/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(PRUSA_MMU2) #include "mmu2.h" #include "../../lcd/menu/menu_mmu2.h" MMU2 mmu2; #include "../../gcode/gcode.h" #include "../../lcd/ultralcd.h" #include "../../libs/buzzer.h" #include "../../libs/nozzle.h" #include "../../module/temperature.h" #include "../../module/planner.h" #include "../../module/stepper/indirection.h" #include "../../MarlinCore.h" #if ENABLED(HOST_PROMPT_SUPPORT) #include "../../feature/host_actions.h" #endif #if ENABLED(EXTENSIBLE_UI) #include "../../lcd/extui/ui_api.h" #endif #define DEBUG_OUT ENABLED(MMU2_DEBUG) #include "../../core/debug_out.h" #define MMU_TODELAY 100 #define MMU_TIMEOUT 10 #define MMU_CMD_TIMEOUT 45000UL // 45s timeout for mmu commands (except P0) #define MMU_P0_TIMEOUT 3000UL // Timeout for P0 command: 3seconds #define MMU2_COMMAND(S) tx_str_P(PSTR(S "\n")) #if ENABLED(MMU_EXTRUDER_SENSOR) uint8_t mmu_idl_sens = 0; static bool mmu_loading_flag = false; #endif #define MMU_CMD_NONE 0 #define MMU_CMD_T0 0x10 #define MMU_CMD_T1 0x11 #define MMU_CMD_T2 0x12 #define MMU_CMD_T3 0x13 #define MMU_CMD_T4 0x14 #define MMU_CMD_L0 0x20 #define MMU_CMD_L1 0x21 #define MMU_CMD_L2 0x22 #define MMU_CMD_L3 0x23 #define MMU_CMD_L4 0x24 #define MMU_CMD_C0 0x30 #define MMU_CMD_U0 0x40 #define MMU_CMD_E0 0x50 #define MMU_CMD_E1 0x51 #define MMU_CMD_E2 0x52 #define MMU_CMD_E3 0x53 #define MMU_CMD_E4 0x54 #define MMU_CMD_R0 0x60 #define MMU_CMD_F0 0x70 #define MMU_CMD_F1 0x71 #define MMU_CMD_F2 0x72 #define MMU_CMD_F3 0x73 #define MMU_CMD_F4 0x74 #define MMU_REQUIRED_FW_BUILDNR TERN(MMU2_MODE_12V, 132, 126) #define MMU2_NO_TOOL 99 #define MMU_BAUD 115200 #define mmuSerial MMU2_SERIAL bool MMU2::enabled, MMU2::ready, MMU2::mmu_print_saved; #if ENABLED(PRUSA_MMU2_S_MODE) bool MMU2::mmu2s_triggered; #endif uint8_t MMU2::cmd, MMU2::cmd_arg, MMU2::last_cmd, MMU2::extruder; int8_t MMU2::state = 0; volatile int8_t MMU2::finda = 1; volatile bool MMU2::finda_runout_valid; int16_t MMU2::version = -1, MMU2::buildnr = -1; millis_t MMU2::prev_request, MMU2::prev_P0_request; char MMU2::rx_buffer[MMU_RX_SIZE], MMU2::tx_buffer[MMU_TX_SIZE]; #if BOTH(HAS_LCD_MENU, MMU2_MENUS) struct E_Step { float extrude; //!< extrude distance in mm feedRate_t feedRate; //!< feed rate in mm/s }; static constexpr E_Step ramming_sequence[] PROGMEM = { MMU2_RAMMING_SEQUENCE } , load_to_nozzle_sequence[] PROGMEM = { MMU2_LOAD_TO_NOZZLE_SEQUENCE } #if ENABLED(PRUSA_MMU2_S_MODE) , can_load_sequence[] PROGMEM = { MMU2_CAN_LOAD_SEQUENCE } , can_load_increment_sequence[] PROGMEM = { MMU2_CAN_LOAD_INCREMENT_SEQUENCE } #endif ; #endif // MMU2_MENUS MMU2::MMU2() { rx_buffer[0] = '\0'; } void MMU2::init() { set_runout_valid(false); #if PIN_EXISTS(MMU2_RST) // TODO use macros for this WRITE(MMU2_RST_PIN, HIGH); SET_OUTPUT(MMU2_RST_PIN); #endif mmuSerial.begin(MMU_BAUD); extruder = MMU2_NO_TOOL; safe_delay(10); reset(); rx_buffer[0] = '\0'; state = -1; } void MMU2::reset() { DEBUG_ECHOLNPGM("MMU <= reset"); #if PIN_EXISTS(MMU2_RST) WRITE(MMU2_RST_PIN, LOW); safe_delay(20); WRITE(MMU2_RST_PIN, HIGH); #else MMU2_COMMAND("X0"); // Send soft reset #endif } uint8_t MMU2::get_current_tool() { return extruder == MMU2_NO_TOOL ? -1 : extruder; } #if EITHER(PRUSA_MMU2_S_MODE, MMU_EXTRUDER_SENSOR) #define FILAMENT_PRESENT() (READ(FIL_RUNOUT_PIN) != FIL_RUNOUT_STATE) #endif void MMU2::mmu_loop() { switch (state) { case 0: break; case -1: if (rx_start()) { DEBUG_ECHOLNPGM("MMU => 'start'"); DEBUG_ECHOLNPGM("MMU <= 'S1'"); MMU2_COMMAND("S1"); // Read Version state = -2; } else if (millis() > 3000000) { SERIAL_ECHOLNPGM("MMU not responding - DISABLED"); state = 0; } break; case -2: if (rx_ok()) { sscanf(rx_buffer, "%uok\n", &version); DEBUG_ECHOLNPAIR("MMU => ", version, "\nMMU <= 'S2'"); MMU2_COMMAND("S2"); // Read Build Number state = -3; } break; case -3: if (rx_ok()) { sscanf(rx_buffer, "%uok\n", &buildnr); DEBUG_ECHOLNPAIR("MMU => ", buildnr); check_version(); #if ENABLED(MMU2_MODE_12V) DEBUG_ECHOLNPGM("MMU <= 'M1'"); MMU2_COMMAND("M1"); // Stealth Mode state = -5; #else DEBUG_ECHOLNPGM("MMU <= 'P0'"); MMU2_COMMAND("P0"); // Read FINDA state = -4; #endif } break; #if ENABLED(MMU2_MODE_12V) case -5: // response to M1 if (rx_ok()) { DEBUG_ECHOLNPGM("MMU => ok"); DEBUG_ECHOLNPGM("MMU <= 'P0'"); MMU2_COMMAND("P0"); // Read FINDA state = -4; } break; #endif case -4: if (rx_ok()) { sscanf(rx_buffer, "%hhuok\n", &finda); DEBUG_ECHOLNPAIR("MMU => ", finda, "\nMMU - ENABLED"); enabled = true; state = 1; TERN_(PRUSA_MMU2_S_MODE, mmu2s_triggered = false); } break; case 1: if (cmd) { if (WITHIN(cmd, MMU_CMD_T0, MMU_CMD_T4)) { // tool change int filament = cmd - MMU_CMD_T0; DEBUG_ECHOLNPAIR("MMU <= T", filament); tx_printf_P(PSTR("T%d\n"), filament); TERN_(MMU_EXTRUDER_SENSOR, mmu_idl_sens = 1); // enable idler sensor, if any state = 3; // wait for response } else if (WITHIN(cmd, MMU_CMD_L0, MMU_CMD_L4)) { // load int filament = cmd - MMU_CMD_L0; DEBUG_ECHOLNPAIR("MMU <= L", filament); tx_printf_P(PSTR("L%d\n"), filament); state = 3; // wait for response } else if (cmd == MMU_CMD_C0) { // continue loading DEBUG_ECHOLNPGM("MMU <= 'C0'"); MMU2_COMMAND("C0"); state = 3; // wait for response } else if (cmd == MMU_CMD_U0) { // unload current DEBUG_ECHOLNPGM("MMU <= 'U0'"); MMU2_COMMAND("U0"); state = 3; // wait for response } else if (WITHIN(cmd, MMU_CMD_E0, MMU_CMD_E4)) { // eject filament int filament = cmd - MMU_CMD_E0; DEBUG_ECHOLNPAIR("MMU <= E", filament); tx_printf_P(PSTR("E%d\n"), filament); state = 3; // wait for response } else if (cmd == MMU_CMD_R0) { // recover after eject DEBUG_ECHOLNPGM("MMU <= 'R0'"); MMU2_COMMAND("R0"); state = 3; // wait for response } else if (WITHIN(cmd, MMU_CMD_F0, MMU_CMD_F4)) { // filament type int filament = cmd - MMU_CMD_F0; DEBUG_ECHOPAIR("MMU <= F", filament, " "); DEBUG_ECHO_F(cmd_arg, DEC); DEBUG_EOL(); tx_printf_P(PSTR("F%d %d\n"), filament, cmd_arg); state = 3; // wait for response } last_cmd = cmd; cmd = MMU_CMD_NONE; } else if (ELAPSED(millis(), prev_P0_request + 300)) { MMU2_COMMAND("P0"); // Read FINDA state = 2; // wait for response } TERN_(PRUSA_MMU2_S_MODE, check_filament()); break; case 2: // response to command P0 if (rx_ok()) { sscanf(rx_buffer, "%hhuok\n", &finda); // This is super annoying. Only activate if necessary // if (finda_runout_valid) DEBUG_ECHOLNPAIR_F("MMU <= 'P0'\nMMU => ", finda, 6); if (!finda && finda_runout_valid) filament_runout(); if (cmd == 0) ready = true; state = 1; } else if (ELAPSED(millis(), prev_request + MMU_P0_TIMEOUT)) // Resend request after timeout (3s) state = 1; TERN_(PRUSA_MMU2_S_MODE, check_filament()); break; case 3: // response to mmu commands #if ENABLED(MMU_EXTRUDER_SENSOR) if (mmu_idl_sens) { if (FILAMENT_PRESENT() && mmu_loading_flag) { DEBUG_ECHOLNPGM("MMU <= 'A'"); MMU2_COMMAND("A"); // send 'abort' request mmu_idl_sens = 0; DEBUG_ECHOLNPGM("MMU IDLER_SENSOR = 0 - ABORT"); } } #endif if (rx_ok()) { // Response to C0 mmu command in PRUSA_MMU2_S_MODE bool can_reset = true; #if ENABLED(PRUSA_MMU2_S_MODE) if (!mmu2s_triggered && last_cmd == MMU_CMD_C0) { can_reset = false; // MMU ok received but filament sensor not triggered, retrying... DEBUG_ECHOLNPGM("MMU => 'ok' (filament not present in gears)"); DEBUG_ECHOLNPGM("MMU <= 'C0' (keep trying)"); MMU2_COMMAND("C0"); } #endif if (can_reset) { DEBUG_ECHOLNPGM("MMU => 'ok'"); ready = true; state = 1; last_cmd = MMU_CMD_NONE; } } else if (ELAPSED(millis(), prev_request + MMU_CMD_TIMEOUT)) { // resend request after timeout if (last_cmd) { DEBUG_ECHOLNPGM("MMU retry"); cmd = last_cmd; last_cmd = MMU_CMD_NONE; } state = 1; } TERN_(PRUSA_MMU2_S_MODE, check_filament()); break; } } /** * Check if MMU was started */ bool MMU2::rx_start() { // check for start message if (rx_str_P(PSTR("start\n"))) { prev_P0_request = millis(); return true; } return false; } /** * Check if the data received ends with the given string. */ bool MMU2::rx_str_P(const char* str) { uint8_t i = strlen(rx_buffer); while (mmuSerial.available()) { rx_buffer[i++] = mmuSerial.read(); rx_buffer[i] = '\0'; if (i == sizeof(rx_buffer) - 1) { DEBUG_ECHOLNPGM("rx buffer overrun"); break; } } uint8_t len = strlen_P(str); if (i < len) return false; str += len; while (len--) { char c0 = pgm_read_byte(str--), c1 = rx_buffer[i--]; if (c0 == c1) continue; if (c0 == '\r' && c1 == '\n') continue; // match cr as lf if (c0 == '\n' && c1 == '\r') continue; // match lf as cr return false; } return true; } /** * Transfer data to MMU, no argument */ void MMU2::tx_str_P(const char* str) { clear_rx_buffer(); uint8_t len = strlen_P(str); LOOP_L_N(i, len) mmuSerial.write(pgm_read_byte(str++)); rx_buffer[0] = '\0'; prev_request = millis(); } /** * Transfer data to MMU, single argument */ void MMU2::tx_printf_P(const char* format, int argument = -1) { clear_rx_buffer(); uint8_t len = sprintf_P(tx_buffer, format, argument); LOOP_L_N(i, len) mmuSerial.write(tx_buffer[i]); rx_buffer[0] = '\0'; prev_request = millis(); } /** * Transfer data to MMU, two arguments */ void MMU2::tx_printf_P(const char* format, int argument1, int argument2) { clear_rx_buffer(); uint8_t len = sprintf_P(tx_buffer, format, argument1, argument2); LOOP_L_N(i, len) mmuSerial.write(tx_buffer[i]); rx_buffer[0] = '\0'; prev_request = millis(); } /** * Empty the rx buffer */ void MMU2::clear_rx_buffer() { while (mmuSerial.available()) mmuSerial.read(); rx_buffer[0] = '\0'; } /** * Check if we received 'ok' from MMU */ bool MMU2::rx_ok() { if (rx_str_P(PSTR("ok\n"))) { prev_P0_request = millis(); return true; } return false; } /** * Check if MMU has compatible firmware */ void MMU2::check_version() { if (buildnr < MMU_REQUIRED_FW_BUILDNR) { SERIAL_ERROR_MSG("Invalid MMU2 firmware. Version >= " STRINGIFY(MMU_REQUIRED_FW_BUILDNR) " required."); kill(GET_TEXT(MSG_KILL_MMU2_FIRMWARE)); } } static void mmu2_not_responding() { LCD_MESSAGEPGM(MSG_MMU2_NOT_RESPONDING); BUZZ(100, 659); BUZZ(200, 698); BUZZ(100, 659); BUZZ(300, 440); BUZZ(100, 659); } #if ENABLED(PRUSA_MMU2_S_MODE) bool MMU2::load_to_gears() { command(MMU_CMD_C0); manage_response(true, true); LOOP_L_N(i, MMU2_C0_RETRY) { // Keep loading until filament reaches gears if (mmu2s_triggered) break; command(MMU_CMD_C0); manage_response(true, true); check_filament(); } const bool success = mmu2s_triggered && can_load(); if (!success) mmu2_not_responding(); return success; } /** * Handle tool change */ void MMU2::tool_change(const uint8_t index) { if (!enabled) return; set_runout_valid(false); if (index != extruder) { DISABLE_AXIS_E0(); ui.status_printf_P(0, GET_TEXT(MSG_MMU2_LOADING_FILAMENT), int(index + 1)); command(MMU_CMD_T0 + index); manage_response(true, true); if (load_to_gears()) { extruder = index; // filament change is finished active_extruder = 0; ENABLE_AXIS_E0(); SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(STR_ACTIVE_EXTRUDER, int(extruder)); } ui.reset_status(); } set_runout_valid(true); } /** * Handle special T?/Tx/Tc commands * * T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically * Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load. * Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated. */ void MMU2::tool_change(const char* special) { if (!enabled) return; #if ENABLED(MMU2_MENUS) set_runout_valid(false); switch (*special) { case '?': { uint8_t index = mmu2_choose_filament(); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); load_filament_to_nozzle(index); } break; case 'x': { planner.synchronize(); uint8_t index = mmu2_choose_filament(); DISABLE_AXIS_E0(); command(MMU_CMD_T0 + index); manage_response(true, true); if (load_to_gears()) { mmu_loop(); ENABLE_AXIS_E0(); extruder = index; active_extruder = 0; } } break; case 'c': { while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, COUNT(load_to_nozzle_sequence)); } break; } set_runout_valid(true); #endif // MMU2_MENUS } #elif ENABLED(MMU_EXTRUDER_SENSOR) /** * Handle tool change */ void MMU2::tool_change(const uint8_t index) { if (!enabled) return; set_runout_valid(false); if (index != extruder) { DISABLE_AXIS_E0(); if (FILAMENT_PRESENT()) { DEBUG_ECHOLNPGM("Unloading\n"); mmu_loading_flag = false; command(MMU_CMD_U0); manage_response(true, true); } ui.status_printf_P(0, GET_TEXT(MSG_MMU2_LOADING_FILAMENT), int(index + 1)); mmu_loading_flag = true; command(MMU_CMD_T0 + index); manage_response(true, true); mmu_continue_loading(); command(MMU_CMD_C0); extruder = index; active_extruder = 0; ENABLE_AXIS_E0(); SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(STR_ACTIVE_EXTRUDER, int(extruder)); ui.reset_status(); } set_runout_valid(true); } /** * Handle special T?/Tx/Tc commands * * T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically * Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load. * Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated. */ void MMU2::tool_change(const char* special) { if (!enabled) return; #if ENABLED(MMU2_MENUS) set_runout_valid(false); switch (*special) { case '?': { DEBUG_ECHOLNPGM("case ?\n"); uint8_t index = mmu2_choose_filament(); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); load_filament_to_nozzle(index); } break; case 'x': { DEBUG_ECHOLNPGM("case x\n"); planner.synchronize(); uint8_t index = mmu2_choose_filament(); DISABLE_AXIS_E0(); command(MMU_CMD_T0 + index); manage_response(true, true); mmu_continue_loading(); command(MMU_CMD_C0); mmu_loop(); ENABLE_AXIS_E0(); extruder = index; active_extruder = 0; } break; case 'c': { DEBUG_ECHOLNPGM("case c\n"); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, COUNT(load_to_nozzle_sequence)); } break; } set_runout_valid(true); #endif // MMU2_MENUS } void MMU2::mmu_continue_loading() { for (uint8_t i = 0; i < MMU_LOADING_ATTEMPTS_NR; i++) { DEBUG_ECHOLNPAIR("Additional load attempt #", i); if (FILAMENT_PRESENT()) break; command(MMU_CMD_C0); manage_response(true, true); } if (!FILAMENT_PRESENT()) { DEBUG_ECHOLNPGM("Filament never reached sensor, runout"); filament_runout(); } mmu_idl_sens = 0; } #elif DISABLED(MMU_EXTRUDER_SENSOR) && DISABLED(PRUSA_MMU2_S_MODE) /** * Handle tool change */ void MMU2::tool_change(const uint8_t index) { if (!enabled) return; set_runout_valid(false); if (index != extruder) { DISABLE_AXIS_E0(); ui.status_printf_P(0, GET_TEXT(MSG_MMU2_LOADING_FILAMENT), int(index + 1)); command(MMU_CMD_T0 + index); manage_response(true, true); command(MMU_CMD_C0); extruder = index; //filament change is finished active_extruder = 0; ENABLE_AXIS_E0(); SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(STR_ACTIVE_EXTRUDER, int(extruder)); ui.reset_status(); } set_runout_valid(true); } /** * Handle special T?/Tx/Tc commands * * T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically * Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load. * Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated. */ void MMU2::tool_change(const char* special) { if (!enabled) return; #if ENABLED(MMU2_MENUS) set_runout_valid(false); switch (*special) { case '?': { DEBUG_ECHOLNPGM("case ?\n"); uint8_t index = mmu2_choose_filament(); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); load_filament_to_nozzle(index); } break; case 'x': { DEBUG_ECHOLNPGM("case x\n"); planner.synchronize(); uint8_t index = mmu2_choose_filament(); DISABLE_AXIS_E0(); command(MMU_CMD_T0 + index); manage_response(true, true); command(MMU_CMD_C0); mmu_loop(); ENABLE_AXIS_E0(); extruder = index; active_extruder = 0; } break; case 'c': { DEBUG_ECHOLNPGM("case c\n"); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, COUNT(load_to_nozzle_sequence)); } break; } set_runout_valid(true); #endif } #endif // MMU_EXTRUDER_SENSOR /** * Set next command */ void MMU2::command(const uint8_t mmu_cmd) { if (!enabled) return; cmd = mmu_cmd; ready = false; } /** * Wait for response from MMU */ bool MMU2::get_response() { while (cmd != MMU_CMD_NONE) idle(); while (!ready) { idle(); if (state != 3) break; } const bool ret = ready; ready = false; return ret; } /** * Wait for response and deal with timeout if nexcessary */ void MMU2::manage_response(const bool move_axes, const bool turn_off_nozzle) { constexpr xyz_pos_t park_point = NOZZLE_PARK_POINT; bool response = false; mmu_print_saved = false; xyz_pos_t resume_position; int16_t resume_hotend_temp = thermalManager.degTargetHotend(active_extruder); KEEPALIVE_STATE(PAUSED_FOR_USER); while (!response) { response = get_response(); // wait for "ok" from mmu if (!response) { // No "ok" was received in reserved time frame, user will fix the issue on mmu unit if (!mmu_print_saved) { // First occurrence. Save current position, park print head, disable nozzle heater. planner.synchronize(); mmu_print_saved = true; SERIAL_ECHOLNPGM("MMU not responding"); resume_hotend_temp = thermalManager.degTargetHotend(active_extruder); resume_position = current_position; if (move_axes && all_axes_homed()) nozzle.park(0, park_point /*= NOZZLE_PARK_POINT*/); if (turn_off_nozzle) thermalManager.setTargetHotend(0, active_extruder); mmu2_not_responding(); } } else if (mmu_print_saved) { SERIAL_ECHOLNPGM("MMU starts responding\n"); if (turn_off_nozzle && resume_hotend_temp) { thermalManager.setTargetHotend(resume_hotend_temp, active_extruder); LCD_MESSAGEPGM(MSG_HEATING); BUZZ(200, 40); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(1000); } if (move_axes && all_axes_homed()) { LCD_MESSAGEPGM(MSG_MMU2_RESUMING); BUZZ(198, 404); BUZZ(4, 0); BUZZ(198, 404); // Move XY to starting position, then Z do_blocking_move_to_xy(resume_position, feedRate_t(NOZZLE_PARK_XY_FEEDRATE)); // Move Z_AXIS to saved position do_blocking_move_to_z(resume_position.z, feedRate_t(NOZZLE_PARK_Z_FEEDRATE)); } else { BUZZ(198, 404); BUZZ(4, 0); BUZZ(198, 404); LCD_MESSAGEPGM(MSG_MMU2_RESUMING); } } } } void MMU2::set_filament_type(const uint8_t index, const uint8_t filamentType) { if (!enabled) return; cmd_arg = filamentType; command(MMU_CMD_F0 + index); manage_response(true, true); } void MMU2::filament_runout() { queue.inject_P(PSTR(MMU2_FILAMENT_RUNOUT_SCRIPT)); planner.synchronize(); } #if ENABLED(PRUSA_MMU2_S_MODE) void MMU2::check_filament() { const bool present = FILAMENT_PRESENT(); if (cmd == MMU_CMD_NONE && last_cmd == MMU_CMD_C0) { if (present && !mmu2s_triggered) { DEBUG_ECHOLNPGM("MMU <= 'A'"); tx_str_P(PSTR("A\n")); } // Slowly spin the extruder during C0 else { while (planner.movesplanned() < 3) { current_position.e += 0.25; line_to_current_position(MMM_TO_MMS(120)); } } } mmu2s_triggered = present; } bool MMU2::can_load() { execute_extruder_sequence((const E_Step *)can_load_sequence, COUNT(can_load_sequence)); int filament_detected_count = 0; const int steps = (MMU2_CAN_LOAD_RETRACT) / (MMU2_CAN_LOAD_INCREMENT); DEBUG_ECHOLNPGM("MMU can_load:"); LOOP_L_N(i, steps) { execute_extruder_sequence((const E_Step *)can_load_increment_sequence, COUNT(can_load_increment_sequence)); check_filament(); // Don't trust the idle function DEBUG_CHAR(mmu2s_triggered ? 'O' : 'o'); if (mmu2s_triggered) ++filament_detected_count; } if (filament_detected_count <= steps - (MMU2_CAN_LOAD_DEVIATION) / (MMU2_CAN_LOAD_INCREMENT)) { DEBUG_ECHOLNPGM(" failed."); return false; } DEBUG_ECHOLNPGM(" succeeded."); return true; } #endif #if BOTH(HAS_LCD_MENU, MMU2_MENUS) // Load filament into MMU2 void MMU2::load_filament(const uint8_t index) { if (!enabled) return; command(MMU_CMD_L0 + index); manage_response(false, false); BUZZ(200, 404); } /** * Switch material and load to nozzle */ bool MMU2::load_filament_to_nozzle(const uint8_t index) { if (!enabled) return false; if (thermalManager.tooColdToExtrude(active_extruder)) { BUZZ(200, 404); LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD); return false; } command(MMU_CMD_T0 + index); manage_response(true, true); const bool success = load_to_gears(); if (success) { mmu_loop(); extruder = index; active_extruder = 0; load_to_nozzle(); BUZZ(200, 404); } return success; } /** * Load filament to nozzle of multimaterial printer * * This function is used only only after T? (user select filament) and M600 (change filament). * It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading * filament to nozzle. */ void MMU2::load_to_nozzle() { if (!enabled) return; execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, COUNT(load_to_nozzle_sequence)); } bool MMU2::eject_filament(const uint8_t index, const bool recover) { if (!enabled) return false; if (thermalManager.tooColdToExtrude(active_extruder)) { BUZZ(200, 404); LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD); return false; } LCD_MESSAGEPGM(MSG_MMU2_EJECTING_FILAMENT); ENABLE_AXIS_E0(); current_position.e -= MMU2_FILAMENTCHANGE_EJECT_FEED; line_to_current_position(2500 / 60); planner.synchronize(); command(MMU_CMD_E0 + index); manage_response(false, false); if (recover) { LCD_MESSAGEPGM(MSG_MMU2_EJECT_RECOVER); BUZZ(200, 404); TERN_(HOST_PROMPT_SUPPORT, host_prompt_do(PROMPT_USER_CONTINUE, PSTR("MMU2 Eject Recover"), CONTINUE_STR)); TERN_(EXTENSIBLE_UI, ExtUI::onUserConfirmRequired_P(PSTR("MMU2 Eject Recover"))); wait_for_user_response(); BUZZ(200, 404); BUZZ(200, 404); command(MMU_CMD_R0); manage_response(false, false); } ui.reset_status(); // no active tool extruder = MMU2_NO_TOOL; set_runout_valid(false); BUZZ(200, 404); DISABLE_AXIS_E0(); return true; } /** * Unload from hotend and retract to MMU */ bool MMU2::unload() { if (!enabled) return false; if (thermalManager.tooColdToExtrude(active_extruder)) { BUZZ(200, 404); LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD); return false; } filament_ramming(); command(MMU_CMD_U0); manage_response(false, true); BUZZ(200, 404); // no active tool extruder = MMU2_NO_TOOL; set_runout_valid(false); return true; } /** * Unload sequence to optimize shape of the tip of the unloaded filament */ void MMU2::filament_ramming() { execute_extruder_sequence((const E_Step *)ramming_sequence, sizeof(ramming_sequence) / sizeof(E_Step)); } void MMU2::execute_extruder_sequence(const E_Step * sequence, int steps) { planner.synchronize(); ENABLE_AXIS_E0(); const E_Step* step = sequence; LOOP_L_N(i, steps) { const float es = pgm_read_float(&(step->extrude)); const feedRate_t fr_mm_m = pgm_read_float(&(step->feedRate)); DEBUG_ECHO_START(); DEBUG_ECHOLNPAIR("E step ", es, "/", fr_mm_m); current_position.e += es; line_to_current_position(MMM_TO_MMS(fr_mm_m)); planner.synchronize(); step++; } DISABLE_AXIS_E0(); } #endif // HAS_LCD_MENU && MMU2_MENUS #endif // PRUSA_MMU2