/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfig.h" #if HAS_SPI_TFT || ENABLED(TFT_LVGL_UI_SPI) #include "tft_spi.h" // TFT_SPI tft; SPIClass TFT_SPI::SPIx(1); #define SPI_TFT_CS_H OUT_WRITE(TFT_CS_PIN, HIGH) #define SPI_TFT_CS_L OUT_WRITE(TFT_CS_PIN, LOW) #define SPI_TFT_DC_H OUT_WRITE(TFT_DC_PIN, HIGH) #define SPI_TFT_DC_L OUT_WRITE(TFT_DC_PIN, LOW) #define SPI_TFT_RST_H OUT_WRITE(TFT_RST_PIN, HIGH) #define SPI_TFT_RST_L OUT_WRITE(TFT_RST_PIN, LOW) #define SPI_TFT_BLK_H OUT_WRITE(TFT_BACKLIGHT_PIN, HIGH) #define SPI_TFT_BLK_L OUT_WRITE(TFT_BACKLIGHT_PIN, LOW) void TFT_SPI::Init() { #if PIN_EXISTS(TFT_RESET) // OUT_WRITE(TFT_RESET_PIN, HIGH); SPI_TFT_RST_H; delay(100); #endif #if PIN_EXISTS(TFT_BACKLIGHT) // OUT_WRITE(TFT_BACKLIGHT_PIN, HIGH); SPI_TFT_BLK_H; #endif SPI_TFT_DC_H; SPI_TFT_CS_H; /** * STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz * STM32F1 has 3 SPI ports, SPI1 in APB2, SPI2/SPI3 in APB1 * so the minimum prescale of SPI1 is DIV4, SPI2/SPI3 is DIV2 */ #if SPI_DEVICE == 1 #define SPI_CLOCK_MAX SPI_CLOCK_DIV4 #else #define SPI_CLOCK_MAX SPI_CLOCK_DIV2 #endif uint8_t clock; uint8_t spiRate = SPI_FULL_SPEED; switch (spiRate) { case SPI_FULL_SPEED: clock = SPI_CLOCK_MAX ; break; case SPI_HALF_SPEED: clock = SPI_CLOCK_DIV4 ; break; case SPI_QUARTER_SPEED: clock = SPI_CLOCK_DIV8 ; break; case SPI_EIGHTH_SPEED: clock = SPI_CLOCK_DIV16; break; case SPI_SPEED_5: clock = SPI_CLOCK_DIV32; break; case SPI_SPEED_6: clock = SPI_CLOCK_DIV64; break; default: clock = SPI_CLOCK_DIV2; // Default from the SPI library } SPIx.setModule(1); SPIx.setClockDivider(clock); SPIx.setBitOrder(MSBFIRST); SPIx.setDataMode(SPI_MODE0); } void TFT_SPI::DataTransferBegin(uint16_t DataSize) { SPIx.setDataSize(DataSize); SPIx.begin(); SPI_TFT_CS_L; } uint32_t TFT_SPI::GetID() { uint32_t id; id = ReadID(LCD_READ_ID); if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) id = ReadID(LCD_READ_ID4); return id; } uint32_t TFT_SPI::ReadID(uint16_t Reg) { #if !PIN_EXISTS(TFT_MISO) return 0; #else uint8_t d = 0; uint32_t data = 0; SPIx.setClockDivider(SPI_CLOCK_DIV16); DataTransferBegin(DATASIZE_8BIT); WriteReg(Reg); LOOP_L_N(i, 4) { SPIx.read((uint8_t*)&d, 1); data = (data << 8) | d; } DataTransferEnd(); SPIx.setClockDivider(SPI_CLOCK_MAX); return data >> 7; #endif } bool TFT_SPI::isBusy() { return false; } void TFT_SPI::Abort() { DataTransferEnd(); } void TFT_SPI::Transmit(uint16_t Data) { SPIx.send(Data); } void TFT_SPI::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Count) { DataTransferBegin(); SPI_TFT_DC_H; if (MemoryIncrease == DMA_MINC_ENABLE) { SPIx.dmaSend(Data, Count, true); } else { SPIx.dmaSend(Data, Count, false); } DataTransferEnd(); } #endif // HAS_SPI_TFT