/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) #include "../gcode.h" #include "../../module/motion.h" #include "../../module/probe.h" #include "../../lcd/marlinui.h" #include "../../feature/bedlevel/bedlevel.h" #if HAS_LEVELING #include "../../module/planner.h" #endif /** * M48: Z probe repeatability measurement function. * * Usage: * M48 * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function requires the machine to be homed before invocation. */ void GcodeSuite::M48() { if (homing_needed_error()) return; const int8_t verbose_level = parser.byteval('V', 1); if (!WITHIN(verbose_level, 0, 4)) { SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4)."); return; } if (verbose_level > 0) SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test"); const int8_t n_samples = parser.byteval('P', 10); if (!WITHIN(n_samples, 4, 50)) { SERIAL_ECHOLNPGM("?Sample size not plausible (4-50)."); return; } const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; // Test at the current position by default, overridden by X and Y const xy_pos_t test_position = { parser.linearval('X', current_position.x + probe.offset_xy.x), // If no X use the probe's current X position parser.linearval('Y', current_position.y + probe.offset_xy.y) // If no Y, ditto }; if (!probe.can_reach(test_position)) { ui.set_status_P(GET_TEXT(MSG_M48_OUT_OF_BOUNDS), 99); SERIAL_ECHOLNPGM("? (X,Y) out of bounds."); return; } // Get the number of leg moves per test-point bool seen_L = parser.seen('L'); uint8_t n_legs = seen_L ? parser.value_byte() : 0; if (n_legs > 15) { SERIAL_ECHOLNPGM("?Legs of movement implausible (0-15)."); return; } if (n_legs == 1) n_legs = 2; // Schizoid motion as an optional stress-test const bool schizoid_flag = parser.boolval('S'); if (schizoid_flag && !seen_L) n_legs = 7; if (verbose_level > 2) SERIAL_ECHOLNPGM("Positioning the probe..."); // Always disable Bed Level correction before probing... #if HAS_LEVELING const bool was_enabled = planner.leveling_active; set_bed_leveling_enabled(false); #endif // Work with reasonable feedrates remember_feedrate_scaling_off(); // Working variables float mean = 0.0, // The average of all points so far, used to calculate deviation sigma = 0.0, // Standard deviation of all points so far min = 99999.9, // Smallest value sampled so far max = -99999.9, // Largest value sampled so far sample_set[n_samples]; // Storage for sampled values auto dev_report = [](const bool verbose, const float &mean, const float &sigma, const float &min, const float &max, const bool final=false) { if (verbose) { SERIAL_ECHOPAIR_F("Mean: ", mean, 6); if (!final) SERIAL_ECHOPAIR_F(" Sigma: ", sigma, 6); SERIAL_ECHOPAIR_F(" Min: ", min, 3); SERIAL_ECHOPAIR_F(" Max: ", max, 3); SERIAL_ECHOPAIR_F(" Range: ", max-min, 3); if (final) SERIAL_EOL(); } if (final) { SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6); SERIAL_EOL(); } }; // Move to the first point, deploy, and probe const float t = probe.probe_at_point(test_position, raise_after, verbose_level); bool probing_good = !isnan(t); if (probing_good) { randomSeed(millis()); float sample_sum = 0.0; LOOP_L_N(n, n_samples) { #if HAS_WIRED_LCD // Display M48 progress in the status bar ui.status_printf_P(0, PSTR(S_FMT ": %d/%d"), GET_TEXT(MSG_M48_POINT), int(n + 1), int(n_samples)); #endif // When there are "legs" of movement move around the point before probing if (n_legs) { // Pick a random direction, starting angle, and radius const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise float angle = random(0, 360); const float radius = random( #if ENABLED(DELTA) int(0.1250000000 * (DELTA_PRINTABLE_RADIUS)), int(0.3333333333 * (DELTA_PRINTABLE_RADIUS)) #else int(5), int(0.125 * _MIN(X_BED_SIZE, Y_BED_SIZE)) #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Start radius:", radius, " angle:", angle, " dir:"); if (dir > 0) SERIAL_CHAR('C'); SERIAL_ECHOLNPGM("CW"); } // Move from leg to leg in rapid succession LOOP_L_N(l, n_legs - 1) { // Move some distance around the perimeter float delta_angle; if (schizoid_flag) { // The points of a 5 point star are 72 degrees apart. // Skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; } else { // Just move further along the perimeter. delta_angle = dir * (float)random(25, 45); } angle += delta_angle; // Trig functions work without clamping, but just to be safe... while (angle > 360.0) angle -= 360.0; while (angle < 0.0) angle += 360.0; // Choose the next position as an offset to chosen test position const xy_pos_t noz_pos = test_position - probe.offset_xy; xy_pos_t next_pos = { noz_pos.x + float(cos(RADIANS(angle))) * radius, noz_pos.y + float(sin(RADIANS(angle))) * radius }; #if ENABLED(DELTA) // If the probe can't reach the point on a round bed... // Simply scale the numbers to bring them closer to origin. while (!probe.can_reach(next_pos)) { next_pos *= 0.8f; if (verbose_level > 3) SERIAL_ECHOLNPAIR_P(PSTR("Moving inward: X"), next_pos.x, SP_Y_STR, next_pos.y); } #else // For a rectangular bed just keep the probe in bounds LIMIT(next_pos.x, X_MIN_POS, X_MAX_POS); LIMIT(next_pos.y, Y_MIN_POS, Y_MAX_POS); #endif if (verbose_level > 3) SERIAL_ECHOLNPAIR_P(PSTR("Going to: X"), next_pos.x, SP_Y_STR, next_pos.y); do_blocking_move_to_xy(next_pos); } // n_legs loop } // n_legs // Probe a single point const float pz = probe.probe_at_point(test_position, raise_after, 0); // Break the loop if the probe fails probing_good = !isnan(pz); if (!probing_good) break; // Store the new sample sample_set[n] = pz; // Keep track of the largest and smallest samples NOMORE(min, pz); NOLESS(max, pz); // Get the mean value of all samples thus far sample_sum += pz; mean = sample_sum / (n + 1); // Calculate the standard deviation so far. // The value after the last sample will be the final output. float dev_sum = 0.0; LOOP_LE_N(j, n) dev_sum += sq(sample_set[j] - mean); sigma = SQRT(dev_sum / (n + 1)); if (verbose_level > 1) { SERIAL_ECHO(n + 1); SERIAL_ECHOPAIR(" of ", int(n_samples)); SERIAL_ECHOPAIR_F(": z: ", pz, 3); SERIAL_CHAR(' '); dev_report(verbose_level > 2, mean, sigma, min, max); SERIAL_EOL(); } } // n_samples loop } probe.stow(); if (probing_good) { SERIAL_ECHOLNPGM("Finished!"); dev_report(verbose_level > 0, mean, sigma, min, max, true); #if HAS_WIRED_LCD // Display M48 results in the status bar char sigma_str[8]; ui.status_printf_P(0, PSTR(S_FMT ": %s"), GET_TEXT(MSG_M48_DEVIATION), dtostrf(sigma, 2, 6, sigma_str)); #endif } restore_feedrate_and_scaling(); // Re-enable bed level correction if it had been on TERN_(HAS_LEVELING, set_bed_leveling_enabled(was_enabled)); report_current_position(); } #endif // Z_MIN_PROBE_REPEATABILITY_TEST