/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * Copyright (c) 2017 Victor Perez * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifdef __STM32F1__ #include "../../inc/MarlinConfig.h" #if HAS_SERVOS uint8_t ServoCount = 0; #include "Servo.h" #include "timers.h" //#include "Servo.h" #include #include #include #include /** * 20 millisecond period config. For a 1-based prescaler, * * (prescaler * overflow / CYC_MSEC) msec = 1 timer cycle = 20 msec * => prescaler * overflow = 20 * CYC_MSEC * * This uses the smallest prescaler that allows an overflow < 2^16. */ #define MAX_OVERFLOW UINT16_MAX //((1 << 16) - 1) #define CYC_MSEC (1000 * CYCLES_PER_MICROSECOND) #define TAU_MSEC 20 #define TAU_USEC (TAU_MSEC * 1000) #define TAU_CYC (TAU_MSEC * CYC_MSEC) #define SERVO_PRESCALER (TAU_CYC / MAX_OVERFLOW + 1) #define SERVO_OVERFLOW ((uint16_t)round((double)TAU_CYC / SERVO_PRESCALER)) // Unit conversions #define US_TO_COMPARE(us) uint16_t(map((us), 0, TAU_USEC, 0, SERVO_OVERFLOW)) #define COMPARE_TO_US(c) uint32_t(map((c), 0, SERVO_OVERFLOW, 0, TAU_USEC)) #define ANGLE_TO_US(a) uint16_t(map((a), minAngle, maxAngle, SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW)) #define US_TO_ANGLE(us) int16_t(map((us), SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW, minAngle, maxAngle)) void libServo::servoWrite(uint8_t inPin, uint16_t duty_cycle) { #ifdef SERVO0_TIMER_NUM if (servoIndex == 0) { pwmSetDuty(duty_cycle); return; } #endif timer_dev *tdev = PIN_MAP[inPin].timer_device; uint8_t tchan = PIN_MAP[inPin].timer_channel; if (tdev) timer_set_compare(tdev, tchan, duty_cycle); } libServo::libServo() { servoIndex = ServoCount < MAX_SERVOS ? ServoCount++ : INVALID_SERVO; } bool libServo::attach(const int32_t inPin, const int32_t inMinAngle, const int32_t inMaxAngle) { if (servoIndex >= MAX_SERVOS) return false; if (inPin >= BOARD_NR_GPIO_PINS) return false; minAngle = inMinAngle; maxAngle = inMaxAngle; angle = -1; #ifdef SERVO0_TIMER_NUM if (servoIndex == 0 && setupSoftPWM(inPin)) { pin = inPin; // set attached() return true; } #endif if (!PWM_PIN(inPin)) return false; timer_dev *tdev = PIN_MAP[inPin].timer_device; //uint8_t tchan = PIN_MAP[inPin].timer_channel; SET_PWM(inPin); servoWrite(inPin, 0); timer_pause(tdev); timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based timer_set_reload(tdev, SERVO_OVERFLOW); timer_generate_update(tdev); timer_resume(tdev); pin = inPin; // set attached() return true; } bool libServo::detach() { if (!attached()) return false; angle = -1; servoWrite(pin, 0); return true; } int32_t libServo::read() const { if (attached()) { #ifdef SERVO0_TIMER_NUM if (servoIndex == 0) return angle; #endif timer_dev *tdev = PIN_MAP[pin].timer_device; uint8_t tchan = PIN_MAP[pin].timer_channel; return US_TO_ANGLE(COMPARE_TO_US(timer_get_compare(tdev, tchan))); } return 0; } void libServo::move(const int32_t value) { constexpr uint16_t servo_delay[] = SERVO_DELAY; static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); if (attached()) { angle = constrain(value, minAngle, maxAngle); servoWrite(pin, US_TO_COMPARE(ANGLE_TO_US(angle))); safe_delay(servo_delay[servoIndex]); TERN_(DEACTIVATE_SERVOS_AFTER_MOVE, detach()); } } #ifdef SERVO0_TIMER_NUM extern "C" void Servo_IRQHandler() { static timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM); uint16_t SR = timer_get_status(tdev); if (SR & TIMER_SR_CC1IF) { // channel 1 off #ifdef SERVO0_PWM_OD OUT_WRITE_OD(SERVO0_PIN, 1); // off #else OUT_WRITE(SERVO0_PIN, 0); #endif timer_reset_status_bit(tdev, TIMER_SR_CC1IF_BIT); } if (SR & TIMER_SR_CC2IF) { // channel 2 resume #ifdef SERVO0_PWM_OD OUT_WRITE_OD(SERVO0_PIN, 0); // on #else OUT_WRITE(SERVO0_PIN, 1); #endif timer_reset_status_bit(tdev, TIMER_SR_CC2IF_BIT); } } bool libServo::setupSoftPWM(const int32_t inPin) { timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM); if (!tdev) return false; #ifdef SERVO0_PWM_OD OUT_WRITE_OD(inPin, 1); #else OUT_WRITE(inPin, 0); #endif timer_pause(tdev); timer_set_mode(tdev, 1, TIMER_OUTPUT_COMPARE); // counter with isr timer_oc_set_mode(tdev, 1, TIMER_OC_MODE_FROZEN, 0); // no pin output change timer_oc_set_mode(tdev, 2, TIMER_OC_MODE_FROZEN, 0); // no pin output change timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based timer_set_reload(tdev, SERVO_OVERFLOW); timer_set_compare(tdev, 1, SERVO_OVERFLOW); timer_set_compare(tdev, 2, SERVO_OVERFLOW); timer_attach_interrupt(tdev, 1, Servo_IRQHandler); timer_attach_interrupt(tdev, 2, Servo_IRQHandler); timer_generate_update(tdev); timer_resume(tdev); return true; } void libServo::pwmSetDuty(const uint16_t duty_cycle) { timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM); timer_set_compare(tdev, 1, duty_cycle); timer_generate_update(tdev); if (duty_cycle) { timer_enable_irq(tdev, 1); timer_enable_irq(tdev, 2); } else { timer_disable_irq(tdev, 1); timer_disable_irq(tdev, 2); #ifdef SERVO0_PWM_OD OUT_WRITE_OD(pin, 1); // off #else OUT_WRITE(pin, 0); #endif } } void libServo::pauseSoftPWM() { // detach timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM); timer_pause(tdev); pwmSetDuty(0); } #else bool libServo::setupSoftPWM(const int32_t inPin) { return false; } void libServo::pwmSetDuty(const uint16_t duty_cycle) {} void libServo::pauseSoftPWM() {} #endif #endif // HAS_SERVOS #endif // __STM32F1__