/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(Z_STEPPER_AUTO_ALIGN) #include "../gcode.h" #include "../../module/planner.h" #include "../../module/stepper.h" #include "../../module/motion.h" #include "../../module/probe.h" #if HOTENDS > 1 #include "../../module/tool_change.h" #endif #if HAS_LEVELING #include "../../feature/bedlevel/bedlevel.h" #endif #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) #include "../../libs/least_squares_fit.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../../core/debug_out.h" // // Sanity check G34 / M422 settings // constexpr xy_pos_t test_z_stepper_align_xy[] = Z_STEPPER_ALIGN_XY; #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) static_assert(COUNT(test_z_stepper_align_xy) >= Z_STEPPER_COUNT, "Z_STEPPER_ALIGN_XY requires at least three {X,Y} entries (Z, Z2, Z3, ...)." ); constexpr float test_z_stepper_align_stepper_xy[][XY] = Z_STEPPER_ALIGN_STEPPER_XY; static_assert( COUNT(test_z_stepper_align_stepper_xy) == Z_STEPPER_COUNT, "Z_STEPPER_ALIGN_STEPPER_XY requires three {X,Y} entries (one per Z stepper)." ); #else static_assert(COUNT(test_z_stepper_align_xy) == Z_STEPPER_COUNT, #if ENABLED(Z_TRIPLE_STEPPER_DRIVERS) "Z_STEPPER_ALIGN_XY requires three {X,Y} entries (Z, Z2, and Z3)." #else "Z_STEPPER_ALIGN_XY requires two {X,Y} entries (Z and Z2)." #endif ); #endif constexpr xyz_pos_t dpo = NOZZLE_TO_PROBE_OFFSET; #define LTEST(N) (test_z_stepper_align_xy[N].x >= _MAX(X_MIN_BED + MIN_PROBE_EDGE_LEFT, X_MIN_POS + dpo.x) - 0.00001f) #define RTEST(N) (test_z_stepper_align_xy[N].x <= _MIN(X_MAX_BED - MIN_PROBE_EDGE_RIGHT, X_MAX_POS + dpo.x) + 0.00001f) #define FTEST(N) (test_z_stepper_align_xy[N].y >= _MAX(Y_MIN_BED + MIN_PROBE_EDGE_FRONT, Y_MIN_POS + dpo.y) - 0.00001f) #define BTEST(N) (test_z_stepper_align_xy[N].y <= _MIN(Y_MAX_BED - MIN_PROBE_EDGE_BACK, Y_MAX_POS + dpo.y) + 0.00001f) static_assert(LTEST(0) && RTEST(0), "The 1st Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset."); static_assert(FTEST(0) && BTEST(0), "The 1st Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset."); static_assert(LTEST(1) && RTEST(1), "The 2nd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset."); static_assert(FTEST(1) && BTEST(1), "The 2nd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset."); static_assert(LTEST(2) && RTEST(2), "The 3rd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset."); static_assert(FTEST(2) && BTEST(2), "The 3rd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset."); // // G34 / M422 shared data // static xy_pos_t z_stepper_align_pos[] = Z_STEPPER_ALIGN_XY; #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) static xy_pos_t z_stepper_align_stepper_pos[] = Z_STEPPER_ALIGN_STEPPER_XY; #endif #define G34_PROBE_COUNT COUNT(z_stepper_align_pos) inline void set_all_z_lock(const bool lock) { stepper.set_z_lock(lock); stepper.set_z2_lock(lock); #if ENABLED(Z_TRIPLE_STEPPER_DRIVERS) stepper.set_z3_lock(lock); #endif } /** * G34: Z-Stepper automatic alignment * * I * T * A */ void GcodeSuite::G34() { if (DEBUGGING(LEVELING)) { DEBUG_ECHOLNPGM(">>> G34"); log_machine_info(); } do { // break out on error const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS); if (!WITHIN(z_auto_align_iterations, 1, 30)) { SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30)."); break; } const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC); if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) { SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0)."); break; } const float z_auto_align_amplification = #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) Z_STEPPER_ALIGN_AMP; #else parser.floatval('A', Z_STEPPER_ALIGN_AMP); if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) { SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0)."); break; } #endif const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; // Wait for planner moves to finish! planner.synchronize(); // Disable the leveling matrix before auto-aligning #if HAS_LEVELING #if ENABLED(RESTORE_LEVELING_AFTER_G34) const bool leveling_was_active = planner.leveling_active; #endif set_bed_leveling_enabled(false); #endif #if ENABLED(CNC_WORKSPACE_PLANES) workspace_plane = PLANE_XY; #endif // Always home with tool 0 active #if HOTENDS > 1 const uint8_t old_tool_index = active_extruder; tool_change(0, true); #endif #if HAS_DUPLICATION_MODE extruder_duplication_enabled = false; #endif #if BOTH(BLTOUCH, BLTOUCH_HS_MODE) // In BLTOUCH HS mode, the probe travels in a deployed state. // Users of G34 might have a badly misaligned bed, so raise Z by the // length of the deployed pin (BLTOUCH stroke < 7mm) #define Z_BASIC_CLEARANCE Z_CLEARANCE_BETWEEN_PROBES + 7.0f #else #define Z_BASIC_CLEARANCE Z_CLEARANCE_BETWEEN_PROBES #endif // Compute a worst-case clearance height to probe from. After the first // iteration this will be re-calculated based on the actual bed position float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * ( #if ENABLED(Z_TRIPLE_STEPPER_DRIVERS) SQRT(_MAX(HYPOT2(z_stepper_align_pos[0].x - z_stepper_align_pos[0].y, z_stepper_align_pos[1].x - z_stepper_align_pos[1].y), HYPOT2(z_stepper_align_pos[1].x - z_stepper_align_pos[1].y, z_stepper_align_pos[2].x - z_stepper_align_pos[2].y), HYPOT2(z_stepper_align_pos[2].x - z_stepper_align_pos[2].y, z_stepper_align_pos[0].x - z_stepper_align_pos[0].y))) #else HYPOT(z_stepper_align_pos[0].x - z_stepper_align_pos[0].y, z_stepper_align_pos[1].x - z_stepper_align_pos[1].y) #endif ); // Home before the alignment procedure if (!all_axes_known()) home_all_axes(); // Move the Z coordinate realm towards the positive - dirty trick current_position.z -= z_probe * 0.5f; float last_z_align_move[Z_STEPPER_COUNT] = ARRAY_N(Z_STEPPER_COUNT, 10000.0f, 10000.0f, 10000.0f), z_measured[G34_PROBE_COUNT] = { 0 }, z_maxdiff = 0.0f, amplification = z_auto_align_amplification; uint8_t iteration; bool err_break = false; for (iteration = 0; iteration < z_auto_align_iterations; ++iteration) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions."); SERIAL_ECHOLNPAIR("\nITERATION: ", int(iteration + 1)); // Initialize minimum value float z_measured_min = 100000.0f, z_measured_max = -100000.0f; // Probe all positions (one per Z-Stepper) for (uint8_t i = 0; i < G34_PROBE_COUNT; ++i) { // iteration odd/even --> downward / upward stepper sequence const uint8_t iprobe = (iteration & 1) ? G34_PROBE_COUNT - 1 - i : i; // Safe clearance even on an incline if (iteration == 0 || i > 0) do_blocking_move_to_z(z_probe); // Probe a Z height for each stepper. const float z_probed_height = probe_at_point(z_stepper_align_pos[iprobe], raise_after, 0, true); if (isnan(z_probed_height)) { SERIAL_ECHOLNPGM("Probing failed."); err_break = true; break; } // Add height to each value, to provide a more useful target height for // the next iteration of probing. This allows adjustments to be made away from the bed. z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]); // Remember the minimum measurement to calculate the correction later on z_measured_min = _MIN(z_measured_min, z_measured[iprobe]); z_measured_max = _MAX(z_measured_max, z_measured[iprobe]); } // for (i) if (err_break) break; // Adapt the next probe clearance height based on the new measurements. // Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment. z_maxdiff = z_measured_max - z_measured_min; z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff; #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Replace the initial values in z_measured with calculated heights at // each stepper position. This allows the adjustment algorithm to be // shared between both possible probing mechanisms. // This must be done after the next z_probe height is calculated, so that // the height is calculated from actual print area positions, and not // extrapolated motor movements. // Compute the least-squares fit for all probed points. // Calculate the Z position of each stepper and store it in z_measured. // This allows the actual adjustment logic to be shared by both algorithms. linear_fit_data lfd; incremental_LSF_reset(&lfd); for (uint8_t i = 0; i < G34_PROBE_COUNT; ++i) { SERIAL_ECHOLNPAIR("PROBEPT_", int(i + 1), ": ", z_measured[i]); incremental_LSF(&lfd, z_stepper_align_pos[i], z_measured[i]); } finish_incremental_LSF(&lfd); z_measured_min = 100000.0f; for (uint8_t i = 0; i < Z_STEPPER_COUNT; ++i) { z_measured[i] = -(lfd.A * z_stepper_align_stepper_pos[i].x + lfd.B * z_stepper_align_stepper_pos[i].y); z_measured_min = _MIN(z_measured_min, z_measured[i]); } SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]); #endif SERIAL_ECHOLNPAIR("\n" "DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1]) #if ENABLED(Z_TRIPLE_STEPPER_DRIVERS) , " Z2-Z3=", ABS(z_measured[1] - z_measured[2]) , " Z3-Z1=", ABS(z_measured[2] - z_measured[0]) #endif ); // The following correction actions are to be enabled for select Z-steppers only stepper.set_separate_multi_axis(true); bool success_break = true; // Correct the individual stepper offsets for (uint8_t zstepper = 0; zstepper < Z_STEPPER_COUNT; ++zstepper) { // Calculate current stepper move const float z_align_move = z_measured[zstepper] - z_measured_min, z_align_abs = ABS(z_align_move); #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Optimize one iteration's correction based on the first measurements if (z_align_abs > 0.0f) amplification = iteration == 1 ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification; #endif // Check for less accuracy compared to last move if (last_z_align_move[zstepper] < z_align_abs - 1.0) { SERIAL_ECHOLNPGM("Decreasing accuracy detected."); err_break = true; break; } // Remember the alignment for the next iteration last_z_align_move[zstepper] = z_align_abs; // Stop early if all measured points achieve accuracy target if (z_align_abs > z_auto_align_accuracy) success_break = false; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move); // Lock all steppers except one set_all_z_lock(true); switch (zstepper) { case 0: stepper.set_z_lock(false); break; case 1: stepper.set_z2_lock(false); break; #if ENABLED(Z_TRIPLE_STEPPER_DRIVERS) case 2: stepper.set_z3_lock(false); break; #endif } // Do a move to correct part of the misalignment for the current stepper do_blocking_move_to_z(amplification * z_align_move + current_position.z); } // for (zstepper) // Back to normal stepper operations set_all_z_lock(false); stepper.set_separate_multi_axis(false); if (err_break) break; if (success_break) { SERIAL_ECHOLNPGM("Target accuracy achieved."); break; } } // for (iteration) if (err_break) { SERIAL_ECHOLNPGM("G34 aborted."); break; } SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " iterations of ", int(z_auto_align_iterations)); SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff); // Restore the active tool after homing #if HOTENDS > 1 tool_change(old_tool_index, ( #if ENABLED(PARKING_EXTRUDER) false // Fetch the previous toolhead #else true #endif )); #endif #if HAS_LEVELING && ENABLED(RESTORE_LEVELING_AFTER_G34) set_bed_leveling_enabled(leveling_was_active); #endif // After this operation the z position needs correction set_axis_is_not_at_home(Z_AXIS); // Stow the probe, as the last call to probe_at_point(...) left // the probe deployed if it was successful. STOW_PROBE(); // Home Z after the alignment procedure process_subcommands_now_P(PSTR("G28 Z")); }while(0); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G34"); } /** * M422: Set a Z-Stepper automatic alignment XY point. * Use repeatedly to set multiple points. * * S : Index of the probe point to set * * With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS: * W : Index of the Z stepper position to set * The W and S parameters may not be combined. * * S and W require an X and/or Y parameter * X : X position to set (Unchanged if omitted) * Y : Y position to set (Unchanged if omitted) */ void GcodeSuite::M422() { if (!parser.seen_any()) { for (uint8_t i = 0; i < G34_PROBE_COUNT; ++i) SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), i + 1, SP_X_STR, z_stepper_align_pos[i].x, SP_Y_STR, z_stepper_align_pos[i].y); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) for (uint8_t i = 0; i < Z_STEPPER_COUNT; ++i) SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), i + 1, SP_X_STR, z_stepper_align_stepper_pos[i].x, SP_Y_STR, z_stepper_align_stepper_pos[i].y); #endif return; } const bool is_probe_point = parser.seen('S'); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) if (is_probe_point && parser.seen('W')) { SERIAL_ECHOLNPGM("?(S) and (W) may not be combined."); return; } #endif xy_pos_t *pos_dest = ( #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) !is_probe_point ? z_stepper_align_stepper_pos : #endif z_stepper_align_pos ); if (!is_probe_point #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) && !parser.seen('W') #endif ) { SERIAL_ECHOLNPGM( #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) "?(S) or (W) is required." #else "?(S) is required." #endif ); return; } // Get the Probe Position Index or Z Stepper Index int8_t position_index; if (is_probe_point) { position_index = parser.intval('S') - 1; if (!WITHIN(position_index, 0, int8_t(G34_PROBE_COUNT) - 1)) { SERIAL_ECHOLNPGM("?(S) Z-ProbePosition index invalid."); return; } } else { #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) position_index = parser.intval('W') - 1; if (!WITHIN(position_index, 0, Z_STEPPER_COUNT - 1)) { SERIAL_ECHOLNPGM("?(W) Z-Stepper index invalid."); return; } #endif } const xy_pos_t pos = { parser.floatval('X', pos_dest[position_index].x), parser.floatval('Y', pos_dest[position_index].y) }; if (is_probe_point) { if (!position_is_reachable_by_probe(pos.x, Y_CENTER)) { SERIAL_ECHOLNPGM("?(X) out of bounds."); return; } if (!position_is_reachable_by_probe(pos)) { SERIAL_ECHOLNPGM("?(Y) out of bounds."); return; } } pos_dest[position_index] = pos; } #endif // Z_STEPPER_AUTO_ALIGN