/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
/**
* motion.h
*
* High-level motion commands to feed the planner
* Some of these methods may migrate to the planner class.
*/
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "scara.h"
#endif
// Error margin to work around float imprecision
constexpr float fslop = 0.0001;
extern bool relative_mode;
extern xyze_pos_t current_position, // High-level current tool position
destination; // Destination for a move
// G60/G61 Position Save and Return
#if SAVED_POSITIONS
extern uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3];
extern xyz_pos_t stored_position[SAVED_POSITIONS];
#endif
// Scratch space for a cartesian result
extern xyz_pos_t cartes;
// Until kinematics.cpp is created, declare this here
#if IS_KINEMATIC
extern abc_pos_t delta;
#endif
#if HAS_ABL_NOT_UBL
extern feedRate_t xy_probe_feedrate_mm_s;
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_FEEDRATE)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_FEEDRATE)
#else
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
#endif
constexpr feedRate_t z_probe_fast_mm_s = MMM_TO_MMS(Z_PROBE_FEEDRATE_FAST);
/**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
constexpr xyz_feedrate_t homing_feedrate_mm_m = HOMING_FEEDRATE_MM_M;
FORCE_INLINE feedRate_t homing_feedrate(const AxisEnum a) {
float v;
#if ENABLED(DELTA)
v = homing_feedrate_mm_m.z;
#else
switch (a) {
case X_AXIS: v = homing_feedrate_mm_m.x; break;
case Y_AXIS: v = homing_feedrate_mm_m.y; break;
case Z_AXIS:
default: v = homing_feedrate_mm_m.z;
}
#endif
return MMM_TO_MMS(v);
}
feedRate_t get_homing_bump_feedrate(const AxisEnum axis);
/**
* The default feedrate for many moves, set by the most recent move
*/
extern feedRate_t feedrate_mm_s;
/**
* Feedrate scaling is applied to all G0/G1, G2/G3, and G5 moves
*/
extern int16_t feedrate_percentage;
#define MMS_SCALED(V) ((V) * 0.01f * feedrate_percentage)
// The active extruder (tool). Set with T command.
#if HAS_MULTI_EXTRUDER
extern uint8_t active_extruder;
#else
constexpr uint8_t active_extruder = 0;
#endif
#if ENABLED(LCD_SHOW_E_TOTAL)
extern float e_move_accumulator;
#endif
#ifdef __IMXRT1062__
#define DEFS_PROGMEM
#else
#define DEFS_PROGMEM PROGMEM
#endif
inline float pgm_read_any(const float *p) { return TERN(__IMXRT1062__, *p, pgm_read_float(p)); }
inline int8_t pgm_read_any(const int8_t *p) { return TERN(__IMXRT1062__, *p, pgm_read_byte(p)); }
#define XYZ_DEFS(T, NAME, OPT) \
inline T NAME(const AxisEnum axis) { \
static const XYZval NAME##_P DEFS_PROGMEM = { X_##OPT, Y_##OPT, Z_##OPT }; \
return pgm_read_any(&NAME##_P[axis]); \
}
XYZ_DEFS(float, base_min_pos, MIN_POS);
XYZ_DEFS(float, base_max_pos, MAX_POS);
XYZ_DEFS(float, base_home_pos, HOME_POS);
XYZ_DEFS(float, max_length, MAX_LENGTH);
XYZ_DEFS(int8_t, home_dir, HOME_DIR);
inline float home_bump_mm(const AxisEnum axis) {
static const xyz_pos_t home_bump_mm_P DEFS_PROGMEM = HOMING_BUMP_MM;
return pgm_read_any(&home_bump_mm_P[axis]);
}
#if HAS_WORKSPACE_OFFSET
void update_workspace_offset(const AxisEnum axis);
#else
inline void update_workspace_offset(const AxisEnum) {}
#endif
#if HAS_HOTEND_OFFSET
extern xyz_pos_t hotend_offset[HOTENDS];
void reset_hotend_offsets();
#elif HOTENDS
constexpr xyz_pos_t hotend_offset[HOTENDS] = { { 0 } };
#else
constexpr xyz_pos_t hotend_offset[1] = { { 0 } };
#endif
#if HAS_SOFTWARE_ENDSTOPS
typedef struct {
bool _enabled, _loose;
bool enabled() { return _enabled && !_loose; }
xyz_pos_t min, max;
void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) {
amin = -100000; amax = 100000; // "No limits"
#if HAS_SOFTWARE_ENDSTOPS
if (enabled()) switch (axis) {
case X_AXIS:
TERN_(MIN_SOFTWARE_ENDSTOP_X, amin = min.x);
TERN_(MAX_SOFTWARE_ENDSTOP_X, amax = max.x);
break;
case Y_AXIS:
TERN_(MIN_SOFTWARE_ENDSTOP_Y, amin = min.y);
TERN_(MAX_SOFTWARE_ENDSTOP_Y, amax = max.y);
break;
case Z_AXIS:
TERN_(MIN_SOFTWARE_ENDSTOP_Z, amin = min.z);
TERN_(MAX_SOFTWARE_ENDSTOP_Z, amax = max.z);
default: break;
}
#endif
}
} soft_endstops_t;
extern soft_endstops_t soft_endstop;
void apply_motion_limits(xyz_pos_t &target);
void update_software_endstops(const AxisEnum axis
#if HAS_HOTEND_OFFSET
, const uint8_t old_tool_index=0, const uint8_t new_tool_index=0
#endif
);
#define SET_SOFT_ENDSTOP_LOOSE(loose) (soft_endstop._loose = loose)
#else // !HAS_SOFTWARE_ENDSTOPS
typedef struct {
bool enabled() { return false; }
void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) {
// No limits
amin = current_position[axis] - 1000;
amax = current_position[axis] + 1000;
}
} soft_endstops_t;
extern soft_endstops_t soft_endstop;
#define apply_motion_limits(V) NOOP
#define update_software_endstops(...) NOOP
#define SET_SOFT_ENDSTOP_LOOSE(V) NOOP
#endif // !HAS_SOFTWARE_ENDSTOPS
void report_real_position();
void report_current_position();
void report_current_position_projected();
void get_cartesian_from_steppers();
void set_current_from_steppers_for_axis(const AxisEnum axis);
void quickstop_stepper();
/**
* sync_plan_position
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position();
void sync_plan_position_e();
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
void line_to_current_position(const feedRate_t &fr_mm_s=feedrate_mm_s);
#if EXTRUDERS
void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s);
#endif
void prepare_line_to_destination();
void _internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f
#if IS_KINEMATIC
, const bool is_fast=false
#endif
);
inline void prepare_internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f) {
_internal_move_to_destination(fr_mm_s);
}
#if IS_KINEMATIC
void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s=MMS_SCALED(feedrate_mm_s));
inline void prepare_internal_fast_move_to_destination(const feedRate_t &fr_mm_s=0.0f) {
_internal_move_to_destination(fr_mm_s, true);
}
#endif
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s=0.0f);
void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
FORCE_INLINE void do_blocking_move_to_xy(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); }
FORCE_INLINE void do_blocking_move_to_xy(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); }
void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f);
FORCE_INLINE void do_blocking_move_to_xy_z(const xyz_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); }
FORCE_INLINE void do_blocking_move_to_xy_z(const xyze_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); }
void remember_feedrate_and_scaling();
void remember_feedrate_scaling_off();
void restore_feedrate_and_scaling();
void do_z_clearance(const float &zclear, const bool lower_allowed=false);
/**
* Homing and Trusted Axes
*/
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
void set_axis_is_at_home(const AxisEnum axis);
#if HAS_ENDSTOPS
/**
* axis_homed
* Flags that each linear axis was homed.
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
*
* axis_trusted
* Flags that the position is trusted in each linear axis. Set when homed.
* Cleared whenever a stepper powers off, potentially losing its position.
*/
extern uint8_t axis_homed, axis_trusted;
void homeaxis(const AxisEnum axis);
void set_axis_never_homed(const AxisEnum axis);
uint8_t axes_should_home(uint8_t axis_bits=0x07);
bool homing_needed_error(uint8_t axis_bits=0x07);
FORCE_INLINE void set_axis_unhomed(const AxisEnum axis) { CBI(axis_homed, axis); }
FORCE_INLINE void set_axis_untrusted(const AxisEnum axis) { CBI(axis_trusted, axis); }
FORCE_INLINE void set_all_unhomed() { axis_homed = axis_trusted = 0; }
FORCE_INLINE void set_axis_homed(const AxisEnum axis) { SBI(axis_homed, axis); }
FORCE_INLINE void set_axis_trusted(const AxisEnum axis) { SBI(axis_trusted, axis); }
FORCE_INLINE void set_all_homed() { axis_homed = axis_trusted = xyz_bits; }
#else
constexpr uint8_t axis_homed = xyz_bits, axis_trusted = xyz_bits; // Zero-endstop machines are always homed and trusted
FORCE_INLINE void homeaxis(const AxisEnum axis) {}
FORCE_INLINE void set_axis_never_homed(const AxisEnum) {}
FORCE_INLINE uint8_t axes_should_home(uint8_t=0x07) { return false; }
FORCE_INLINE bool homing_needed_error(uint8_t=0x07) { return false; }
FORCE_INLINE void set_axis_unhomed(const AxisEnum axis) {}
FORCE_INLINE void set_axis_untrusted(const AxisEnum axis) {}
FORCE_INLINE void set_all_unhomed() {}
FORCE_INLINE void set_axis_homed(const AxisEnum axis) {}
FORCE_INLINE void set_axis_trusted(const AxisEnum axis) {}
FORCE_INLINE void set_all_homed() {}
#endif
FORCE_INLINE bool axis_was_homed(const AxisEnum axis) { return TEST(axis_homed, axis); }
FORCE_INLINE bool axis_is_trusted(const AxisEnum axis) { return TEST(axis_trusted, axis); }
FORCE_INLINE bool axis_should_home(const AxisEnum axis) { return (axes_should_home() & _BV(axis)) != 0; }
FORCE_INLINE bool no_axes_homed() { return !axis_homed; }
FORCE_INLINE bool all_axes_homed() { return xyz_bits == (axis_homed & xyz_bits); }
FORCE_INLINE bool homing_needed() { return !all_axes_homed(); }
FORCE_INLINE bool all_axes_trusted() { return xyz_bits == (axis_trusted & xyz_bits); }
#if ENABLED(NO_MOTION_BEFORE_HOMING)
#define MOTION_CONDITIONS (IsRunning() && !homing_needed_error())
#else
#define MOTION_CONDITIONS IsRunning()
#endif
#define BABYSTEP_ALLOWED() ((ENABLED(BABYSTEP_WITHOUT_HOMING) || all_axes_trusted()) && (ENABLED(BABYSTEP_ALWAYS_AVAILABLE) || printer_busy()))
/**
* Workspace offsets
*/
#if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
#if HAS_HOME_OFFSET
extern xyz_pos_t home_offset;
#endif
#if HAS_POSITION_SHIFT
extern xyz_pos_t position_shift;
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern xyz_pos_t workspace_offset;
#define _WS workspace_offset
#elif HAS_HOME_OFFSET
#define _WS home_offset
#else
#define _WS position_shift
#endif
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + _WS[AXIS])
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - _WS[AXIS])
FORCE_INLINE void toLogical(xy_pos_t &raw) { raw += _WS; }
FORCE_INLINE void toLogical(xyz_pos_t &raw) { raw += _WS; }
FORCE_INLINE void toLogical(xyze_pos_t &raw) { raw += _WS; }
FORCE_INLINE void toNative(xy_pos_t &raw) { raw -= _WS; }
FORCE_INLINE void toNative(xyz_pos_t &raw) { raw -= _WS; }
FORCE_INLINE void toNative(xyze_pos_t &raw) { raw -= _WS; }
#else
#define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
#define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
FORCE_INLINE void toLogical(xy_pos_t&) {}
FORCE_INLINE void toLogical(xyz_pos_t&) {}
FORCE_INLINE void toLogical(xyze_pos_t&) {}
FORCE_INLINE void toNative(xy_pos_t&) {}
FORCE_INLINE void toNative(xyz_pos_t&) {}
FORCE_INLINE void toNative(xyze_pos_t&) {}
#endif
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if HAS_SCARA_OFFSET
extern abc_pos_t scara_home_offset; // A and B angular offsets, Z mm offset
#endif
// Return true if the given point is within the printable area
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
#elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#endif
}
inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) {
return position_is_reachable(pos.x, pos.y, inset);
}
#else // CARTESIAN
// Return true if the given position is within the machine bounds.
inline bool position_is_reachable(const float &rx, const float &ry) {
if (!COORDINATE_OKAY(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false;
#if ENABLED(DUAL_X_CARRIAGE)
if (active_extruder)
return COORDINATE_OKAY(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop);
else
return COORDINATE_OKAY(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop);
#else
return COORDINATE_OKAY(rx, X_MIN_POS - fslop, X_MAX_POS + fslop);
#endif
}
inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); }
#endif // CARTESIAN
/**
* Duplication mode
*/
#if HAS_DUPLICATION_MODE
extern bool extruder_duplication_enabled; // Used in Dual X mode 2
#endif
/**
* Dual X Carriage
*/
#if ENABLED(DUAL_X_CARRIAGE)
enum DualXMode : char {
DXC_FULL_CONTROL_MODE,
DXC_AUTO_PARK_MODE,
DXC_DUPLICATION_MODE,
DXC_MIRRORED_MODE
};
extern DualXMode dual_x_carriage_mode;
extern float inactive_extruder_x, // Used in mode 0 & 1
duplicate_extruder_x_offset; // Used in mode 2 & 3
extern xyz_pos_t raised_parked_position; // Used in mode 1
extern bool active_extruder_parked; // Used in mode 1, 2 & 3
extern millis_t delayed_move_time; // Used in mode 1
extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3
extern bool idex_mirrored_mode; // Used in mode 3
FORCE_INLINE bool idex_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; }
float x_home_pos(const uint8_t extruder);
FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
void set_duplication_enabled(const bool dupe, const int8_t tool_index=-1);
void idex_set_mirrored_mode(const bool mirr);
void idex_set_parked(const bool park=true);
#else
#if ENABLED(MULTI_NOZZLE_DUPLICATION)
extern uint8_t duplication_e_mask;
enum DualXMode : char { DXC_DUPLICATION_MODE = 2 };
FORCE_INLINE void set_duplication_enabled(const bool dupe) { extruder_duplication_enabled = dupe; }
#endif
FORCE_INLINE int x_home_dir(const uint8_t) { return X_HOME_DIR; }
#endif
#if HAS_M206_COMMAND
void set_home_offset(const AxisEnum axis, const float v);
#endif
#if USE_SENSORLESS
struct sensorless_t;
sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis);
void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth);
#endif