/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(Z_STEPPER_AUTO_ALIGN) #include "../../feature/z_stepper_align.h" #include "../gcode.h" #include "../../module/planner.h" #include "../../module/stepper.h" #include "../../module/motion.h" #include "../../module/probe.h" #if HAS_MULTI_HOTEND #include "../../module/tool_change.h" #endif #if HAS_LEVELING #include "../../feature/bedlevel/bedlevel.h" #endif #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) #include "../../libs/least_squares_fit.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../../core/debug_out.h" inline void set_all_z_lock(const bool lock) { stepper.set_z_lock(lock); stepper.set_z2_lock(lock); #if NUM_Z_STEPPER_DRIVERS >= 3 stepper.set_z3_lock(lock); #if NUM_Z_STEPPER_DRIVERS >= 4 stepper.set_z4_lock(lock); #endif #endif } /** * G34: Z-Stepper automatic alignment * * I * T * A * R points based on current probe offsets */ void GcodeSuite::G34() { if (DEBUGGING(LEVELING)) { DEBUG_ECHOLNPGM(">>> G34"); log_machine_info(); } do { // break out on error #if NUM_Z_STEPPER_DRIVERS == 4 SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!"); #elif NUM_Z_STEPPER_DRIVERS > 4 SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers"); break; #endif const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS); if (!WITHIN(z_auto_align_iterations, 1, 30)) { SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30)."); break; } const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC); if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) { SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0)."); break; } const float z_auto_align_amplification = #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) Z_STEPPER_ALIGN_AMP; #else parser.floatval('A', Z_STEPPER_ALIGN_AMP); if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) { SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0)."); break; } #endif if (parser.seen('R')) z_stepper_align.reset_to_default(); const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; // Wait for planner moves to finish! planner.synchronize(); // Disable the leveling matrix before auto-aligning #if HAS_LEVELING #if ENABLED(RESTORE_LEVELING_AFTER_G34) const bool leveling_was_active = planner.leveling_active; #endif set_bed_leveling_enabled(false); #endif #if ENABLED(CNC_WORKSPACE_PLANES) workspace_plane = PLANE_XY; #endif // Always home with tool 0 active #if HAS_MULTI_HOTEND const uint8_t old_tool_index = active_extruder; tool_change(0, true); #endif #if HAS_DUPLICATION_MODE extruder_duplication_enabled = false; #endif #if BOTH(BLTOUCH, BLTOUCH_HS_MODE) // In BLTOUCH HS mode, the probe travels in a deployed state. // Users of G34 might have a badly misaligned bed, so raise Z by the // length of the deployed pin (BLTOUCH stroke < 7mm) #define Z_BASIC_CLEARANCE Z_CLEARANCE_BETWEEN_PROBES + 7.0f #else #define Z_BASIC_CLEARANCE Z_CLEARANCE_BETWEEN_PROBES #endif // Compute a worst-case clearance height to probe from. After the first // iteration this will be re-calculated based on the actual bed position auto magnitude2 = [&](const uint8_t i, const uint8_t j) { const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j]; return HYPOT2(diff.x, diff.y); }; float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT( #if NUM_Z_STEPPER_DRIVERS == 3 _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0)) #elif NUM_Z_STEPPER_DRIVERS == 4 _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3), magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3)) #else magnitude2(0, 1) #endif ); // Home before the alignment procedure if (!all_axes_known()) home_all_axes(); // Move the Z coordinate realm towards the positive - dirty trick current_position.z += z_probe * 0.5f; sync_plan_position(); // Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error. // This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f); #else float last_z_align_level_indicator = 10000.0f; #endif float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 }, z_maxdiff = 0.0f, amplification = z_auto_align_amplification; // These are needed after the for-loop uint8_t iteration; bool err_break = false; float z_measured_min; #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) bool adjustment_reverse = false; #endif // 'iteration' is declared above and is also used after the for-loop. // *not* the same as LOOP_L_N(iteration, z_auto_align_iterations) for (iteration = 0; iteration < z_auto_align_iterations; ++iteration) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions."); SERIAL_ECHOLNPAIR("\nITERATION: ", int(iteration + 1)); // Initialize minimum value z_measured_min = 100000.0f; float z_measured_max = -100000.0f; // Probe all positions (one per Z-Stepper) LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) { // iteration odd/even --> downward / upward stepper sequence const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i; // Safe clearance even on an incline if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y); // Probe a Z height for each stepper. // Probing sanity check is disabled, as it would trigger even in normal cases because // current_position.z has been manually altered in the "dirty trick" above. const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false); if (isnan(z_probed_height)) { SERIAL_ECHOLNPGM("Probing failed."); err_break = true; break; } // Add height to each value, to provide a more useful target height for // the next iteration of probing. This allows adjustments to be made away from the bed. z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]); // Remember the minimum measurement to calculate the correction later on z_measured_min = _MIN(z_measured_min, z_measured[iprobe]); z_measured_max = _MAX(z_measured_max, z_measured[iprobe]); } // for (i) if (err_break) break; // Adapt the next probe clearance height based on the new measurements. // Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment. z_maxdiff = z_measured_max - z_measured_min; z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff; #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Replace the initial values in z_measured with calculated heights at // each stepper position. This allows the adjustment algorithm to be // shared between both possible probing mechanisms. // This must be done after the next z_probe height is calculated, so that // the height is calculated from actual print area positions, and not // extrapolated motor movements. // Compute the least-squares fit for all probed points. // Calculate the Z position of each stepper and store it in z_measured. // This allows the actual adjustment logic to be shared by both algorithms. linear_fit_data lfd; incremental_LSF_reset(&lfd); LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) { SERIAL_ECHOLNPAIR("PROBEPT_", int(i), ": ", z_measured[i]); incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]); } finish_incremental_LSF(&lfd); z_measured_min = 100000.0f; LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) { z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D); z_measured_min = _MIN(z_measured_min, z_measured[i]); } SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]); #endif SERIAL_ECHOLNPAIR("\n" "DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1]) #if NUM_Z_STEPPER_DRIVERS == 3 , " Z2-Z3=", ABS(z_measured[1] - z_measured[2]) , " Z3-Z1=", ABS(z_measured[2] - z_measured[0]) #endif ); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Check if the applied corrections go in the correct direction. // Calculate the sum of the absolute deviations from the mean of the probe measurements. // Compare to the last iteration to ensure it's getting better. // Calculate mean value as a reference float z_measured_mean = 0.0f; LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper]; z_measured_mean /= NUM_Z_STEPPER_DRIVERS; // Calculate the sum of the absolute deviations from the mean value float z_align_level_indicator = 0.0f; LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean); // If it's getting worse, stop and throw an error if (last_z_align_level_indicator < z_align_level_indicator * 0.7f) { SERIAL_ECHOLNPGM("Decreasing accuracy detected."); err_break = true; break; } last_z_align_level_indicator = z_align_level_indicator; #endif // The following correction actions are to be enabled for select Z-steppers only stepper.set_separate_multi_axis(true); bool success_break = true; // Correct the individual stepper offsets LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) { // Calculate current stepper move float z_align_move = z_measured[zstepper] - z_measured_min; const float z_align_abs = ABS(z_align_move); #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Optimize one iteration's correction based on the first measurements if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification; // Check for less accuracy compared to last move if (last_z_align_move[zstepper] < z_align_abs * 0.7f) { SERIAL_ECHOLNPGM("Decreasing accuracy detected."); adjustment_reverse = !adjustment_reverse; } // Remember the alignment for the next iteration last_z_align_move[zstepper] = z_align_abs; #endif // Stop early if all measured points achieve accuracy target if (z_align_abs > z_auto_align_accuracy) success_break = false; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move); // Lock all steppers except one set_all_z_lock(true); switch (zstepper) { case 0: stepper.set_z_lock(false); break; case 1: stepper.set_z2_lock(false); break; #if NUM_Z_STEPPER_DRIVERS >= 3 case 2: stepper.set_z3_lock(false); break; #endif #if NUM_Z_STEPPER_DRIVERS == 4 case 3: stepper.set_z4_lock(false); break; #endif } #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Decreasing accuracy was detected so move was inverted. // Will match reversed Z steppers on dual steppers. Triple will need more work to map. if (adjustment_reverse) z_align_move = -z_align_move; #endif // Do a move to correct part of the misalignment for the current stepper do_blocking_move_to_z(amplification * z_align_move + current_position.z); } // for (zstepper) // Back to normal stepper operations set_all_z_lock(false); stepper.set_separate_multi_axis(false); if (err_break) break; if (success_break) { SERIAL_ECHOLNPGM("Target accuracy achieved."); break; } } // for (iteration) if (err_break) SERIAL_ECHOLNPGM("G34 aborted."); else { SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " of ", int(z_auto_align_iterations)); SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff); } // Stow the probe, as the last call to probe.probe_at_point(...) left // the probe deployed if it was successful. probe.stow(); #if ENABLED(HOME_AFTER_G34) // After this operation the z position needs correction set_axis_not_trusted(Z_AXIS); // Home Z after the alignment procedure process_subcommands_now_P(PSTR("G28Z")); #else // Use the probed height from the last iteration to determine the Z height. // z_measured_min is used, because all steppers are aligned to z_measured_min. // Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier. current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES; sync_plan_position(); #endif // Restore the active tool after homing #if HAS_MULTI_HOTEND tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER)); // Fetch previous tool for parking extruder #endif #if HAS_LEVELING && ENABLED(RESTORE_LEVELING_AFTER_G34) set_bed_leveling_enabled(leveling_was_active); #endif }while(0); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G34"); } /** * M422: Set a Z-Stepper automatic alignment XY point. * Use repeatedly to set multiple points. * * S : Index of the probe point to set * * With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS: * W : Index of the Z stepper position to set * The W and S parameters may not be combined. * * S and W require an X and/or Y parameter * X : X position to set (Unchanged if omitted) * Y : Y position to set (Unchanged if omitted) * * R : Recalculate points based on current probe offsets */ void GcodeSuite::M422() { if (parser.seen('R')) { z_stepper_align.reset_to_default(); return; } if (!parser.seen_any()) { LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), int(i + 1), SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), int(i + 1), SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y); #endif return; } const bool is_probe_point = parser.seen('S'); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) if (is_probe_point && parser.seen('W')) { SERIAL_ECHOLNPGM("?(S) and (W) may not be combined."); return; } #endif xy_pos_t *pos_dest = ( #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) !is_probe_point ? z_stepper_align.stepper_xy : #endif z_stepper_align.xy ); if (!is_probe_point #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) && !parser.seen('W') #endif ) { SERIAL_ECHOLNPGM( #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) "?(S) or (W) is required." #else "?(S) is required." #endif ); return; } // Get the Probe Position Index or Z Stepper Index int8_t position_index; if (is_probe_point) { position_index = parser.intval('S') - 1; if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) { SERIAL_ECHOLNPGM("?(S) Z-ProbePosition index invalid."); return; } } else { #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) position_index = parser.intval('W') - 1; if (!WITHIN(position_index, 0, NUM_Z_STEPPER_DRIVERS - 1)) { SERIAL_ECHOLNPGM("?(W) Z-Stepper index invalid."); return; } #endif } const xy_pos_t pos = { parser.floatval('X', pos_dest[position_index].x), parser.floatval('Y', pos_dest[position_index].y) }; if (is_probe_point) { if (!probe.can_reach(pos.x, Y_CENTER)) { SERIAL_ECHOLNPGM("?(X) out of bounds."); return; } if (!probe.can_reach(pos)) { SERIAL_ECHOLNPGM("?(Y) out of bounds."); return; } } pos_dest[position_index] = pos; } #endif // Z_STEPPER_AUTO_ALIGN