/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifdef ARDUINO_ARCH_ESP32 #include "../../inc/MarlinConfigPre.h" #include "i2s.h" #include "../shared/Marduino.h" #include #include #include #include #include "../../module/stepper.h" #define DMA_BUF_COUNT 8 // number of DMA buffers to store data #define DMA_BUF_LEN 4092 // maximum size in bytes #define I2S_SAMPLE_SIZE 4 // 4 bytes, 32 bits per sample #define DMA_SAMPLE_COUNT DMA_BUF_LEN / I2S_SAMPLE_SIZE // number of samples per buffer typedef enum { I2S_NUM_0 = 0x0, /*!< I2S 0*/ I2S_NUM_1 = 0x1, /*!< I2S 1*/ I2S_NUM_MAX, } i2s_port_t; typedef struct { uint32_t **buffers; uint32_t *current; uint32_t rw_pos; lldesc_t **desc; xQueueHandle queue; } i2s_dma_t; static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED}; static i2s_dev_t* I2S[I2S_NUM_MAX] = {&I2S0, &I2S1}; static i2s_dma_t dma; // output value uint32_t i2s_port_data = 0; #define I2S_ENTER_CRITICAL() portENTER_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num]) static inline void gpio_matrix_out_check(uint32_t gpio, uint32_t signal_idx, bool out_inv, bool oen_inv) { //if pin = -1, do not need to configure if (gpio != -1) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO); gpio_set_direction((gpio_num_t)gpio, (gpio_mode_t)GPIO_MODE_DEF_OUTPUT); gpio_matrix_out(gpio, signal_idx, out_inv, oen_inv); } } static esp_err_t i2s_reset_fifo(i2s_port_t i2s_num) { I2S_ENTER_CRITICAL(); I2S[i2s_num]->conf.rx_fifo_reset = 1; I2S[i2s_num]->conf.rx_fifo_reset = 0; I2S[i2s_num]->conf.tx_fifo_reset = 1; I2S[i2s_num]->conf.tx_fifo_reset = 0; I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_start(i2s_port_t i2s_num) { //start DMA link I2S_ENTER_CRITICAL(); i2s_reset_fifo(i2s_num); //reset dma I2S[i2s_num]->lc_conf.in_rst = 1; I2S[i2s_num]->lc_conf.in_rst = 0; I2S[i2s_num]->lc_conf.out_rst = 1; I2S[i2s_num]->lc_conf.out_rst = 0; I2S[i2s_num]->conf.tx_reset = 1; I2S[i2s_num]->conf.tx_reset = 0; I2S[i2s_num]->conf.rx_reset = 1; I2S[i2s_num]->conf.rx_reset = 0; I2S[i2s_num]->int_clr.val = 0xFFFFFFFF; I2S[i2s_num]->out_link.start = 1; I2S[i2s_num]->conf.tx_start = 1; I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_stop(i2s_port_t i2s_num) { I2S_ENTER_CRITICAL(); I2S[i2s_num]->out_link.stop = 1; I2S[i2s_num]->conf.tx_start = 0; I2S[i2s_num]->int_clr.val = I2S[i2s_num]->int_st.val; //clear pending interrupt I2S_EXIT_CRITICAL(); return ESP_OK; } static void IRAM_ATTR i2s_intr_handler_default(void *arg) { int dummy; lldesc_t *finish_desc; portBASE_TYPE high_priority_task_awoken = pdFALSE; if (I2S0.int_st.out_eof) { // Get the descriptor of the last item in the linkedlist finish_desc = (lldesc_t*) I2S0.out_eof_des_addr; // If the queue is full it's because we have an underflow, // more than buf_count isr without new data, remove the front buffer if (xQueueIsQueueFullFromISR(dma.queue)) xQueueReceiveFromISR(dma.queue, &dummy, &high_priority_task_awoken); xQueueSendFromISR(dma.queue, (void *)(&finish_desc->buf), &high_priority_task_awoken); } if (high_priority_task_awoken == pdTRUE) portYIELD_FROM_ISR(); // clear interrupt I2S0.int_clr.val = I2S0.int_st.val; //clear pending interrupt } void stepperTask(void* parameter) { uint32_t remaining = 0; while (1) { xQueueReceive(dma.queue, &dma.current, portMAX_DELAY); dma.rw_pos = 0; while (dma.rw_pos < DMA_SAMPLE_COUNT) { // Fill with the port data post pulse_phase until the next step if (remaining) { i2s_push_sample(); remaining--; } else { Stepper::stepper_pulse_phase_isr(); remaining = Stepper::stepper_block_phase_isr(); } } } } int i2s_init() { periph_module_enable(PERIPH_I2S0_MODULE); /** * Each i2s transfer will take * fpll = PLL_D2_CLK -- clka_en = 0 * * fi2s = fpll / N + b/a -- N = clkm_div_num * fi2s = 160MHz / 2 * fi2s = 80MHz * * fbclk = fi2s / M -- M = tx_bck_div_num * fbclk = 80MHz / 2 * fbclk = 40MHz * * fwclk = fbclk / 32 * * for fwclk = 250kHz (4µS pulse time) * N = 10 * M = 20 */ // Allocate the array of pointers to the buffers dma.buffers = (uint32_t **)malloc(sizeof(uint32_t*) * DMA_BUF_COUNT); if (dma.buffers == nullptr) return -1; // Allocate each buffer that can be used by the DMA controller for (int buf_idx = 0; buf_idx < DMA_BUF_COUNT; buf_idx++) { dma.buffers[buf_idx] = (uint32_t*) heap_caps_calloc(1, DMA_BUF_LEN, MALLOC_CAP_DMA); if (dma.buffers[buf_idx] == nullptr) return -1; } // Allocate the array of DMA descriptors dma.desc = (lldesc_t**) malloc(sizeof(lldesc_t*) * DMA_BUF_COUNT); if (dma.desc == nullptr) return -1; // Allocate each DMA descriptor that will be used by the DMA controller for (int buf_idx = 0; buf_idx < DMA_BUF_COUNT; buf_idx++) { dma.desc[buf_idx] = (lldesc_t*) heap_caps_malloc(sizeof(lldesc_t), MALLOC_CAP_DMA); if (dma.desc[buf_idx] == nullptr) return -1; } // Initialize for (int buf_idx = 0; buf_idx < DMA_BUF_COUNT; buf_idx++) { dma.desc[buf_idx]->owner = 1; dma.desc[buf_idx]->eof = 1; // set to 1 will trigger the interrupt dma.desc[buf_idx]->sosf = 0; dma.desc[buf_idx]->length = DMA_BUF_LEN; dma.desc[buf_idx]->size = DMA_BUF_LEN; dma.desc[buf_idx]->buf = (uint8_t *) dma.buffers[buf_idx]; dma.desc[buf_idx]->offset = 0; dma.desc[buf_idx]->empty = (uint32_t)((buf_idx < (DMA_BUF_COUNT - 1)) ? (dma.desc[buf_idx + 1]) : dma.desc[0]); } dma.queue = xQueueCreate(DMA_BUF_COUNT, sizeof(uint32_t *)); // Set the first DMA descriptor I2S0.out_link.addr = (uint32_t)dma.desc[0]; // stop i2s i2s_stop(I2S_NUM_0); // configure I2S data port interface. i2s_reset_fifo(I2S_NUM_0); //reset i2s I2S0.conf.tx_reset = 1; I2S0.conf.tx_reset = 0; I2S0.conf.rx_reset = 1; I2S0.conf.rx_reset = 0; //reset dma I2S0.lc_conf.in_rst = 1; I2S0.lc_conf.in_rst = 0; I2S0.lc_conf.out_rst = 1; I2S0.lc_conf.out_rst = 0; //Enable and configure DMA I2S0.lc_conf.check_owner = 0; I2S0.lc_conf.out_loop_test = 0; I2S0.lc_conf.out_auto_wrback = 0; I2S0.lc_conf.out_data_burst_en = 0; I2S0.lc_conf.outdscr_burst_en = 0; I2S0.lc_conf.out_no_restart_clr = 0; I2S0.lc_conf.indscr_burst_en = 0; I2S0.lc_conf.out_eof_mode = 1; I2S0.conf2.lcd_en = 0; I2S0.conf2.camera_en = 0; I2S0.pdm_conf.pcm2pdm_conv_en = 0; I2S0.pdm_conf.pdm2pcm_conv_en = 0; I2S0.fifo_conf.dscr_en = 0; I2S0.conf_chan.tx_chan_mod = ( #if ENABLED(I2S_STEPPER_SPLIT_STREAM) 4 #else 0 #endif ); I2S0.fifo_conf.tx_fifo_mod = 0; I2S0.conf.tx_mono = 0; I2S0.conf_chan.rx_chan_mod = 0; I2S0.fifo_conf.rx_fifo_mod = 0; I2S0.conf.rx_mono = 0; I2S0.fifo_conf.dscr_en = 1; //connect dma to fifo I2S0.conf.tx_start = 0; I2S0.conf.rx_start = 0; I2S0.conf.tx_msb_right = 1; I2S0.conf.tx_right_first = 1; I2S0.conf.tx_slave_mod = 0; // Master I2S0.fifo_conf.tx_fifo_mod_force_en = 1; I2S0.pdm_conf.rx_pdm_en = 0; I2S0.pdm_conf.tx_pdm_en = 0; I2S0.conf.tx_short_sync = 0; I2S0.conf.rx_short_sync = 0; I2S0.conf.tx_msb_shift = 0; I2S0.conf.rx_msb_shift = 0; // set clock I2S0.clkm_conf.clka_en = 0; // Use PLL/2 as reference I2S0.clkm_conf.clkm_div_num = 10; // minimum value of 2, reset value of 4, max 256 I2S0.clkm_conf.clkm_div_a = 0; // 0 at reset, what about divide by 0? (not an issue) I2S0.clkm_conf.clkm_div_b = 0; // 0 at reset // fbck = fi2s / tx_bck_div_num I2S0.sample_rate_conf.tx_bck_div_num = 2; // minimum value of 2 defaults to 6 // Enable TX interrupts I2S0.int_ena.out_eof = 1; I2S0.int_ena.out_dscr_err = 0; I2S0.int_ena.out_total_eof = 0; I2S0.int_ena.out_done = 0; // Allocate and Enable the I2S interrupt intr_handle_t i2s_isr_handle; esp_intr_alloc(ETS_I2S0_INTR_SOURCE, 0, i2s_intr_handler_default, nullptr, &i2s_isr_handle); esp_intr_enable(i2s_isr_handle); // Create the task that will feed the buffer xTaskCreate(stepperTask, "StepperTask", 10000, nullptr, 1, nullptr); // Route the i2s pins to the appropriate GPIO gpio_matrix_out_check(I2S_DATA, I2S0O_DATA_OUT23_IDX, 0, 0); gpio_matrix_out_check(I2S_BCK, I2S0O_BCK_OUT_IDX, 0, 0); gpio_matrix_out_check(I2S_WS, I2S0O_WS_OUT_IDX, 0, 0); // Start the I2S peripheral return i2s_start(I2S_NUM_0); } void i2s_write(uint8_t pin, uint8_t val) { #if ENABLED(I2S_STEPPER_SPLIT_STREAM) if (pin >= 16) { SET_BIT_TO(I2S0.conf_single_data, pin, val); return; } #endif SET_BIT_TO(i2s_port_data, pin, val); } uint8_t i2s_state(uint8_t pin) { #if ENABLED(I2S_STEPPER_SPLIT_STREAM) if (pin >= 16) return TEST(I2S0.conf_single_data, pin); #endif return TEST(i2s_port_data, pin); } void i2s_push_sample() { dma.current[dma.rw_pos++] = i2s_port_data; } #endif // ARDUINO_ARCH_ESP32