/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * motion.cpp */ #include "motion.h" #include "endstops.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "../gcode/gcode.h" #include "../inc/MarlinConfig.h" #if IS_SCARA #include "../libs/buzzer.h" #include "../lcd/ultralcd.h" #endif #if HAS_BED_PROBE #include "probe.h" #endif #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if ENABLED(BLTOUCH) #include "../feature/bltouch.h" #endif #if HAS_DISPLAY #include "../lcd/ultralcd.h" #endif #if HAS_FILAMENT_SENSOR #include "../feature/runout.h" #endif #if ENABLED(SENSORLESS_HOMING) #include "../feature/tmc_util.h" #endif #if ENABLED(FWRETRACT) #include "../feature/fwretract.h" #endif #if ENABLED(BABYSTEP_DISPLAY_TOTAL) #include "../feature/babystep.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../core/debug_out.h" /** * axis_homed * Flags that each linear axis was homed. * XYZ on cartesian, ABC on delta, ABZ on SCARA. * * axis_known_position * Flags that the position is known in each linear axis. Set when homed. * Cleared whenever a stepper powers off, potentially losing its position. */ uint8_t axis_homed, axis_known_position; // = 0 // Relative Mode. Enable with G91, disable with G90. bool relative_mode; // = false; /** * Cartesian Current Position * Used to track the native machine position as moves are queued. * Used by 'line_to_current_position' to do a move after changing it. * Used by 'sync_plan_position' to update 'planner.position'. */ xyze_pos_t current_position = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS }; /** * Cartesian Destination * The destination for a move, filled in by G-code movement commands, * and expected by functions like 'prepare_line_to_destination'. * G-codes can set destination using 'get_destination_from_command' */ xyze_pos_t destination; // {0} // G60/G61 Position Save and Return #if SAVED_POSITIONS uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3]; xyz_pos_t stored_position[SAVED_POSITIONS]; #endif // The active extruder (tool). Set with T command. #if EXTRUDERS > 1 uint8_t active_extruder = 0; // = 0 #endif #if ENABLED(LCD_SHOW_E_TOTAL) float e_move_accumulator; // = 0 #endif // Extruder offsets #if HAS_HOTEND_OFFSET xyz_pos_t hotend_offset[HOTENDS]; // Initialized by settings.load() void reset_hotend_offsets() { constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z }; static_assert( !tmp[X_AXIS][0] && !tmp[Y_AXIS][0] && !tmp[Z_AXIS][0], "Offsets for the first hotend must be 0.0." ); // Transpose from [XYZ][HOTENDS] to [HOTENDS][XYZ] HOTEND_LOOP() LOOP_XYZ(a) hotend_offset[e][a] = tmp[a][e]; #if ENABLED(DUAL_X_CARRIAGE) hotend_offset[1].x = _MAX(X2_HOME_POS, X2_MAX_POS); #endif } #endif // The feedrate for the current move, often used as the default if // no other feedrate is specified. Overridden for special moves. // Set by the last G0 through G5 command's "F" parameter. // Functions that override this for custom moves *must always* restore it! feedRate_t feedrate_mm_s = MMM_TO_MMS(1500); int16_t feedrate_percentage = 100; // Homing feedrate is const progmem - compare to constexpr in the header const feedRate_t homing_feedrate_mm_s[XYZ] PROGMEM = { #if ENABLED(DELTA) MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z), #else MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY), #endif MMM_TO_MMS(HOMING_FEEDRATE_Z) }; // Cartesian conversion result goes here: xyz_pos_t cartes; #if IS_KINEMATIC abc_pos_t delta; #if HAS_SCARA_OFFSET abc_pos_t scara_home_offset; #endif #if HAS_SOFTWARE_ENDSTOPS float delta_max_radius, delta_max_radius_2; #elif IS_SCARA constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS, delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS); #else // DELTA constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS, delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS); #endif #endif /** * The workspace can be offset by some commands, or * these offsets may be omitted to save on computation. */ #if HAS_POSITION_SHIFT // The distance that XYZ has been offset by G92. Reset by G28. xyz_pos_t position_shift{0}; #endif #if HAS_HOME_OFFSET // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. xyz_pos_t home_offset{0}; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT // The above two are combined to save on computes xyz_pos_t workspace_offset{0}; #endif #if HAS_ABL_NOT_UBL float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); #endif /** * Output the current position to serial */ inline void report_more_positions() { stepper.report_positions(); TERN_(IS_SCARA, scara_report_positions()); } // Report the logical position for a given machine position inline void report_logical_position(const xyze_pos_t &rpos) { const xyze_pos_t lpos = rpos.asLogical(); SERIAL_ECHOPAIR_P(X_LBL, lpos.x, SP_Y_LBL, lpos.y, SP_Z_LBL, lpos.z, SP_E_LBL, lpos.e); } // Report the real current position according to the steppers. // Forward kinematics and un-leveling are applied. void report_real_position() { get_cartesian_from_steppers(); xyze_pos_t npos = cartes; npos.e = planner.get_axis_position_mm(E_AXIS); #if HAS_POSITION_MODIFIERS planner.unapply_modifiers(npos #if HAS_LEVELING , true #endif ); #endif report_logical_position(npos); report_more_positions(); } // Report the logical current position according to the most recent G-code command void report_current_position() { report_logical_position(current_position); report_more_positions(); } /** * Report the logical current position according to the most recent G-code command. * The planner.position always corresponds to the last G-code too. This makes M114 * suitable for debugging kinematics and leveling while avoiding planner sync that * definitively interrupts the printing flow. */ void report_current_position_projected() { report_logical_position(current_position); stepper.report_a_position(planner.position); } /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position() { if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); planner.set_position_mm(current_position); } void sync_plan_position_e() { planner.set_e_position_mm(current_position.e); } /** * Get the stepper positions in the cartes[] array. * Forward kinematics are applied for DELTA and SCARA. * * The result is in the current coordinate space with * leveling applied. The coordinates need to be run through * unapply_leveling to obtain the "ideal" coordinates * suitable for current_position, etc. */ void get_cartesian_from_steppers() { #if ENABLED(DELTA) forward_kinematics_DELTA(planner.get_axis_positions_mm()); #else #if IS_SCARA forward_kinematics_SCARA( planner.get_axis_position_degrees(A_AXIS), planner.get_axis_position_degrees(B_AXIS) ); #else cartes.set(planner.get_axis_position_mm(X_AXIS), planner.get_axis_position_mm(Y_AXIS)); #endif cartes.z = planner.get_axis_position_mm(Z_AXIS); #endif } /** * Set the current_position for an axis based on * the stepper positions, removing any leveling that * may have been applied. * * To prevent small shifts in axis position always call * sync_plan_position after updating axes with this. * * To keep hosts in sync, always call report_current_position * after updating the current_position. */ void set_current_from_steppers_for_axis(const AxisEnum axis) { get_cartesian_from_steppers(); xyze_pos_t pos = cartes; pos.e = planner.get_axis_position_mm(E_AXIS); #if HAS_POSITION_MODIFIERS planner.unapply_modifiers(pos #if HAS_LEVELING , true #endif ); #endif if (axis == ALL_AXES) current_position = pos; else current_position[axis] = pos[axis]; } /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const feedRate_t &fr_mm_s/*=feedrate_mm_s*/) { planner.buffer_line(current_position, fr_mm_s, active_extruder); } #if EXTRUDERS void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s) { TERN_(HAS_FILAMENT_SENSOR, runout.reset()); current_position.e += length / planner.e_factor[active_extruder]; line_to_current_position(fr_mm_s); planner.synchronize(); } #endif #if IS_KINEMATIC /** * Buffer a fast move without interpolation. Set current_position to destination */ void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) { if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination); #if UBL_SEGMENTED // UBL segmented line will do Z-only moves in single segment ubl.line_to_destination_segmented(scaled_fr_mm_s); #else if (current_position == destination) return; planner.buffer_line(destination, scaled_fr_mm_s, active_extruder); #endif current_position = destination; } #endif // IS_KINEMATIC void _internal_move_to_destination(const feedRate_t &fr_mm_s/*=0.0f*/ #if IS_KINEMATIC , const bool is_fast/*=false*/ #endif ) { const feedRate_t old_feedrate = feedrate_mm_s; if (fr_mm_s) feedrate_mm_s = fr_mm_s; const uint16_t old_pct = feedrate_percentage; feedrate_percentage = 100; #if EXTRUDERS const float old_fac = planner.e_factor[active_extruder]; planner.e_factor[active_extruder] = 1.0f; #endif #if IS_KINEMATIC if (is_fast) prepare_fast_move_to_destination(); else #endif prepare_line_to_destination(); feedrate_mm_s = old_feedrate; feedrate_percentage = old_pct; #if EXTRUDERS planner.e_factor[active_extruder] = old_fac; #endif } /** * Plan a move to (X, Y, Z) and set the current_position */ void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s/*=0.0*/) { if (DEBUGGING(LEVELING)) DEBUG_XYZ(">>> do_blocking_move_to", rx, ry, rz); const feedRate_t z_feedrate = fr_mm_s ?: homing_feedrate(Z_AXIS), xy_feedrate = fr_mm_s ?: feedRate_t(XY_PROBE_FEEDRATE_MM_S); #if ENABLED(DELTA) if (!position_is_reachable(rx, ry)) return; REMEMBER(fr, feedrate_mm_s, xy_feedrate); destination = current_position; // sync destination at the start if (DEBUGGING(LEVELING)) DEBUG_POS("destination = current_position", destination); // when in the danger zone if (current_position.z > delta_clip_start_height) { if (rz > delta_clip_start_height) { // staying in the danger zone destination.set(rx, ry, rz); // move directly (uninterpolated) prepare_internal_fast_move_to_destination(); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); return; } destination.z = delta_clip_start_height; prepare_internal_fast_move_to_destination(); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); } if (rz > current_position.z) { // raising? destination.z = rz; prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); } destination.set(rx, ry); prepare_internal_move_to_destination(); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); if (rz < current_position.z) { // lowering? destination.z = rz; prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); } #elif IS_SCARA if (!position_is_reachable(rx, ry)) return; destination = current_position; // If Z needs to raise, do it before moving XY if (destination.z < rz) { destination.z = rz; prepare_internal_fast_move_to_destination(z_feedrate); } destination.set(rx, ry); prepare_internal_fast_move_to_destination(xy_feedrate); // If Z needs to lower, do it after moving XY if (destination.z > rz) { destination.z = rz; prepare_internal_fast_move_to_destination(z_feedrate); } #else // If Z needs to raise, do it before moving XY if (current_position.z < rz) { current_position.z = rz; line_to_current_position(z_feedrate); } current_position.set(rx, ry); line_to_current_position(xy_feedrate); // If Z needs to lower, do it after moving XY if (current_position.z > rz) { current_position.z = rz; line_to_current_position(z_feedrate); } #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< do_blocking_move_to"); planner.synchronize(); } void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { do_blocking_move_to(raw.x, raw.y, current_position.z, fr_mm_s); } void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s); } void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s); } void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s/*=0.0*/) { do_blocking_move_to(rx, current_position.y, current_position.z, fr_mm_s); } void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) { do_blocking_move_to(current_position.x, ry, current_position.z, fr_mm_s); } void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s/*=0.0*/) { do_blocking_move_to_xy_z(current_position, rz, fr_mm_s); } void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) { do_blocking_move_to(rx, ry, current_position.z, fr_mm_s); } void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) { do_blocking_move_to_xy(raw.x, raw.y, fr_mm_s); } void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s/*=0.0f*/) { do_blocking_move_to(raw.x, raw.y, z, fr_mm_s); } // // Prepare to do endstop or probe moves with custom feedrates. // - Save / restore current feedrate and multiplier // static float saved_feedrate_mm_s; static int16_t saved_feedrate_percentage; void remember_feedrate_and_scaling() { saved_feedrate_mm_s = feedrate_mm_s; saved_feedrate_percentage = feedrate_percentage; } void remember_feedrate_scaling_off() { remember_feedrate_and_scaling(); feedrate_percentage = 100; } void restore_feedrate_and_scaling() { feedrate_mm_s = saved_feedrate_mm_s; feedrate_percentage = saved_feedrate_percentage; } #if HAS_SOFTWARE_ENDSTOPS bool soft_endstops_enabled = true; // Software Endstops are based on the configured limits. axis_limits_t soft_endstop = { { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }, { X_MAX_POS, Y_MAX_POS, Z_MAX_POS } }; /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ void update_software_endstops(const AxisEnum axis #if HAS_HOTEND_OFFSET , const uint8_t old_tool_index/*=0*/ , const uint8_t new_tool_index/*=0*/ #endif ) { #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { // In Dual X mode hotend_offset[X] is T1's home position const float dual_max_x = _MAX(hotend_offset[1].x, X2_MAX_POS); if (new_tool_index != 0) { // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) soft_endstop.min.x = X2_MIN_POS; soft_endstop.max.x = dual_max_x; } else if (dxc_is_duplicating()) { // In Duplication Mode, T0 can move as far left as X1_MIN_POS // but not so far to the right that T1 would move past the end soft_endstop.min.x = X1_MIN_POS; soft_endstop.max.x = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset); } else { // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS soft_endstop.min.x = X1_MIN_POS; soft_endstop.max.x = X1_MAX_POS; } } #elif ENABLED(DELTA) soft_endstop.min[axis] = base_min_pos(axis); soft_endstop.max[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_max_pos(axis); switch (axis) { case X_AXIS: case Y_AXIS: // Get a minimum radius for clamping delta_max_radius = _MIN(ABS(_MAX(soft_endstop.min.x, soft_endstop.min.y)), soft_endstop.max.x, soft_endstop.max.y); delta_max_radius_2 = sq(delta_max_radius); break; case Z_AXIS: delta_clip_start_height = soft_endstop.max[axis] - delta_safe_distance_from_top(); default: break; } #elif HAS_HOTEND_OFFSET // Software endstops are relative to the tool 0 workspace, so // the movement limits must be shifted by the tool offset to // retain the same physical limit when other tools are selected. if (old_tool_index != new_tool_index) { const float offs = hotend_offset[new_tool_index][axis] - hotend_offset[old_tool_index][axis]; soft_endstop.min[axis] += offs; soft_endstop.max[axis] += offs; } else { const float offs = hotend_offset[active_extruder][axis]; soft_endstop.min[axis] = base_min_pos(axis) + offs; soft_endstop.max[axis] = base_max_pos(axis) + offs; } #else soft_endstop.min[axis] = base_min_pos(axis); soft_endstop.max[axis] = base_max_pos(axis); #endif if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " min:", soft_endstop.min[axis], " max:", soft_endstop.max[axis]); } /** * Constrain the given coordinates to the software endstops. * * For DELTA/SCARA the XY constraint is based on the smallest * radius within the set software endstops. */ void apply_motion_limits(xyz_pos_t &target) { if (!soft_endstops_enabled) return; #if IS_KINEMATIC if (TERN0(DELTA, !all_axes_homed())) return; #if BOTH(HAS_HOTEND_OFFSET, DELTA) // The effector center position will be the target minus the hotend offset. const xy_pos_t offs = hotend_offset[active_extruder]; #else // SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset. constexpr xy_pos_t offs{0}; #endif if (TERN1(IS_SCARA, TEST(axis_homed, X_AXIS) && TEST(axis_homed, Y_AXIS))) { const float dist_2 = HYPOT2(target.x - offs.x, target.y - offs.y); if (dist_2 > delta_max_radius_2) target *= float(delta_max_radius / SQRT(dist_2)); // 200 / 300 = 0.66 } #else if (TEST(axis_homed, X_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X) NOLESS(target.x, soft_endstop.min.x); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X) NOMORE(target.x, soft_endstop.max.x); #endif } if (TEST(axis_homed, Y_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y) NOLESS(target.y, soft_endstop.min.y); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y) NOMORE(target.y, soft_endstop.max.y); #endif } #endif if (TEST(axis_homed, Z_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z) NOLESS(target.z, soft_endstop.min.z); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z) NOMORE(target.z, soft_endstop.max.z); #endif } } #endif // HAS_SOFTWARE_ENDSTOPS #if !UBL_SEGMENTED FORCE_INLINE void segment_idle(millis_t &next_idle_ms) { const millis_t ms = millis(); if (ELAPSED(ms, next_idle_ms)) { next_idle_ms = ms + 200UL; return idle(); } thermalManager.manage_heater(); // Returns immediately on most calls } #if IS_KINEMATIC #if IS_SCARA /** * Before raising this value, use M665 S[seg_per_sec] to decrease * the number of segments-per-second. Default is 200. Some deltas * do better with 160 or lower. It would be good to know how many * segments-per-second are actually possible for SCARA on AVR. * * Longer segments result in less kinematic overhead * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm * and compare the difference. */ #define SCARA_MIN_SEGMENT_LENGTH 0.5f #endif /** * Prepare a linear move in a DELTA or SCARA setup. * * Called from prepare_line_to_destination as the * default Delta/SCARA segmenter. * * This calls planner.buffer_line several times, adding * small incremental moves for DELTA or SCARA. * * For Unified Bed Leveling (Delta or Segmented Cartesian) * the ubl.line_to_destination_segmented method replaces this. * * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES * this is replaced by segmented_line_to_destination below. */ inline bool line_to_destination_kinematic() { // Get the top feedrate of the move in the XY plane const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); const xyze_float_t diff = destination - current_position; // If the move is only in Z/E don't split up the move if (!diff.x && !diff.y) { planner.buffer_line(destination, scaled_fr_mm_s, active_extruder); return false; // caller will update current_position } // Fail if attempting move outside printable radius if (!position_is_reachable(destination)) return true; // Get the linear distance in XYZ float cartesian_mm = diff.magnitude(); // If the move is very short, check the E move distance if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return true; // Minimum number of seconds to move the given distance const float seconds = cartesian_mm / scaled_fr_mm_s; // The number of segments-per-second times the duration // gives the number of segments uint16_t segments = delta_segments_per_second * seconds; // For SCARA enforce a minimum segment size #if IS_SCARA NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH)); #endif // At least one segment is required NOLESS(segments, 1U); // The approximate length of each segment const float inv_segments = 1.0f / float(segments), cartesian_segment_mm = cartesian_mm * inv_segments; const xyze_float_t segment_distance = diff * inv_segments; #if ENABLED(SCARA_FEEDRATE_SCALING) const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm; #endif /* SERIAL_ECHOPAIR("mm=", cartesian_mm); SERIAL_ECHOPAIR(" seconds=", seconds); SERIAL_ECHOPAIR(" segments=", segments); SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm); SERIAL_EOL(); //*/ // Get the current position as starting point xyze_pos_t raw = current_position; // Calculate and execute the segments millis_t next_idle_ms = millis() + 200UL; while (--segments) { segment_idle(next_idle_ms); raw += segment_distance; if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif )) break; } // Ensure last segment arrives at target location. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); return false; // caller will update current_position } #else // !IS_KINEMATIC #if ENABLED(SEGMENT_LEVELED_MOVES) /** * Prepare a segmented move on a CARTESIAN setup. * * This calls planner.buffer_line several times, adding * small incremental moves. This allows the planner to * apply more detailed bed leveling to the full move. */ inline void segmented_line_to_destination(const feedRate_t &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) { const xyze_float_t diff = destination - current_position; // If the move is only in Z/E don't split up the move if (!diff.x && !diff.y) { planner.buffer_line(destination, fr_mm_s, active_extruder); return; } // Get the linear distance in XYZ // If the move is very short, check the E move distance // No E move either? Game over. float cartesian_mm = diff.magnitude(); if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e); if (UNEAR_ZERO(cartesian_mm)) return; // The length divided by the segment size // At least one segment is required uint16_t segments = cartesian_mm / segment_size; NOLESS(segments, 1U); // The approximate length of each segment const float inv_segments = 1.0f / float(segments), cartesian_segment_mm = cartesian_mm * inv_segments; const xyze_float_t segment_distance = diff * inv_segments; #if ENABLED(SCARA_FEEDRATE_SCALING) const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm; #endif // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm); // Get the raw current position as starting point xyze_pos_t raw = current_position; // Calculate and execute the segments millis_t next_idle_ms = millis() + 200UL; while (--segments) { segment_idle(next_idle_ms); raw += segment_distance; if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif )) break; } // Since segment_distance is only approximate, // the final move must be to the exact destination. planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); } #endif // SEGMENT_LEVELED_MOVES /** * Prepare a linear move in a Cartesian setup. * * When a mesh-based leveling system is active, moves are segmented * according to the configuration of the leveling system. * * Return true if 'current_position' was set to 'destination' */ inline bool line_to_destination_cartesian() { const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); #if HAS_MESH if (planner.leveling_active && planner.leveling_active_at_z(destination.z)) { #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about return true; // all moves, including Z-only moves. #elif ENABLED(SEGMENT_LEVELED_MOVES) segmented_line_to_destination(scaled_fr_mm_s); return false; // caller will update current_position #else /** * For MBL and ABL-BILINEAR only segment moves when X or Y are involved. * Otherwise fall through to do a direct single move. */ if (xy_pos_t(current_position) != xy_pos_t(destination)) { #if ENABLED(MESH_BED_LEVELING) mbl.line_to_destination(scaled_fr_mm_s); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_line_to_destination(scaled_fr_mm_s); #endif return true; } #endif } #endif // HAS_MESH planner.buffer_line(destination, scaled_fr_mm_s, active_extruder); return false; // caller will update current_position } #endif // !IS_KINEMATIC #endif // !UBL_SEGMENTED #if HAS_DUPLICATION_MODE bool extruder_duplication_enabled, mirrored_duplication_mode; #if ENABLED(MULTI_NOZZLE_DUPLICATION) uint8_t duplication_e_mask; // = 0 #endif #endif #if ENABLED(DUAL_X_CARRIAGE) DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1 duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 xyz_pos_t raised_parked_position; // used in mode 1 bool active_extruder_parked = false; // used in mode 1 & 2 millis_t delayed_move_time = 0; // used in mode 1 int16_t duplicate_extruder_temp_offset = 0; // used in mode 2 float x_home_pos(const int extruder) { if (extruder == 0) return base_home_pos(X_AXIS); else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage position when homed - otherwise X2_HOME_POS is used. * This allows soft recalibration of the second extruder home position * without firmware reflash (through the M218 command). */ return hotend_offset[1].x > 0 ? hotend_offset[1].x : X2_HOME_POS; } /** * Prepare a linear move in a dual X axis setup * * Return true if current_position[] was set to destination[] */ inline bool dual_x_carriage_unpark() { if (active_extruder_parked) { switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: break; case DXC_AUTO_PARK_MODE: if (current_position.e == destination.e) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { current_position = destination; NOLESS(raised_parked_position.z, destination.z); delayed_move_time = millis(); return true; } } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower #define CUR_X current_position.x #define CUR_Y current_position.y #define CUR_Z current_position.z #define CUR_E current_position.e #define RAISED_X raised_parked_position.x #define RAISED_Y raised_parked_position.y #define RAISED_Z raised_parked_position.z if ( planner.buffer_line(RAISED_X, RAISED_Y, RAISED_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder)) if (planner.buffer_line( CUR_X, CUR_Y, RAISED_Z, CUR_E, PLANNER_XY_FEEDRATE(), active_extruder)) line_to_current_position(planner.settings.max_feedrate_mm_s[Z_AXIS]); delayed_move_time = 0; active_extruder_parked = false; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Clear active_extruder_parked"); break; case DXC_MIRRORED_MODE: case DXC_DUPLICATION_MODE: if (active_extruder == 0) { xyze_pos_t new_pos = current_position; if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) new_pos.x += duplicate_extruder_x_offset; else new_pos.x = inactive_extruder_x_pos; // move duplicate extruder into correct duplication position. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x_pos, " ... Line to X", new_pos.x); planner.set_position_mm(inactive_extruder_x_pos, current_position.y, current_position.z, current_position.e); if (!planner.buffer_line(new_pos, planner.settings.max_feedrate_mm_s[X_AXIS], 1)) break; planner.synchronize(); sync_plan_position(); extruder_duplication_enabled = true; active_extruder_parked = false; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked"); } else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0"); break; } } stepper.set_directions(); return false; } #endif // DUAL_X_CARRIAGE /** * Prepare a single move and get ready for the next one * * This may result in several calls to planner.buffer_line to * do smaller moves for DELTA, SCARA, mesh moves, etc. * * Make sure current_position.e and destination.e are good * before calling or cold/lengthy extrusion may get missed. * * Before exit, current_position is set to destination. */ void prepare_line_to_destination() { apply_motion_limits(destination); #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE) if (!DEBUGGING(DRYRUN) && destination.e != current_position.e) { bool ignore_e = false; #if ENABLED(PREVENT_COLD_EXTRUSION) ignore_e = thermalManager.tooColdToExtrude(active_extruder); if (ignore_e) SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP); #endif #if ENABLED(PREVENT_LENGTHY_EXTRUDE) const float e_delta = ABS(destination.e - current_position.e) * planner.e_factor[active_extruder]; if (e_delta > (EXTRUDE_MAXLENGTH)) { #if ENABLED(MIXING_EXTRUDER) float collector[MIXING_STEPPERS]; mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector); MIXER_STEPPER_LOOP(e) { if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) { ignore_e = true; SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); break; } } #else ignore_e = true; SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); #endif } #endif if (ignore_e) { current_position.e = destination.e; // Behave as if the E move really took place planner.set_e_position_mm(destination.e); // Prevent the planner from complaining too } } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE if (TERN0(DUAL_X_CARRIAGE, dual_x_carriage_unpark())) return; if ( #if UBL_SEGMENTED #if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now. ubl.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s)) #else line_to_destination_cartesian() #endif #elif IS_KINEMATIC line_to_destination_kinematic() #else line_to_destination_cartesian() #endif ) return; current_position = destination; } uint8_t axes_need_homing(uint8_t axis_bits/*=0x07*/) { #if ENABLED(HOME_AFTER_DEACTIVATE) #define HOMED_FLAGS axis_known_position #else #define HOMED_FLAGS axis_homed #endif // Clear test bits that are homed if (TEST(axis_bits, X_AXIS) && TEST(HOMED_FLAGS, X_AXIS)) CBI(axis_bits, X_AXIS); if (TEST(axis_bits, Y_AXIS) && TEST(HOMED_FLAGS, Y_AXIS)) CBI(axis_bits, Y_AXIS); if (TEST(axis_bits, Z_AXIS) && TEST(HOMED_FLAGS, Z_AXIS)) CBI(axis_bits, Z_AXIS); return axis_bits; } bool axis_unhomed_error(uint8_t axis_bits/*=0x07*/) { if ((axis_bits = axes_need_homing(axis_bits))) { PGM_P home_first = GET_TEXT(MSG_HOME_FIRST); char msg[strlen_P(home_first)+1]; sprintf_P(msg, home_first, TEST(axis_bits, X_AXIS) ? "X" : "", TEST(axis_bits, Y_AXIS) ? "Y" : "", TEST(axis_bits, Z_AXIS) ? "Z" : "" ); SERIAL_ECHO_START(); SERIAL_ECHOLN(msg); TERN_(HAS_DISPLAY, ui.set_status(msg)); return true; } return false; } /** * Homing bump feedrate (mm/s) */ feedRate_t get_homing_bump_feedrate(const AxisEnum axis) { if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS)) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW); static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR; uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]); if (hbd < 1) { hbd = 10; SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1"); } return homing_feedrate(axis) / float(hbd); } #if ENABLED(SENSORLESS_HOMING) /** * Set sensorless homing if the axis has it, accounting for Core Kinematics. */ sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) { sensorless_t stealth_states { false }; switch (axis) { default: break; #if X_SENSORLESS case X_AXIS: stealth_states.x = tmc_enable_stallguard(stepperX); #if AXIS_HAS_STALLGUARD(X2) stealth_states.x2 = tmc_enable_stallguard(stepperX2); #endif #if CORE_IS_XY && Y_SENSORLESS stealth_states.y = tmc_enable_stallguard(stepperY); #elif CORE_IS_XZ && Z_SENSORLESS stealth_states.z = tmc_enable_stallguard(stepperZ); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: stealth_states.y = tmc_enable_stallguard(stepperY); #if AXIS_HAS_STALLGUARD(Y2) stealth_states.y2 = tmc_enable_stallguard(stepperY2); #endif #if CORE_IS_XY && X_SENSORLESS stealth_states.x = tmc_enable_stallguard(stepperX); #elif CORE_IS_YZ && Z_SENSORLESS stealth_states.z = tmc_enable_stallguard(stepperZ); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: stealth_states.z = tmc_enable_stallguard(stepperZ); #if AXIS_HAS_STALLGUARD(Z2) stealth_states.z2 = tmc_enable_stallguard(stepperZ2); #endif #if AXIS_HAS_STALLGUARD(Z3) stealth_states.z3 = tmc_enable_stallguard(stepperZ3); #endif #if AXIS_HAS_STALLGUARD(Z4) stealth_states.z4 = tmc_enable_stallguard(stepperZ4); #endif #if CORE_IS_XZ && X_SENSORLESS stealth_states.x = tmc_enable_stallguard(stepperX); #elif CORE_IS_YZ && Y_SENSORLESS stealth_states.y = tmc_enable_stallguard(stepperY); #endif break; #endif } #if ENABLED(SPI_ENDSTOPS) switch (axis) { case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = true; break; case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = true; break; case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = true; break; default: break; } #endif TERN_(IMPROVE_HOMING_RELIABILITY, sg_guard_period = millis() + default_sg_guard_duration); return stealth_states; } void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) { switch (axis) { default: break; #if X_SENSORLESS case X_AXIS: tmc_disable_stallguard(stepperX, enable_stealth.x); #if AXIS_HAS_STALLGUARD(X2) tmc_disable_stallguard(stepperX2, enable_stealth.x2); #endif #if CORE_IS_XY && Y_SENSORLESS tmc_disable_stallguard(stepperY, enable_stealth.y); #elif CORE_IS_XZ && Z_SENSORLESS tmc_disable_stallguard(stepperZ, enable_stealth.z); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: tmc_disable_stallguard(stepperY, enable_stealth.y); #if AXIS_HAS_STALLGUARD(Y2) tmc_disable_stallguard(stepperY2, enable_stealth.y2); #endif #if CORE_IS_XY && X_SENSORLESS tmc_disable_stallguard(stepperX, enable_stealth.x); #elif CORE_IS_YZ && Z_SENSORLESS tmc_disable_stallguard(stepperZ, enable_stealth.z); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: tmc_disable_stallguard(stepperZ, enable_stealth.z); #if AXIS_HAS_STALLGUARD(Z2) tmc_disable_stallguard(stepperZ2, enable_stealth.z2); #endif #if AXIS_HAS_STALLGUARD(Z3) tmc_disable_stallguard(stepperZ3, enable_stealth.z3); #endif #if AXIS_HAS_STALLGUARD(Z4) tmc_disable_stallguard(stepperZ4, enable_stealth.z4); #endif #if CORE_IS_XZ && X_SENSORLESS tmc_disable_stallguard(stepperX, enable_stealth.x); #elif CORE_IS_YZ && Y_SENSORLESS tmc_disable_stallguard(stepperY, enable_stealth.y); #endif break; #endif } #if ENABLED(SPI_ENDSTOPS) switch (axis) { case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = false; break; case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = false; break; case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = false; break; default: break; } #endif } #endif // SENSORLESS_HOMING /** * Home an individual linear axis */ void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0) { const feedRate_t real_fr_mm_s = fr_mm_s ?: homing_feedrate(axis); if (DEBUGGING(LEVELING)) { DEBUG_ECHOPAIR(">>> do_homing_move(", axis_codes[axis], ", ", distance, ", "); if (fr_mm_s) DEBUG_ECHO(fr_mm_s); else DEBUG_ECHOPAIR("[", real_fr_mm_s, "]"); DEBUG_ECHOLNPGM(")"); } #if ALL(HOMING_Z_WITH_PROBE, HAS_HEATED_BED, WAIT_FOR_BED_HEATER) // Wait for bed to heat back up between probing points if (axis == Z_AXIS && distance < 0) thermalManager.wait_for_bed_heating(); #endif // Only do some things when moving towards an endstop const int8_t axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS) ? x_home_dir(active_extruder) : home_dir(axis); const bool is_home_dir = (axis_home_dir > 0) == (distance > 0); #if ENABLED(SENSORLESS_HOMING) sensorless_t stealth_states; #endif if (is_home_dir) { #if HOMING_Z_WITH_PROBE && QUIET_PROBING if (axis == Z_AXIS) probe.set_probing_paused(true); #endif // Disable stealthChop if used. Enable diag1 pin on driver. TERN_(SENSORLESS_HOMING, stealth_states = start_sensorless_homing_per_axis(axis)); } #if IS_SCARA // Tell the planner the axis is at 0 current_position[axis] = 0; sync_plan_position(); current_position[axis] = distance; line_to_current_position(real_fr_mm_s); #else abce_pos_t target = planner.get_axis_positions_mm(); target[axis] = 0; planner.set_machine_position_mm(target); target[axis] = distance; #if HAS_DIST_MM_ARG const xyze_float_t cart_dist_mm{0}; #endif // Set delta/cartesian axes directly planner.buffer_segment(target #if HAS_DIST_MM_ARG , cart_dist_mm #endif , real_fr_mm_s, active_extruder ); #endif planner.synchronize(); if (is_home_dir) { #if HOMING_Z_WITH_PROBE && QUIET_PROBING if (axis == Z_AXIS) probe.set_probing_paused(false); #endif endstops.validate_homing_move(); // Re-enable stealthChop if used. Disable diag1 pin on driver. TERN_(SENSORLESS_HOMING, end_sensorless_homing_per_axis(axis, stealth_states)); } if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< do_homing_move(", axis_codes[axis], ")"); } /** * Set an axis' current position to its home position (after homing). * * For Core and Cartesian robots this applies one-to-one when an * individual axis has been homed. * * DELTA should wait until all homing is done before setting the XYZ * current_position to home, because homing is a single operation. * In the case where the axis positions are already known and previously * homed, DELTA could home to X or Y individually by moving either one * to the center. However, homing Z always homes XY and Z. * * SCARA should wait until all XY homing is done before setting the XY * current_position to home, because neither X nor Y is at home until * both are at home. Z can however be homed individually. * * Callers must sync the planner position after calling this! */ void set_axis_is_at_home(const AxisEnum axis) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", axis_codes[axis], ")"); SBI(axis_known_position, axis); SBI(axis_homed, axis); #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { current_position.x = x_home_pos(active_extruder); return; } #endif #if ENABLED(MORGAN_SCARA) scara_set_axis_is_at_home(axis); #elif ENABLED(DELTA) current_position[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_home_pos(axis); #else current_position[axis] = base_home_pos(axis); #endif /** * Z Probe Z Homing? Account for the probe's Z offset. */ #if HAS_BED_PROBE && Z_HOME_DIR < 0 if (axis == Z_AXIS) { #if HOMING_Z_WITH_PROBE current_position.z -= probe.offset.z; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> probe.offset.z = ", probe.offset.z); #else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***"); #endif } #endif TERN_(I2C_POSITION_ENCODERS, I2CPEM.homed(axis)); TERN_(BABYSTEP_DISPLAY_TOTAL, babystep.reset_total(axis)); #if HAS_POSITION_SHIFT position_shift[axis] = 0; update_workspace_offset(axis); #endif if (DEBUGGING(LEVELING)) { #if HAS_HOME_OFFSET DEBUG_ECHOLNPAIR("> home_offset[", axis_codes[axis], "] = ", home_offset[axis]); #endif DEBUG_POS("", current_position); DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", axis_codes[axis], ")"); } } /** * Set an axis' to be unhomed. */ void set_axis_not_trusted(const AxisEnum axis) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_not_trusted(", axis_codes[axis], ")"); CBI(axis_known_position, axis); CBI(axis_homed, axis); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_not_trusted(", axis_codes[axis], ")"); TERN_(I2C_POSITION_ENCODERS, I2CPEM.unhomed(axis)); } /** * Move the axis back to its home_phase if set and driver is capable (TMC) * * Improves homing repeatability by homing to stepper coil's nearest absolute * phase position. Trinamic drivers use a stepper phase table with 1024 values * spanning 4 full steps with 256 positions each (ergo, 1024 positions). */ void backout_to_tmc_homing_phase(const AxisEnum axis) { #ifdef TMC_HOME_PHASE const abc_long_t home_phase = TMC_HOME_PHASE; // check if home phase is disabled for this axis. if (home_phase[axis] < 0) return; int16_t axisMicrostepSize; int16_t phaseCurrent; bool invertDir; switch (axis) { #ifdef X_MICROSTEPS case X_AXIS: axisMicrostepSize = 256 / (X_MICROSTEPS); phaseCurrent = stepperX.get_microstep_counter(); invertDir = INVERT_X_DIR; break; #endif #ifdef Y_MICROSTEPS case Y_AXIS: axisMicrostepSize = 256 / (Y_MICROSTEPS); phaseCurrent = stepperY.get_microstep_counter(); invertDir = INVERT_Y_DIR; break; #endif #ifdef Z_MICROSTEPS case Z_AXIS: axisMicrostepSize = 256 / (Z_MICROSTEPS); phaseCurrent = stepperZ.get_microstep_counter(); invertDir = INVERT_Z_DIR; break; #endif default: return; } // Depending on invert dir measure the distance to nearest home phase. int16_t phaseDelta = (invertDir ? -1 : 1) * (home_phase[axis] - phaseCurrent); // Check if home distance within endstop assumed repeatability noise of .05mm and warn. if (ABS(phaseDelta) * planner.steps_to_mm[axis] / axisMicrostepSize < 0.05f) DEBUG_ECHOLNPAIR("Selected home phase ", home_phase[axis], " too close to endstop trigger phase ", phaseCurrent, ". Pick a different phase for ", axis_codes[axis]); // Skip to next if target position is behind current. So it only moves away from endstop. if (phaseDelta < 0) phaseDelta += 1024; // Get the integer µsteps to target. Unreachable phase? Consistently stop at the µstep before / after based on invertDir. const float mmDelta = -(int16_t(phaseDelta / axisMicrostepSize) * planner.steps_to_mm[axis] * (Z_HOME_DIR)); // optional debug messages. if (DEBUGGING(LEVELING)) { DEBUG_ECHOLNPAIR( "Endstop ", axis_codes[axis], " hit at Phase:", phaseCurrent, " Delta:", phaseDelta, " Distance:", mmDelta ); } if (mmDelta != 0) { // retrace by the amount computed in mmDelta. do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis)); } #endif } /** * Home an individual "raw axis" to its endstop. * This applies to XYZ on Cartesian and Core robots, and * to the individual ABC steppers on DELTA and SCARA. * * At the end of the procedure the axis is marked as * homed and the current position of that axis is updated. * Kinematic robots should wait till all axes are homed * before updating the current position. */ void homeaxis(const AxisEnum axis) { #if IS_SCARA // Only Z homing (with probe) is permitted if (axis != Z_AXIS) { BUZZ(100, 880); return; } #else #define _CAN_HOME(A) \ (axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0))) #if X_SPI_SENSORLESS #define CAN_HOME_X true #else #define CAN_HOME_X _CAN_HOME(X) #endif #if Y_SPI_SENSORLESS #define CAN_HOME_Y true #else #define CAN_HOME_Y _CAN_HOME(Y) #endif #if Z_SPI_SENSORLESS #define CAN_HOME_Z true #else #define CAN_HOME_Z _CAN_HOME(Z) #endif if (!CAN_HOME_X && !CAN_HOME_Y && !CAN_HOME_Z) return; #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", axis_codes[axis], ")"); const int axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS) ? x_home_dir(active_extruder) : home_dir(axis); // Homing Z towards the bed? Deploy the Z probe or endstop. if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.deploy())) return; // Set flags for X, Y, Z motor locking #if HAS_EXTRA_ENDSTOPS switch (axis) { TERN_(X_DUAL_ENDSTOPS, case X_AXIS:) TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:) TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:) stepper.set_separate_multi_axis(true); default: break; } #endif // Fast move towards endstop until triggered if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 1 Fast:"); #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) if (axis == Z_AXIS && bltouch.deploy()) return; // The initial DEPLOY #endif #if DISABLED(DELTA) && defined(SENSORLESS_BACKOFF_MM) const xy_float_t backoff = SENSORLESS_BACKOFF_MM; if (((ENABLED(X_SENSORLESS) && axis == X_AXIS) || (ENABLED(Y_SENSORLESS) && axis == Y_AXIS)) && backoff[axis]) do_homing_move(axis, -ABS(backoff[axis]) * axis_home_dir, homing_feedrate(axis)); #endif do_homing_move(axis, 1.5f * max_length(TERN(DELTA, Z_AXIS, axis)) * axis_home_dir); #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) && DISABLED(BLTOUCH_HS_MODE) if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE) #endif // When homing Z with probe respect probe clearance const bool use_probe_bump = TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && home_bump_mm(Z_AXIS)); const float bump = axis_home_dir * ( use_probe_bump ? _MAX(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) : home_bump_mm(axis) ); // If a second homing move is configured... if (bump) { // Move away from the endstop by the axis HOMING_BUMP_MM if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Move Away:"); do_homing_move(axis, -bump #if HOMING_Z_WITH_PROBE , MMM_TO_MMS(axis == Z_AXIS ? Z_PROBE_SPEED_FAST : 0) #endif ); // Slow move towards endstop until triggered if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 2 Slow:"); #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) && DISABLED(BLTOUCH_HS_MODE) if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE) #endif do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis)); #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) if (axis == Z_AXIS) bltouch.stow(); // The final STOW #endif } #if HAS_EXTRA_ENDSTOPS const bool pos_dir = axis_home_dir > 0; #if ENABLED(X_DUAL_ENDSTOPS) if (axis == X_AXIS) { const float adj = ABS(endstops.x2_endstop_adj); if (adj) { if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_x_lock(false); stepper.set_x2_lock(false); } } #endif #if ENABLED(Y_DUAL_ENDSTOPS) if (axis == Y_AXIS) { const float adj = ABS(endstops.y2_endstop_adj); if (adj) { if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_y_lock(false); stepper.set_y2_lock(false); } } #endif #if ENABLED(Z_MULTI_ENDSTOPS) if (axis == Z_AXIS) { #if NUM_Z_STEPPER_DRIVERS == 2 const float adj = ABS(endstops.z2_endstop_adj); if (adj) { if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_z_lock(false); stepper.set_z2_lock(false); } #else // Handy arrays of stepper lock function pointers typedef void (*adjustFunc_t)(const bool); adjustFunc_t lock[] = { stepper.set_z_lock, stepper.set_z2_lock, stepper.set_z3_lock #if NUM_Z_STEPPER_DRIVERS >= 4 , stepper.set_z4_lock #endif }; float adj[] = { 0, endstops.z2_endstop_adj, endstops.z3_endstop_adj #if NUM_Z_STEPPER_DRIVERS >= 4 , endstops.z4_endstop_adj #endif }; adjustFunc_t tempLock; float tempAdj; // Manual bubble sort by adjust value if (adj[1] < adj[0]) { tempLock = lock[0], tempAdj = adj[0]; lock[0] = lock[1], adj[0] = adj[1]; lock[1] = tempLock, adj[1] = tempAdj; } if (adj[2] < adj[1]) { tempLock = lock[1], tempAdj = adj[1]; lock[1] = lock[2], adj[1] = adj[2]; lock[2] = tempLock, adj[2] = tempAdj; } #if NUM_Z_STEPPER_DRIVERS >= 4 if (adj[3] < adj[2]) { tempLock = lock[2], tempAdj = adj[2]; lock[2] = lock[3], adj[2] = adj[3]; lock[3] = tempLock, adj[3] = tempAdj; } if (adj[2] < adj[1]) { tempLock = lock[1], tempAdj = adj[1]; lock[1] = lock[2], adj[1] = adj[2]; lock[2] = tempLock, adj[2] = tempAdj; } #endif if (adj[1] < adj[0]) { tempLock = lock[0], tempAdj = adj[0]; lock[0] = lock[1], adj[0] = adj[1]; lock[1] = tempLock, adj[1] = tempAdj; } if (pos_dir) { // normalize adj to smallest value and do the first move (*lock[0])(true); do_homing_move(axis, adj[1] - adj[0]); // lock the second stepper for the final correction (*lock[1])(true); do_homing_move(axis, adj[2] - adj[1]); #if NUM_Z_STEPPER_DRIVERS >= 4 // lock the third stepper for the final correction (*lock[2])(true); do_homing_move(axis, adj[3] - adj[2]); #endif } else { #if NUM_Z_STEPPER_DRIVERS >= 4 (*lock[3])(true); do_homing_move(axis, adj[2] - adj[3]); #endif (*lock[2])(true); do_homing_move(axis, adj[1] - adj[2]); (*lock[1])(true); do_homing_move(axis, adj[0] - adj[1]); } stepper.set_z_lock(false); stepper.set_z2_lock(false); stepper.set_z3_lock(false); #if NUM_Z_STEPPER_DRIVERS >= 4 stepper.set_z4_lock(false); #endif #endif } #endif // Reset flags for X, Y, Z motor locking switch (axis) { default: break; TERN_(X_DUAL_ENDSTOPS, case X_AXIS:) TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:) TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:) stepper.set_separate_multi_axis(false); } #endif // move back to homing phase if configured and capable backout_to_tmc_homing_phase(axis); #if IS_SCARA set_axis_is_at_home(axis); sync_plan_position(); #elif ENABLED(DELTA) // Delta has already moved all three towers up in G28 // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. const float adjDistance = delta_endstop_adj[axis], minDistance = (MIN_STEPS_PER_SEGMENT) * planner.steps_to_mm[axis]; // Retrace by the amount specified in delta_endstop_adj if more than min steps. if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("adjDistance:", adjDistance); do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis)); } #else // CARTESIAN / CORE set_axis_is_at_home(axis); sync_plan_position(); destination[axis] = current_position[axis]; if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif // Put away the Z probe #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && probe.stow()) return; #endif #if DISABLED(DELTA) && defined(HOMING_BACKOFF_POST_MM) const xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM; if (endstop_backoff[axis]) { current_position[axis] -= ABS(endstop_backoff[axis]) * axis_home_dir; line_to_current_position( #if HOMING_Z_WITH_PROBE (axis == Z_AXIS) ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : #endif homing_feedrate(axis) ); #if ENABLED(SENSORLESS_HOMING) planner.synchronize(); if (TERN0(IS_CORE, axis != NORMAL_AXIS)) safe_delay(200); // Short delay to allow belts to spring back #endif } #endif // Clear retracted status if homing the Z axis #if ENABLED(FWRETRACT) if (axis == Z_AXIS) fwretract.current_hop = 0.0; #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", axis_codes[axis], ")"); } // homeaxis() #if HAS_WORKSPACE_OFFSET void update_workspace_offset(const AxisEnum axis) { workspace_offset[axis] = home_offset[axis] + position_shift[axis]; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]); } #endif #if HAS_M206_COMMAND /** * Change the home offset for an axis. * Also refreshes the workspace offset. */ void set_home_offset(const AxisEnum axis, const float v) { home_offset[axis] = v; update_workspace_offset(axis); } #endif // HAS_M206_COMMAND