AUTO_FAN_PIN); #endif #endif #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3 #if E4_AUTO_FAN_PIN == FAN1_PIN SET_OUTPUT(E4_AUTO_FAN_PIN); #if ENABLED(FAST_PWM_FAN) setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #else SET_OUTPUT(E4_AUTO_FAN_PIN); #endif #endif // Use timer0 for temperature measurement // Interleave temperature interrupt with millies interrupt OCR0B = 128; SBI(TIMSK0, OCIE0B); // Wait for temperature measurement to settle delay(250); #define TEMP_MIN_ROUTINE(NR) \ minttemp[NR] = HEATER_ ##NR## _MINTEMP; \ while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \ if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \ minttemp_raw[NR] += OVERSAMPLENR; \ else \ minttemp_raw[NR] -= OVERSAMPLENR; \ } #define TEMP_MAX_ROUTINE(NR) \ maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \ while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \ if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \ maxttemp_raw[NR] -= OVERSAMPLENR; \ else \ maxttemp_raw[NR] += OVERSAMPLENR; \ } #ifdef HEATER_0_MINTEMP TEMP_MIN_ROUTINE(0); #endif #ifdef HEATER_0_MAXTEMP TEMP_MAX_ROUTINE(0); #endif #if HOTENDS > 1 #ifdef HEATER_1_MINTEMP TEMP_MIN_ROUTINE(1); #endif #ifdef HEATER_1_MAXTEMP TEMP_MAX_ROUTINE(1); #endif #if HOTENDS > 2 #ifdef HEATER_2_MINTEMP TEMP_MIN_ROUTINE(2); #endif #ifdef HEATER_2_MAXTEMP TEMP_MAX_ROUTINE(2); #endif #if HOTENDS > 3 #ifdef HEATER_3_MINTEMP TEMP_MIN_ROUTINE(3); #endif #ifdef HEATER_3_MAXTEMP TEMP_MAX_ROUTINE(3); #endif #if HOTENDS > 4 #ifdef HEATER_4_MINTEMP TEMP_MIN_ROUTINE(4); #endif #ifdef HEATER_4_MAXTEMP TEMP_MAX_ROUTINE(4); #endif #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #ifdef BED_MINTEMP while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_minttemp_raw += OVERSAMPLENR; #else bed_minttemp_raw -= OVERSAMPLENR; #endif } #endif //BED_MINTEMP #ifdef BED_MAXTEMP while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_maxttemp_raw -= OVERSAMPLENR; #else bed_maxttemp_raw += OVERSAMPLENR; #endif } #endif //BED_MAXTEMP } #if WATCH_HOTENDS /** * Start Heating Sanity Check for hotends that are below * their target temperature by a configurable margin. * This is called when the temperature is set. (M104, M109) */ void Temperature::start_watching_heater(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) { watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE; watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL; } else watch_heater_next_ms[HOTEND_INDEX] = 0; } #endif #if WATCH_THE_BED /** * Start Heating Sanity Check for hotends that are below * their target temperature by a configurable margin. * This is called when the temperature is set. (M140, M190) */ void Temperature::start_watching_bed() { if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) { watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE; watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL; } else watch_bed_next_ms = 0; } #endif #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED #if ENABLED(THERMAL_PROTECTION_HOTENDS) Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive }; millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 }; #endif #if HAS_THERMALLY_PROTECTED_BED Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive; millis_t Temperature::thermal_runaway_bed_timer; #endif void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { static float tr_target_temperature[HOTENDS + 1] = { 0.0 }; /** SERIAL_ECHO_START; SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: "); if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id); SERIAL_ECHOPAIR(" ; State:", *state); SERIAL_ECHOPAIR(" ; Timer:", *timer); SERIAL_ECHOPAIR(" ; Temperature:", temperature); SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature); SERIAL_EOL; */ int heater_index = heater_id >= 0 ? heater_id : HOTENDS; // If the target temperature changes, restart if (tr_target_temperature[heater_index] != target_temperature) { tr_target_temperature[heater_index] = target_temperature; *state = target_temperature > 0 ? TRFirstHeating : TRInactive; } switch (*state) { // Inactive state waits for a target temperature to be set case TRInactive: break; // When first heating, wait for the temperature to be reached then go to Stable state case TRFirstHeating: if (temperature < tr_target_temperature[heater_index]) break; *state = TRStable; // While the temperature is stable watch for a bad temperature case TRStable: if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) { *timer = millis() + period_seconds * 1000UL; break; } else if (PENDING(millis(), *timer)) break; *state = TRRunaway; case TRRunaway: _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY)); } } #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED void Temperature::disable_all_heaters() { HOTEND_LOOP() setTargetHotend(0, e); setTargetBed(0); // If all heaters go down then for sure our print job has stopped print_job_timer.stop(); #define DISABLE_HEATER(NR) { \ setTargetHotend(0, NR); \ soft_pwm[NR] = 0; \ WRITE_HEATER_ ##NR (LOW); \ } #if HAS_TEMP_HOTEND DISABLE_HEATER(0); #if HOTENDS > 1 DISABLE_HEATER(1); #if HOTENDS > 2 DISABLE_HEATER(2); #if HOTENDS > 3 DISABLE_HEATER(3); #if HOTENDS > 4 DISABLE_HEATER(4); #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #endif #if HAS_TEMP_BED target_temperature_bed = 0; soft_pwm_bed = 0; #if HAS_HEATER_BED WRITE_HEATER_BED(LOW); #endif #endif } #if ENABLED(HEATER_0_USES_MAX6675) #define MAX6675_HEAT_INTERVAL 250u #if ENABLED(MAX6675_IS_MAX31855) uint32_t max6675_temp = 2000; #define MAX6675_ERROR_MASK 7 #define MAX6675_DISCARD_BITS 18 #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64 #else uint16_t max6675_temp = 2000; #define MAX6675_ERROR_MASK 4 #define MAX6675_DISCARD_BITS 3 #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16 #endif int Temperature::read_max6675() { static millis_t next_max6675_ms = 0; millis_t ms = millis(); if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp; next_max6675_ms = ms + MAX6675_HEAT_INTERVAL; CBI( #ifdef PRR PRR #elif defined(PRR0) PRR0 #endif , PRSPI); SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS; WRITE(MAX6675_SS, 0); // enable TT_MAX6675 // ensure 100ns delay - a bit extra is fine asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz // Read a big-endian temperature value max6675_temp = 0; for (uint8_t i = sizeof(max6675_temp); i--;) { max6675_temp |= max6675_spi.receive(); if (i > 0) max6675_temp <<= 8; // shift left if not the last byte } WRITE(MAX6675_SS, 1); // disable TT_MAX6675 if (max6675_temp & MAX6675_ERROR_MASK) { SERIAL_ERROR_START; SERIAL_ERRORPGM("Temp measurement error! "); #if MAX6675_ERROR_MASK == 7 SERIAL_ERRORPGM("MAX31855 "); if (max6675_temp & 1) SERIAL_ERRORLNPGM("Open Circuit"); else if (max6675_temp & 2) SERIAL_ERRORLNPGM("Short to GND"); else if (max6675_temp & 4) SERIAL_ERRORLNPGM("Short to VCC"); #else SERIAL_ERRORLNPGM("MAX6675"); #endif max6675_temp = MAX6675_TMAX * 4; // thermocouple open } else max6675_temp >>= MAX6675_DISCARD_BITS; #if ENABLED(MAX6675_IS_MAX31855) // Support negative temperature if (max6675_temp & 0x00002000) max6675_temp |= 0xffffc000; #endif return (int)max6675_temp; } #endif //HEATER_0_USES_MAX6675 /** * Get raw temperatures */ void Temperature::set_current_temp_raw() { #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675) current_temperature_raw[0] = raw_temp_value[0]; #endif #if HAS_TEMP_1 #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) redundant_temperature_raw = raw_temp_value[1]; #else current_temperature_raw[1] = raw_temp_value[1]; #endif #if HAS_TEMP_2 current_temperature_raw[2] = raw_temp_value[2]; #if HAS_TEMP_3 current_temperature_raw[3] = raw_temp_value[3]; #if HAS_TEMP_4 current_temperature_raw[4] = raw_temp_value[4]; #endif #endif #endif #endif current_temperature_bed_raw = raw_temp_bed_value; temp_meas_ready = true; } #if ENABLED(PINS_DEBUGGING) /** * monitors endstops & Z probe for changes * * If a change is detected then the LED is toggled and * a message is sent out the serial port * * Yes, we could miss a rapid back & forth change but * that won't matter because this is all manual. * */ void endstop_monitor() { static uint16_t old_endstop_bits_local = 0; static uint8_t local_LED_status = 0; uint16_t current_endstop_bits_local = 0; #if HAS_X_MIN if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN); #endif #if HAS_X_MAX if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX); #endif #if HAS_Y_MIN if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN); #endif #if HAS_Y_MAX if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX); #endif #if HAS_Z_MIN if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN); #endif #if HAS_Z_MAX if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX); #endif #if HAS_Z_MIN_PROBE_PIN if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE); #endif #if HAS_Z2_MIN if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN); #endif #if HAS_Z2_MAX if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX); #endif uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local; if (endstop_change) { #if HAS_X_MIN if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN)); #endif #if HAS_X_MAX if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX)); #endif #if HAS_Y_MIN if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN)); #endif #if HAS_Y_MAX if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX)); #endif #if HAS_Z_MIN if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN)); #endif #if HAS_Z_MAX if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX)); #endif #if HAS_Z_MIN_PROBE_PIN if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE)); #endif #if HAS_Z2_MIN if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN)); #endif #if HAS_Z2_MAX if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX)); #endif SERIAL_PROTOCOLPGM("\n\n"); analogWrite(LED_PIN, local_LED_status); local_LED_status ^= 255; old_endstop_bits_local = current_endstop_bits_local; } } #endif // PINS_DEBUGGING /** * Timer 0 is shared with millies so don't change the prescaler. * * This ISR uses the compare method so it runs at the base * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set * in OCR0B above (128 or halfway between OVFs). * * - Manage PWM to all the heaters and fan * - Prepare or Measure one of the raw ADC sensor values * - Check new temperature values for MIN/MAX errors (kill on error) * - Step the babysteps value for each axis towards 0 * - For PINS_DEBUGGING, monitor and report endstop pins * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged */ ISR(TIMER0_COMPB_vect) { Temperature::isr(); } volatile bool Temperature::in_temp_isr = false; void Temperature::isr() { // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR // at the end of its run, potentially causing re-entry. This flag prevents it. if (in_temp_isr) return; in_temp_isr = true; // Allow UART and stepper ISRs CBI(TIMSK0, OCIE0B); //Disable Temperature ISR sei(); static int8_t temp_count = -1; static ADCSensorState adc_sensor_state = StartupDelay; static uint8_t pwm_count = _BV(SOFT_PWM_SCALE); // avoid multiple loads of pwm_count uint8_t pwm_count_tmp = pwm_count; // Static members for each heater #if ENABLED(SLOW_PWM_HEATERS) static uint8_t slow_pwm_count = 0; #define ISR_STATICS(n) \ static uint8_t soft_pwm_ ## n; \ static uint8_t state_heater_ ## n = 0; \ static uint8_t state_timer_heater_ ## n = 0 #else #define ISR_STATICS(n) static uint8_t soft_pwm_ ## n = 0 #endif // Statics per heater ISR_STATICS(0); #if HOTENDS > 1 ISR_STATICS(1); #if HOTENDS > 2 ISR_STATICS(2); #if HOTENDS > 3 ISR_STATICS(3); #if HOTENDS > 4 ISR_STATICS(4); #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATER_BED ISR_STATICS(BED); #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static unsigned long raw_filwidth_value = 0; #endif #if DISABLED(SLOW_PWM_HEATERS) constexpr uint8_t pwm_mask = #if ENABLED(SOFT_PWM_DITHER) _BV(SOFT_PWM_SCALE) - 1 #else 0 #endif ; /** * Standard PWM modulation */ if (pwm_count_tmp >= 127) { pwm_count_tmp -= 127; soft_pwm_0 = (soft_pwm_0 & pwm_mask) + soft_pwm[0]; WRITE_HEATER_0(soft_pwm_0 > pwm_mask ? HIGH : LOW); #if HOTENDS > 1 soft_pwm_1 = (soft_pwm_1 & pwm_mask) + soft_pwm[1]; WRITE_HEATER_1(soft_pwm_1 > pwm_mask ? HIGH : LOW); #if HOTENDS > 2 soft_pwm_2 = (soft_pwm_2 & pwm_mask) + soft_pwm[2]; WRITE_HEATER_2(soft_pwm_2 > pwm_mask ? HIGH : LOW); #if HOTENDS > 3 soft_pwm_3 = (soft_pwm_3 & pwm_mask) + soft_pwm[3]; WRITE_HEATER_3(soft_pwm_3 > pwm_mask ? HIGH : LOW); #if HOTENDS > 4 soft_pwm_4 = (soft_pwm_4 & pwm_mask) + soft_pwm[4]; WRITE_HEATER_4(soft_pwm_4 > pwm_mask ? HIGH : LOW); #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATER_BED soft_pwm_BED = (soft_pwm_BED & pwm_mask) + soft_pwm_bed; WRITE_HEATER_BED(soft_pwm_BED > pwm_mask ? HIGH : LOW); #endif #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 soft_pwm_fan[0] = (soft_pwm_fan[0] & pwm_mask) + fanSpeedSoftPwm[0] >> 1; WRITE_FAN(soft_pwm_fan[0] > pwm_mask ? HIGH : LOW); #endif #if HAS_FAN1 soft_pwm_fan[1] = (soft_pwm_fan[1] & pwm_mask) + fanSpeedSoftPwm[1] >> 1; WRITE_FAN1(soft_pwm_fan[1] > pwm_mask ? HIGH : LOW); #endif #if HAS_FAN2 soft_pwm_fan[2] = (soft_pwm_fan[2] & pwm_mask) + fanSpeedSoftPwm[2] >> 1; WRITE_FAN2(soft_pwm_fan[2] > pwm_mask ? HIGH : LOW); #endif #endif } else { if (soft_pwm_0 <= pwm_count_tmp) WRITE_HEATER_0(0); #if HOTENDS > 1 if (soft_pwm_1 <= pwm_count_tmp) WRITE_HEATER_1(0); #if HOTENDS > 2 if (soft_pwm_2 <= pwm_count_tmp) WRITE_HEATER_2(0); #if HOTENDS > 3 if (soft_pwm_3 <= pwm_count_tmp) WRITE_HEATER_3(0); #if HOTENDS > 4 if (soft_pwm_4 <= pwm_count_tmp) WRITE_HEATER_4(0); #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATER_BED if (soft_pwm_BED <= pwm_count_tmp) WRITE_HEATER_BED(0); #endif #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0); #endif #if HAS_FAN1 if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0); #endif #if HAS_FAN2 if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0); #endif #endif } // SOFT_PWM_SCALE to frequency: // // 0: 16000000/64/256/128 = 7.6294 Hz // 1: / 64 = 15.2588 Hz // 2: / 32 = 30.5176 Hz // 3: / 16 = 61.0352 Hz // 4: / 8 = 122.0703 Hz // 5: / 4 = 244.1406 Hz pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); #else // SLOW_PWM_HEATERS /** * SLOW PWM HEATERS * * For relay-driven heaters */ #ifndef MIN_STATE_TIME #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds #endif // Macros for Slow PWM timer logic #define _SLOW_PWM_ROUTINE(NR, src) \ soft_pwm_ ##NR = src; \ if (soft_pwm_ ##NR > 0) { \ if (state_timer_heater_ ##NR == 0) { \ if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \ state_heater_ ##NR = 1; \ WRITE_HEATER_ ##NR(1); \ } \ } \ else { \ if (state_timer_heater_ ##NR == 0) { \ if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \ state_heater_ ##NR = 0; \ WRITE_HEATER_ ##NR(0); \ } \ } #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n]) #define PWM_OFF_ROUTINE(NR) \ if (soft_pwm_ ##NR < slow_pwm_count) { \ if (state_timer_heater_ ##NR == 0) { \ if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \ state_heater_ ##NR = 0; \ WRITE_HEATER_ ##NR (0); \ } \ } if (slow_pwm_count == 0) { SLOW_PWM_ROUTINE(0); #if HOTENDS > 1 SLOW_PWM_ROUTINE(1); #if HOTENDS > 2 SLOW_PWM_ROUTINE(2); #if HOTENDS > 3 SLOW_PWM_ROUTINE(3); #if HOTENDS > 4 SLOW_PWM_ROUTINE(4); #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATER_BED _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED #endif } // slow_pwm_count == 0 PWM_OFF_ROUTINE(0); #if HOTENDS > 1 PWM_OFF_ROUTINE(1); #if HOTENDS > 2 PWM_OFF_ROUTINE(2); #if HOTENDS > 3 PWM_OFF_ROUTINE(3); #if HOTENDS > 4 PWM_OFF_ROUTINE(4); #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATER_BED PWM_OFF_ROUTINE(BED); // BED #endif #if ENABLED(FAN_SOFT_PWM) if (pwm_count_tmp >= 127) { pwm_count_tmp = 0; #if HAS_FAN0 soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1; WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW); #endif #if HAS_FAN1 soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1; WRITE_FAN1(soft_pwm_fan[1] > 0 ? HIGH : LOW); #endif #if HAS_FAN2 soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1; WRITE_FAN2(soft_pwm_fan[2] > 0 ? HIGH : LOW); #endif } #if HAS_FAN0 if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0); #endif #if HAS_FAN1 if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0); #endif #if HAS_FAN2 if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0); #endif #endif // FAN_SOFT_PWM // SOFT_PWM_SCALE to frequency: // // 0: 16000000/64/256/128 = 7.6294 Hz // 1: / 64 = 15.2588 Hz // 2: / 32 = 30.5176 Hz // 3: / 16 = 61.0352 Hz // 4: / 8 = 122.0703 Hz // 5: / 4 = 244.1406 Hz pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); // increment slow_pwm_count only every 64th pwm_count, // i.e. yielding a PWM frequency of 16/128 Hz (8s). if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) { slow_pwm_count++; slow_pwm_count &= 0x7F; if (state_timer_heater_0 > 0) state_timer_heater_0--; #if HOTENDS > 1 if (state_timer_heater_1 > 0) state_timer_heater_1--; #if HOTENDS > 2 if (state_timer_heater_2 > 0) state_timer_heater_2--; #if HOTENDS > 3 if (state_timer_heater_3 > 0) state_timer_heater_3--; #if HOTENDS > 4 if (state_timer_heater_4 > 0) state_timer_heater_4--; #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATER_BED if (state_timer_heater_BED > 0) state_timer_heater_BED--; #endif } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0 #endif // SLOW_PWM_HEATERS // // Update lcd buttons 488 times per second // static bool do_buttons; if ((do_buttons ^= true)) lcd_buttons_update(); /** * One sensor is sampled on every other call of the ISR. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average. * * On each Prepare pass, ADC is started for a sensor pin. * On the next pass, the ADC value is read and accumulated. * * This gives each ADC 0.9765ms to charge up. */ #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC) #ifdef MUX5 #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #else #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #endif switch (adc_sensor_state) { case SensorsReady: { // All sensors have been read. Stay in this state for a few // ISRs to save on calls to temp update/checking code below. constexpr int extra_loops = MIN_ADC_ISR_LOOPS - (int)SensorsReady; static uint8_t delay_count = 0; if (extra_loops > 0) { if (delay_count == 0) delay_count = extra_loops; // Init this delay if (--delay_count) // While delaying... adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0) break; } else adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now } #if HAS_TEMP_0 case PrepareTemp_0: START_ADC(TEMP_0_PIN); break; case MeasureTemp_0: raw_temp_value[0] += ADC; break; #endif #if HAS_TEMP_BED case PrepareTemp_BED: START_ADC(TEMP_BED_PIN); break; case MeasureTemp_BED: raw_temp_bed_value += ADC; break; #endif #if HAS_TEMP_1 case PrepareTemp_1: START_ADC(TEMP_1_PIN); break; case MeasureTemp_1: raw_temp_value[1] += ADC; break; #endif #if HAS_TEMP_2 case PrepareTemp_2: START_ADC(TEMP_2_PIN); break; case MeasureTemp_2: raw_temp_value[2] += ADC; break; #endif #if HAS_TEMP_3 case PrepareTemp_3: START_ADC(TEMP_3_PIN); break; case MeasureTemp_3: raw_temp_value[3] += ADC; break; #endif #if HAS_TEMP_4 case PrepareTemp_4: START_ADC(TEMP_4_PIN); break; case MeasureTemp_4: raw_temp_value[4] += ADC; break; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) case Prepare_FILWIDTH: START_ADC(FILWIDTH_PIN); break; case Measure_FILWIDTH: if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read. raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128 } break; #endif case StartupDelay: break; } // switch(adc_sensor_state) if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms. temp_count = 0; // Update the raw values if they've been read. Else we could be updating them during reading. if (!temp_meas_ready) set_current_temp_raw(); // Filament Sensor - can be read any time since IIR filtering is used #if ENABLED(FILAMENT_WIDTH_SENSOR) current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach #endif ZERO(raw_temp_value); raw_temp_bed_value = 0; #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1) int constexpr temp_dir[] = { #if ENABLED(HEATER_0_USES_MAX6675) 0 #else TEMPDIR(0) #endif #if HOTENDS > 1 , TEMPDIR(1) #if HOTENDS > 2 , TEMPDIR(2) #if HOTENDS > 3 , TEMPDIR(3) #if HOTENDS > 4 , TEMPDIR(4) #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 }; for (uint8_t e = 0; e < COUNT(temp_dir); e++) { const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir; if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0.0f) max_temp_error(e); if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) { #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED) #endif min_temp_error(e); } #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED else consecutive_low_temperature_error[e] = 0; #endif } #if HAS_TEMP_BED #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP #define GEBED <= #else #define GEBED >= #endif if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0.0f) max_temp_error(-1); if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0.0f) min_temp_error(-1); #endif } // temp_count >= OVERSAMPLENR // Go to the next state, up to SensorsReady adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay)); #if ENABLED(BABYSTEPPING) LOOP_XYZ(axis) { int curTodo = babystepsTodo[axis]; //get rid of volatile for performance if (curTodo > 0) { stepper.babystep((AxisEnum)axis,/*fwd*/true); babystepsTodo[axis]--; //fewer to do next time } else if (curTodo < 0) { stepper.babystep((AxisEnum)axis,/*fwd*/false); babystepsTodo[axis]++; //fewer to do next time } } #endif //BABYSTEPPING #if ENABLED(PINS_DEBUGGING) extern bool endstop_monitor_flag; // run the endstop monitor at 15Hz static uint8_t endstop_monitor_count = 16; // offset this check from the others if (endstop_monitor_flag) { endstop_monitor_count += _BV(1); // 15 Hz endstop_monitor_count &= 0x7F; if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status } #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) extern volatile uint8_t e_hit; if (e_hit && ENDSTOPS_ENABLED) { endstops.update(); // call endstop update routine e_hit--; } #endif cli(); in_temp_isr = false; SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR }