/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(M100_FREE_MEMORY_WATCHER) #include "../gcode.h" #include "../queue.h" #include "../../libs/hex_print_routines.h" #include "../../MarlinCore.h" // for idle() /** * M100 Free Memory Watcher * * This code watches the free memory block between the bottom of the heap and the top of the stack. * This memory block is initialized and watched via the M100 command. * * M100 I Initializes the free memory block and prints vitals statistics about the area * * M100 F Identifies how much of the free memory block remains free and unused. It also * detects and reports any corruption within the free memory block that may have * happened due to errant firmware. * * M100 D Does a hex display of the free memory block along with a flag for any errant * data that does not match the expected value. * * M100 C x Corrupts x locations within the free memory block. This is useful to check the * correctness of the M100 F and M100 D commands. * * Also, there are two support functions that can be called from a developer's C code. * * uint16_t check_for_free_memory_corruption(PGM_P const free_memory_start); * void M100_dump_routine(PGM_P const title, const char * const start, const char * const end); * * Initial version by Roxy-3D */ #define M100_FREE_MEMORY_DUMPER // Enable for the `M100 D` Dump sub-command #define M100_FREE_MEMORY_CORRUPTOR // Enable for the `M100 C` Corrupt sub-command #define TEST_BYTE ((char) 0xE5) #if defined(__AVR__) || IS_32BIT_TEENSY extern char __bss_end; char *end_bss = &__bss_end, *free_memory_start = end_bss, *free_memory_end = 0, *stacklimit = 0, *heaplimit = 0; #define MEMORY_END_CORRECTION 0 #elif defined(TARGET_LPC1768) extern char __bss_end__, __StackLimit, __HeapLimit; char *end_bss = &__bss_end__, *stacklimit = &__StackLimit, *heaplimit = &__HeapLimit; #define MEMORY_END_CORRECTION 0x200 char *free_memory_start = heaplimit, *free_memory_end = stacklimit - MEMORY_END_CORRECTION; #elif defined(__SAM3X8E__) extern char _ebss; char *end_bss = &_ebss, *free_memory_start = end_bss, *free_memory_end = 0, *stacklimit = 0, *heaplimit = 0; #define MEMORY_END_CORRECTION 0x10000 // need to stay well below 0x20080000 or M100 F crashes #elif defined(__SAMD51__) extern unsigned int __bss_end__, __StackLimit, __HeapLimit; extern "C" void * _sbrk(int incr); void *end_bss = &__bss_end__, *stacklimit = &__StackLimit, *heaplimit = &__HeapLimit; #define MEMORY_END_CORRECTION 0x400 char *free_memory_start = (char *)_sbrk(0) + 0x200, // Leave some heap space *free_memory_end = (char *)stacklimit - MEMORY_END_CORRECTION; #else #error "M100 - unsupported CPU" #endif // // Utility functions // // Location of a variable on its stack frame. Returns a value above // the stack (once the function returns to the caller). char* top_of_stack() { char x; return &x + 1; // x is pulled on return; } // Count the number of test bytes at the specified location. inline int32_t count_test_bytes(const char * const start_free_memory) { for (uint32_t i = 0; i < 32000; i++) if (char(start_free_memory[i]) != TEST_BYTE) return i - 1; return -1; } // // M100 sub-commands // #if ENABLED(M100_FREE_MEMORY_DUMPER) /** * M100 D * Dump the free memory block from brkval to the stack pointer. * malloc() eats memory from the start of the block and the stack grows * up from the bottom of the block. Solid test bytes indicate nothing has * used that memory yet. There should not be anything but test bytes within * the block. If so, it may indicate memory corruption due to a bad pointer. * Unexpected bytes are flagged in the right column. */ inline void dump_free_memory(char *start_free_memory, char *end_free_memory) { // // Start and end the dump on a nice 16 byte boundary // (even though the values are not 16-byte aligned). // start_free_memory = (char*)(ptr_int_t(uint32_t(start_free_memory) & ~0xFUL)); // Align to 16-byte boundary end_free_memory = (char*)(ptr_int_t(uint32_t(end_free_memory) | 0xFUL)); // Align end_free_memory to the 15th byte (at or above end_free_memory) // Dump command main loop while (start_free_memory < end_free_memory) { print_hex_address(start_free_memory); // Print the address SERIAL_CHAR(':'); for (uint8_t i = 0; i < 16; i++) { // and 16 data bytes if (i == 8) SERIAL_CHAR('-'); print_hex_byte(start_free_memory[i]); SERIAL_CHAR(' '); } serial_delay(25); SERIAL_CHAR('|'); // Point out non test bytes for (uint8_t i = 0; i < 16; i++) { char ccc = (char)start_free_memory[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken ccc = (ccc == TEST_BYTE) ? ' ' : '?'; SERIAL_CHAR(ccc); } SERIAL_EOL(); start_free_memory += 16; serial_delay(25); idle(); } } void M100_dump_routine(PGM_P const title, const char * const start, const char * const end) { serialprintPGM(title); SERIAL_EOL(); // // Round the start and end locations to produce full lines of output // dump_free_memory( (char*)(ptr_int_t(uint32_t(start) & ~0xFUL)), // Align to 16-byte boundary (char*)(ptr_int_t(uint32_t(end) | 0xFUL)) // Align end_free_memory to the 15th byte (at or above end_free_memory) ); } #endif // M100_FREE_MEMORY_DUMPER inline int check_for_free_memory_corruption(PGM_P const title) { serialprintPGM(title); char *start_free_memory = free_memory_start, *end_free_memory = free_memory_end; int n = end_free_memory - start_free_memory; SERIAL_ECHOPAIR("\nfmc() n=", n); SERIAL_ECHOPAIR("\nfree_memory_start=", hex_address(free_memory_start)); SERIAL_ECHOLNPAIR(" end_free_memory=", hex_address(end_free_memory)); if (end_free_memory < start_free_memory) { SERIAL_ECHOPGM(" end_free_memory < Heap "); // SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board // safe_delay(5); // this code can be enabled to pause the display as soon as the // while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch // idle(); // being on pin-63 which is unassigend and available on most controller // safe_delay(20); // boards. // while ( !READ(63)) // idle(); serial_delay(20); #if ENABLED(M100_FREE_MEMORY_DUMPER) M100_dump_routine(PSTR(" Memory corruption detected with end_free_memory 8) { // SERIAL_ECHOPAIR("Found ", j); // SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(start_free_memory + i)); i += j; block_cnt++; SERIAL_ECHOPAIR(" (", block_cnt); SERIAL_ECHOPAIR(") found=", j); SERIAL_ECHOLNPGM(" "); } } } SERIAL_ECHOPAIR(" block_found=", block_cnt); if (block_cnt != 1) SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area."); if (block_cnt == 0) // Make sure the special case of no free blocks shows up as an block_cnt = -1; // error to the calling code! SERIAL_ECHOPGM(" return="); if (block_cnt == 1) { SERIAL_CHAR('0'); // if the block_cnt is 1, nothing has broken up the free memory SERIAL_EOL(); // area and it is appropriate to say 'no corruption'. return 0; } SERIAL_ECHOLNPGM("true"); return block_cnt; } /** * M100 F * Return the number of free bytes in the memory pool, * with other vital statistics defining the pool. */ inline void free_memory_pool_report(char * const start_free_memory, const int32_t size) { int32_t max_cnt = -1, block_cnt = 0; char *max_addr = nullptr; // Find the longest block of test bytes in the buffer for (int32_t i = 0; i < size; i++) { char *addr = start_free_memory + i; if (*addr == TEST_BYTE) { const int32_t j = count_test_bytes(addr); if (j > 8) { SERIAL_ECHOPAIR("Found ", j); SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr)); if (j > max_cnt) { max_cnt = j; max_addr = addr; } i += j; block_cnt++; } } } if (block_cnt > 1) { SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area."); SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt); SERIAL_ECHOLNPAIR(" bytes at ", hex_address(max_addr)); } SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption(PSTR("M100 F "))); } #if ENABLED(M100_FREE_MEMORY_CORRUPTOR) /** * M100 C * Corrupt locations in the free memory pool and report the corrupt addresses. * This is useful to check the correctness of the M100 D and the M100 F commands. */ inline void corrupt_free_memory(char *start_free_memory, const uint32_t size) { start_free_memory += 8; const uint32_t near_top = top_of_stack() - start_free_memory - 250, // -250 to avoid interrupt activity that's altered the stack. j = near_top / (size + 1); SERIAL_ECHOLNPGM("Corrupting free memory block.\n"); for (uint32_t i = 1; i <= size; i++) { char * const addr = start_free_memory + i * j; *addr = i; SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr)); } SERIAL_EOL(); } #endif // M100_FREE_MEMORY_CORRUPTOR /** * M100 I * Init memory for the M100 tests. (Automatically applied on the first M100.) */ inline void init_free_memory(char *start_free_memory, int32_t size) { SERIAL_ECHOLNPGM("Initializing free memory block.\n\n"); size -= 250; // -250 to avoid interrupt activity that's altered the stack. if (size < 0) { SERIAL_ECHOLNPGM("Unable to initialize.\n"); return; } start_free_memory += 8; // move a few bytes away from the heap just because we don't want // to be altering memory that close to it. memset(start_free_memory, TEST_BYTE, size); SERIAL_ECHO(size); SERIAL_ECHOLNPGM(" bytes of memory initialized.\n"); for (int32_t i = 0; i < size; i++) { if (start_free_memory[i] != TEST_BYTE) { SERIAL_ECHOPAIR("? address : ", hex_address(start_free_memory + i)); SERIAL_ECHOLNPAIR("=", hex_byte(start_free_memory[i])); SERIAL_EOL(); } } } /** * M100: Free Memory Check */ void GcodeSuite::M100() { char *sp = top_of_stack(); if (!free_memory_end) free_memory_end = sp - MEMORY_END_CORRECTION; SERIAL_ECHOPAIR("\nbss_end : ", hex_address(end_bss)); if (heaplimit) SERIAL_ECHOPAIR("\n__heaplimit : ", hex_address(heaplimit)); SERIAL_ECHOPAIR("\nfree_memory_start : ", hex_address(free_memory_start)); if (stacklimit) SERIAL_ECHOPAIR("\n__stacklimit : ", hex_address(stacklimit)); SERIAL_ECHOPAIR("\nfree_memory_end : ", hex_address(free_memory_end)); if (MEMORY_END_CORRECTION) SERIAL_ECHOPAIR("\nMEMORY_END_CORRECTION: ", MEMORY_END_CORRECTION); SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp)); // Always init on the first invocation of M100 static bool m100_not_initialized = true; if (m100_not_initialized || parser.seen('I')) { m100_not_initialized = false; init_free_memory(free_memory_start, free_memory_end - free_memory_start); } #if ENABLED(M100_FREE_MEMORY_DUMPER) if (parser.seen('D')) return dump_free_memory(free_memory_start, free_memory_end); #endif if (parser.seen('F')) return free_memory_pool_report(free_memory_start, free_memory_end - free_memory_start); #if ENABLED(M100_FREE_MEMORY_CORRUPTOR) if (parser.seen('C')) return corrupt_free_memory(free_memory_start, parser.value_int()); #endif } #endif // M100_FREE_MEMORY_WATCHER