/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../inc/MarlinConfigPre.h" #if ENABLED(PROBE_TEMP_COMPENSATION) #include "probe_temp_comp.h" #include ProbeTempComp temp_comp; int16_t ProbeTempComp::z_offsets_probe[cali_info_init[TSI_PROBE].measurements], // = {0} ProbeTempComp::z_offsets_bed[cali_info_init[TSI_BED].measurements]; // = {0} #if ENABLED(USE_TEMP_EXT_COMPENSATION) int16_t ProbeTempComp::z_offsets_ext[cali_info_init[TSI_EXT].measurements]; // = {0} #endif int16_t *ProbeTempComp::sensor_z_offsets[TSI_COUNT] = { ProbeTempComp::z_offsets_probe, ProbeTempComp::z_offsets_bed #if ENABLED(USE_TEMP_EXT_COMPENSATION) , ProbeTempComp::z_offsets_ext #endif }; const temp_calib_t ProbeTempComp::cali_info[TSI_COUNT] = { cali_info_init[TSI_PROBE], cali_info_init[TSI_BED] #if ENABLED(USE_TEMP_EXT_COMPENSATION) , cali_info_init[TSI_EXT] #endif }; constexpr xyz_pos_t ProbeTempComp::park_point; constexpr xy_pos_t ProbeTempComp::measure_point; constexpr int ProbeTempComp::probe_calib_bed_temp; uint8_t ProbeTempComp::calib_idx; // = 0 float ProbeTempComp::init_measurement; // = 0.0 void ProbeTempComp::clear_offsets(const TempSensorID tsi) { LOOP_L_N(i, cali_info[tsi].measurements) sensor_z_offsets[tsi][i] = 0; calib_idx = 0; } bool ProbeTempComp::set_offset(const TempSensorID tsi, const uint8_t idx, const int16_t offset) { if (idx >= cali_info[tsi].measurements) return false; sensor_z_offsets[tsi][idx] = offset; return true; } void ProbeTempComp::print_offsets() { LOOP_L_N(s, TSI_COUNT) { float temp = cali_info[s].start_temp; for (int16_t i = -1; i < cali_info[s].measurements; ++i) { SERIAL_ECHOPGM_P(s == TSI_BED ? PSTR("Bed") : #if ENABLED(USE_TEMP_EXT_COMPENSATION) s == TSI_EXT ? PSTR("Extruder") : #endif PSTR("Probe") ); SERIAL_ECHOLNPAIR( " temp: ", temp, "C; Offset: ", i < 0 ? 0.0f : sensor_z_offsets[s][i], " um" ); temp += cali_info[s].temp_res; } } } void ProbeTempComp::prepare_new_calibration(const_float_t init_meas_z) { calib_idx = 0; init_measurement = init_meas_z; } void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const_float_t meas_z) { switch (tsi) { case TSI_PROBE: case TSI_BED: //case TSI_EXT: if (calib_idx >= cali_info[tsi].measurements) return; sensor_z_offsets[tsi][calib_idx++] = static_cast(meas_z * 1000.0f - init_measurement * 1000.0f); default: break; } } bool ProbeTempComp::finish_calibration(const TempSensorID tsi) { if (tsi != TSI_PROBE && tsi != TSI_BED) return false; if (calib_idx < 3) { SERIAL_ECHOLNPGM("!Insufficient measurements (min. 3)."); clear_offsets(tsi); return false; } const uint8_t measurements = cali_info[tsi].measurements; const float start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_res; int16_t * const data = sensor_z_offsets[tsi]; // Extrapolate float k, d; if (calib_idx < measurements) { SERIAL_ECHOLNPAIR("Got ", calib_idx, " measurements. "); if (linear_regression(tsi, k, d)) { SERIAL_ECHOPGM("Applying linear extrapolation"); calib_idx--; for (; calib_idx < measurements; ++calib_idx) { const float temp = start_temp + float(calib_idx) * res_temp; data[calib_idx] = static_cast(k * temp + d); } } else { // Simply use the last measured value for higher temperatures SERIAL_ECHOPGM("Failed to extrapolate"); const int16_t last_val = data[calib_idx]; for (; calib_idx < measurements; ++calib_idx) data[calib_idx] = last_val; } SERIAL_ECHOLNPGM(" for higher temperatures."); } // Sanity check for (calib_idx = 0; calib_idx < measurements; ++calib_idx) { // Restrict the max. offset if (abs(data[calib_idx]) > 2000) { SERIAL_ECHOLNPGM("!Invalid Z-offset detected (0-2)."); clear_offsets(tsi); return false; } // Restrict the max. offset difference between two probings if (calib_idx > 0 && abs(data[calib_idx - 1] - data[calib_idx]) > 800) { SERIAL_ECHOLNPGM("!Invalid Z-offset between two probings detected (0-0.8)."); clear_offsets(TSI_PROBE); return false; } } return true; } void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const_float_t temp, float &meas_z) { if (WITHIN(temp, cali_info[tsi].start_temp, cali_info[tsi].end_temp)) meas_z -= get_offset_for_temperature(tsi, temp); } float ProbeTempComp::get_offset_for_temperature(const TempSensorID tsi, const_float_t temp) { const uint8_t measurements = cali_info[tsi].measurements; const float start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_res; const int16_t * const data = sensor_z_offsets[tsi]; auto point = [&](uint8_t i) { return xy_float_t({start_temp + i*res_temp, static_cast(data[i])}); }; auto linear_interp = [](float x, xy_float_t p1, xy_float_t p2) { return (p2.y - p1.y) / (p2.x - p2.y) * (x - p1.x) + p1.y; }; // Linear interpolation uint8_t idx = static_cast((temp - start_temp) / res_temp); // offset in um float offset = 0.0f; #if !defined(PTC_LINEAR_EXTRAPOLATION) || PTC_LINEAR_EXTRAPOLATION <= 0 if (idx < 0) offset = 0.0f; else if (idx > measurements - 2) offset = static_cast(data[measurements - 1]); #else if (idx < 0) offset = linear_interp(temp, point(0), point(PTC_LINEAR_EXTRAPOLATION)); else if (idx > measurements - 2) offset = linear_interp(temp, point(measurements - PTC_LINEAR_EXTRAPOLATION - 1), point(measurements - 1)); #endif else offset = linear_interp(temp, point(idx), point(idx + 1)); // return offset in mm return offset / 1000.0f; } bool ProbeTempComp::linear_regression(const TempSensorID tsi, float &k, float &d) { if (tsi != TSI_PROBE && tsi != TSI_BED) return false; if (!WITHIN(calib_idx, 2, cali_info[tsi].measurements)) return false; const float start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_res; const int16_t * const data = sensor_z_offsets[tsi]; float sum_x = start_temp, sum_x2 = sq(start_temp), sum_xy = 0, sum_y = 0; LOOP_L_N(i, calib_idx) { const float xi = start_temp + (i + 1) * res_temp, yi = static_cast(data[i]); sum_x += xi; sum_x2 += sq(xi); sum_xy += xi * yi; sum_y += yi; } const float denom = static_cast(calib_idx + 1) * sum_x2 - sq(sum_x); if (fabs(denom) <= 10e-5) { // Singularity - unable to solve k = d = 0.0; return false; } k = (static_cast(calib_idx + 1) * sum_xy - sum_x * sum_y) / denom; d = (sum_y - k * sum_x) / static_cast(calib_idx + 1); return true; } #endif // PROBE_TEMP_COMPENSATION