/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * Software SPI functions originally from Arduino Sd2Card Library * Copyright (c) 2009 by William Greiman */ /** * For TARGET_LPC1768 */ /** * Hardware SPI and Software SPI implementations are included in this file. * The hardware SPI runs faster and has higher throughput but is not compatible * with some LCD interfaces/adapters. * * Control of the slave select pin(s) is handled by the calling routines. * * Some of the LCD interfaces/adapters result in the LCD SPI and the SD card * SPI sharing pins. The SCK, MOSI & MISO pins can NOT be set/cleared with * WRITE nor digitalWrite when the hardware SPI module within the LPC17xx is * active. If any of these pins are shared then the software SPI must be used. * * A more sophisticated hardware SPI can be found at the following link. * This implementation has not been fully debugged. * https://github.com/MarlinFirmware/Marlin/tree/071c7a78f27078fd4aee9a3ef365fcf5e143531e */ #ifdef TARGET_LPC1768 #include "../../inc/MarlinConfig.h" #include // Hardware SPI and SPIClass #include #include #include "../shared/HAL_SPI.h" // ------------------------ // Public functions // ------------------------ #if ENABLED(LPC_SOFTWARE_SPI) // Software SPI #include #ifndef HAL_SPI_SPEED #define HAL_SPI_SPEED SPI_FULL_SPEED #endif static uint8_t SPI_speed = HAL_SPI_SPEED; static uint8_t spiTransfer(uint8_t b) { return swSpiTransfer(b, SPI_speed, SD_SCK_PIN, SD_MISO_PIN, SD_MOSI_PIN); } void spiBegin() { swSpiBegin(SD_SCK_PIN, SD_MISO_PIN, SD_MOSI_PIN); } void spiInit(uint8_t spiRate) { SPI_speed = swSpiInit(spiRate, SD_SCK_PIN, SD_MOSI_PIN); } uint8_t spiRec() { return spiTransfer(0xFF); } void spiRead(uint8_t*buf, uint16_t nbyte) { for (int i = 0; i < nbyte; i++) buf[i] = spiTransfer(0xFF); } void spiSend(uint8_t b) { (void)spiTransfer(b); } void spiSend(const uint8_t *buf, size_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) (void)spiTransfer(buf[i]); } void spiSendBlock(uint8_t token, const uint8_t *buf) { (void)spiTransfer(token); for (uint16_t i = 0; i < 512; i++) (void)spiTransfer(buf[i]); } #else #ifndef HAL_SPI_SPEED #ifdef SD_SPI_SPEED #define HAL_SPI_SPEED SD_SPI_SPEED #else #define HAL_SPI_SPEED SPI_FULL_SPEED #endif #endif void spiBegin() { spiInit(HAL_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0 void spiInit(uint8_t spiRate) { #if SD_MISO_PIN == BOARD_SPI1_MISO_PIN SPI.setModule(1); #elif SD_MISO_PIN == BOARD_SPI2_MISO_PIN SPI.setModule(2); #endif SPI.setDataSize(DATA_SIZE_8BIT); SPI.setDataMode(SPI_MODE0); SPI.setClock(SPISettings::spiRate2Clock(spiRate)); SPI.begin(); } static uint8_t doio(uint8_t b) { return SPI.transfer(b & 0x00FF) & 0x00FF; } void spiSend(uint8_t b) { doio(b); } void spiSend(const uint8_t *buf, size_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) doio(buf[i]); } void spiSend(uint32_t chan, byte b) {} void spiSend(uint32_t chan, const uint8_t *buf, size_t nbyte) {} // Read single byte from SPI uint8_t spiRec() { return doio(0xFF); } uint8_t spiRec(uint32_t chan) { return 0; } // Read from SPI into buffer void spiRead(uint8_t *buf, uint16_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) buf[i] = doio(0xFF); } uint8_t spiTransfer(uint8_t b) { return doio(b); } // Write from buffer to SPI void spiSendBlock(uint8_t token, const uint8_t *buf) { (void)spiTransfer(token); for (uint16_t i = 0; i < 512; i++) (void)spiTransfer(buf[i]); } // Begin SPI transaction, set clock, bit order, data mode void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { // TODO: Implement this method } #endif // LPC_SOFTWARE_SPI /** * @brief Wait until TXE (tx empty) flag is set and BSY (busy) flag unset. */ static inline void waitSpiTxEnd(LPC_SSP_TypeDef *spi_d) { while (SSP_GetStatus(spi_d, SSP_STAT_TXFIFO_EMPTY) == RESET) { /* nada */ } // wait until TXE=1 while (SSP_GetStatus(spi_d, SSP_STAT_BUSY) == SET) { /* nada */ } // wait until BSY=0 } // Retain the pin init state of the SPI, to avoid init more than once, // even if more instances of SPIClass exist static bool spiInitialised[BOARD_NR_SPI] = { false }; SPIClass::SPIClass(uint8_t device) { // Init things specific to each SPI device // clock divider setup is a bit of hack, and needs to be improved at a later date. #if BOARD_NR_SPI >= 1 _settings[0].spi_d = LPC_SSP0; _settings[0].dataMode = SPI_MODE0; _settings[0].dataSize = DATA_SIZE_8BIT; _settings[0].clock = SPI_CLOCK_MAX; //_settings[0].clockDivider = determine_baud_rate(_settings[0].spi_d, _settings[0].clock); #endif #if BOARD_NR_SPI >= 2 _settings[1].spi_d = LPC_SSP1; _settings[1].dataMode = SPI_MODE0; _settings[1].dataSize = DATA_SIZE_8BIT; _settings[1].clock = SPI_CLOCK_MAX; //_settings[1].clockDivider = determine_baud_rate(_settings[1].spi_d, _settings[1].clock); #endif setModule(device); // Init the GPDMA controller // TODO: call once in the constructor? or each time? GPDMA_Init(); } SPIClass::SPIClass(pin_t mosi, pin_t miso, pin_t sclk, pin_t ssel) { #if BOARD_NR_SPI >= 1 if (mosi == BOARD_SPI1_MOSI_PIN) SPIClass(1); #endif #if BOARD_NR_SPI >= 2 if (mosi == BOARD_SPI2_MOSI_PIN) SPIClass(2); #endif } void SPIClass::begin() { // Init the SPI pins in the first begin call if ((_currentSetting->spi_d == LPC_SSP0 && spiInitialised[0] == false) || (_currentSetting->spi_d == LPC_SSP1 && spiInitialised[1] == false)) { pin_t sck, miso, mosi; if (_currentSetting->spi_d == LPC_SSP0) { sck = BOARD_SPI1_SCK_PIN; miso = BOARD_SPI1_MISO_PIN; mosi = BOARD_SPI1_MOSI_PIN; spiInitialised[0] = true; } else if (_currentSetting->spi_d == LPC_SSP1) { sck = BOARD_SPI2_SCK_PIN; miso = BOARD_SPI2_MISO_PIN; mosi = BOARD_SPI2_MOSI_PIN; spiInitialised[1] = true; } PINSEL_CFG_Type PinCfg; // data structure to hold init values PinCfg.Funcnum = 2; PinCfg.OpenDrain = 0; PinCfg.Pinmode = 0; PinCfg.Pinnum = LPC176x::pin_bit(sck); PinCfg.Portnum = LPC176x::pin_port(sck); PINSEL_ConfigPin(&PinCfg); SET_OUTPUT(sck); PinCfg.Pinnum = LPC176x::pin_bit(miso); PinCfg.Portnum = LPC176x::pin_port(miso); PINSEL_ConfigPin(&PinCfg); SET_INPUT(miso); PinCfg.Pinnum = LPC176x::pin_bit(mosi); PinCfg.Portnum = LPC176x::pin_port(mosi); PINSEL_ConfigPin(&PinCfg); SET_OUTPUT(mosi); } updateSettings(); SSP_Cmd(_currentSetting->spi_d, ENABLE); // start SSP running } void SPIClass::beginTransaction(const SPISettings &cfg) { setBitOrder(cfg.bitOrder); setDataMode(cfg.dataMode); setDataSize(cfg.dataSize); //setClockDivider(determine_baud_rate(_currentSetting->spi_d, settings.clock)); begin(); } uint8_t SPIClass::transfer(const uint16_t b) { // Send and receive a single byte SSP_ReceiveData(_currentSetting->spi_d); // read any previous data SSP_SendData(_currentSetting->spi_d, b); waitSpiTxEnd(_currentSetting->spi_d); // wait for it to finish return SSP_ReceiveData(_currentSetting->spi_d); } uint16_t SPIClass::transfer16(const uint16_t data) { return (transfer((data >> 8) & 0xFF) << 8) | (transfer(data & 0xFF) & 0xFF); } void SPIClass::end() { // Neither is needed for Marlin //SSP_Cmd(_currentSetting->spi_d, DISABLE); //SSP_DeInit(_currentSetting->spi_d); } void SPIClass::send(uint8_t data) { SSP_SendData(_currentSetting->spi_d, data); } void SPIClass::dmaSend(void *buf, uint16_t length, bool minc) { //TODO: LPC dma can only write 0xFFF bytes at once. GPDMA_Channel_CFG_Type GPDMACfg; /* Configure GPDMA channel 0 -------------------------------------------------------------*/ /* DMA Channel 0 */ GPDMACfg.ChannelNum = 0; // Source memory GPDMACfg.SrcMemAddr = (uint32_t)buf; // Destination memory - Not used GPDMACfg.DstMemAddr = 0; // Transfer size GPDMACfg.TransferSize = length; // Transfer width GPDMACfg.TransferWidth = (_currentSetting->dataSize == DATA_SIZE_16BIT) ? GPDMA_WIDTH_HALFWORD : GPDMA_WIDTH_BYTE; // Transfer type GPDMACfg.TransferType = GPDMA_TRANSFERTYPE_M2P; // Source connection - unused GPDMACfg.SrcConn = 0; // Destination connection GPDMACfg.DstConn = (_currentSetting->spi_d == LPC_SSP0) ? GPDMA_CONN_SSP0_Tx : GPDMA_CONN_SSP1_Tx; GPDMACfg.DMALLI = 0; // Enable dma on SPI SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, ENABLE); // Only increase memory if minc is true GPDMACfg.MemoryIncrease = (minc ? GPDMA_DMACCxControl_SI : 0); // Setup channel with given parameter GPDMA_Setup(&GPDMACfg); // Enable DMA GPDMA_ChannelCmd(0, ENABLE); // Wait for data transfer while (!GPDMA_IntGetStatus(GPDMA_STAT_RAWINTTC, 0) && !GPDMA_IntGetStatus(GPDMA_STAT_RAWINTERR, 0)) { } // Clear err and int GPDMA_ClearIntPending (GPDMA_STATCLR_INTTC, 0); GPDMA_ClearIntPending (GPDMA_STATCLR_INTERR, 0); // Disable DMA GPDMA_ChannelCmd(0, DISABLE); waitSpiTxEnd(_currentSetting->spi_d); SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, DISABLE); } uint16_t SPIClass::read() { return SSP_ReceiveData(_currentSetting->spi_d); } void SPIClass::read(uint8_t *buf, uint32_t len) { for (uint16_t i = 0; i < len; i++) buf[i] = transfer(0xFF); } void SPIClass::setClock(uint32_t clock) { _currentSetting->clock = clock; } void SPIClass::setModule(uint8_t device) { _currentSetting = &_settings[device - 1]; } // SPI channels are called 1, 2, and 3 but the array is zero-indexed void SPIClass::setBitOrder(uint8_t bitOrder) { _currentSetting->bitOrder = bitOrder; } void SPIClass::setDataMode(uint8_t dataMode) { _currentSetting->dataMode = dataMode; } void SPIClass::setDataSize(uint32_t dataSize) { _currentSetting->dataSize = dataSize; } /** * Set up/tear down */ void SPIClass::updateSettings() { //SSP_DeInit(_currentSetting->spi_d); //todo: need force de init?! // Divide PCLK by 2 for SSP0 //CLKPWR_SetPCLKDiv(_currentSetting->spi_d == LPC_SSP0 ? CLKPWR_PCLKSEL_SSP0 : CLKPWR_PCLKSEL_SSP1, CLKPWR_PCLKSEL_CCLK_DIV_2); SSP_CFG_Type HW_SPI_init; // data structure to hold init values SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode HW_SPI_init.ClockRate = _currentSetting->clock; HW_SPI_init.Databit = _currentSetting->dataSize; /** * SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge * 0 0 0 Falling Rising * 1 0 1 Rising Falling * 2 1 0 Rising Falling * 3 1 1 Falling Rising */ switch (_currentSetting->dataMode) { case SPI_MODE0: HW_SPI_init.CPHA = SSP_CPHA_FIRST; HW_SPI_init.CPOL = SSP_CPOL_HI; break; case SPI_MODE1: HW_SPI_init.CPHA = SSP_CPHA_SECOND; HW_SPI_init.CPOL = SSP_CPOL_HI; break; case SPI_MODE2: HW_SPI_init.CPHA = SSP_CPHA_FIRST; HW_SPI_init.CPOL = SSP_CPOL_LO; break; case SPI_MODE3: HW_SPI_init.CPHA = SSP_CPHA_SECOND; HW_SPI_init.CPOL = SSP_CPOL_LO; break; default: break; } // TODO: handle bitOrder SSP_Init(_currentSetting->spi_d, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers } #if SD_MISO_PIN == BOARD_SPI1_MISO_PIN SPIClass SPI(1); #elif SD_MISO_PIN == BOARD_SPI2_MISO_PIN SPIClass SPI(2); #endif #endif // TARGET_LPC1768