/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * settings.cpp * * Settings and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. */ // Change EEPROM version if the structure changes #define EEPROM_VERSION "V86" #define EEPROM_OFFSET 100 // Check the integrity of data offsets. // Can be disabled for production build. //#define DEBUG_EEPROM_READWRITE #include "settings.h" #include "endstops.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "../lcd/marlinui.h" #include "../libs/vector_3.h" // for matrix_3x3 #include "../gcode/gcode.h" #include "../MarlinCore.h" #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE) #include "../HAL/shared/eeprom_api.h" #endif #include "probe.h" #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #if ENABLED(X_AXIS_TWIST_COMPENSATION) #include "../feature/x_twist.h" #endif #endif #if ENABLED(Z_STEPPER_AUTO_ALIGN) #include "../feature/z_stepper_align.h" #endif #if ENABLED(EXTENSIBLE_UI) #include "../lcd/extui/ui_api.h" #elif ENABLED(DWIN_CREALITY_LCD_ENHANCED) #include "../lcd/e3v2/proui/dwin.h" #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI) #include "../lcd/e3v2/jyersui/dwin.h" #endif #if ENABLED(HOST_PROMPT_SUPPORT) #include "../feature/host_actions.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if HAS_SERVOS && HAS_SERVO_ANGLES #define EEPROM_NUM_SERVOS NUM_SERVOS #else #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS #endif #include "../feature/fwretract.h" #if ENABLED(POWER_LOSS_RECOVERY) #include "../feature/powerloss.h" #endif #if HAS_POWER_MONITOR #include "../feature/power_monitor.h" #endif #include "../feature/pause.h" #if ENABLED(BACKLASH_COMPENSATION) #include "../feature/backlash.h" #endif #if HAS_FILAMENT_SENSOR #include "../feature/runout.h" #ifndef FIL_RUNOUT_ENABLED_DEFAULT #define FIL_RUNOUT_ENABLED_DEFAULT true #endif #endif #if ENABLED(EXTRA_LIN_ADVANCE_K) extern float other_extruder_advance_K[EXTRUDERS]; #endif #if HAS_MULTI_EXTRUDER #include "tool_change.h" void M217_report(const bool eeprom); #endif #if ENABLED(BLTOUCH) #include "../feature/bltouch.h" #endif #if HAS_TRINAMIC_CONFIG #include "stepper/indirection.h" #include "../feature/tmc_util.h" #endif #if HAS_PTC #include "../feature/probe_temp_comp.h" #endif #include "../feature/controllerfan.h" #if ENABLED(CASE_LIGHT_ENABLE) #include "../feature/caselight.h" #endif #if ENABLED(PASSWORD_FEATURE) #include "../feature/password/password.h" #endif #if ENABLED(TOUCH_SCREEN_CALIBRATION) #include "../lcd/tft_io/touch_calibration.h" #endif #if HAS_ETHERNET #include "../feature/ethernet.h" #endif #if ENABLED(SOUND_MENU_ITEM) #include "../libs/buzzer.h" #endif #if HAS_FANCHECK #include "../feature/fancheck.h" #endif #if ENABLED(DGUS_LCD_UI_MKS) #include "../lcd/extui/dgus/DGUSScreenHandler.h" #include "../lcd/extui/dgus/DGUSDisplayDef.h" #endif #pragma pack(push, 1) // No padding between variables #if HAS_ETHERNET void ETH0_report(); void MAC_report(); #endif #define _EN_ITEM(N) , E##N typedef struct { uint16_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_stepper_current_t; typedef struct { uint32_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_hybrid_threshold_t; typedef struct { int16_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4; } tmc_sgt_t; typedef struct { bool LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_stealth_enabled_t; #undef _EN_ITEM // Limit an index to an array size #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1) // Defaults for reset / fill in on load static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION; static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT; static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE; /** * Current EEPROM Layout * * Keep this data structure up to date so * EEPROM size is known at compile time! */ typedef struct SettingsDataStruct { char version[4]; // Vnn\0 #if ENABLED(EEPROM_INIT_NOW) uint32_t build_hash; // Unique build hash #endif uint16_t crc; // Data Checksum // // DISTINCT_E_FACTORS // uint8_t e_factors; // DISTINCT_AXES - LINEAR_AXES // // Planner settings // planner_settings_t planner_settings; xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm // // Home Offset // xyz_pos_t home_offset; // M206 XYZ / M665 TPZ // // Hotend Offset // #if HAS_HOTEND_OFFSET xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ #endif // // FILAMENT_RUNOUT_SENSOR // bool runout_sensor_enabled; // M412 S float runout_distance_mm; // M412 D // // ENABLE_LEVELING_FADE_HEIGHT // float planner_z_fade_height; // M420 Zn planner.z_fade_height // // MESH_BED_LEVELING // float mbl_z_offset; // mbl.z_offset uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)]; // // HAS_BED_PROBE // xyz_pos_t probe_offset; // // ABL_PLANAR // matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix // // AUTO_BED_LEVELING_BILINEAR // uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F #if ENABLED(AUTO_BED_LEVELING_BILINEAR) bed_mesh_t z_values; // G29 #else float z_values[3][3]; #endif // // X_AXIS_TWIST_COMPENSATION // #if ENABLED(X_AXIS_TWIST_COMPENSATION) XATC xatc; // TBD #endif // // AUTO_BED_LEVELING_UBL // bool planner_leveling_active; // M420 S planner.leveling_active int8_t ubl_storage_slot; // ubl.storage_slot // // SERVO_ANGLES // uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U // // Temperature first layer compensation values // #if HAS_PTC #if ENABLED(PTC_PROBE) int16_t z_offsets_probe[COUNT(ptc.z_offsets_probe)]; // M871 P I V #endif #if ENABLED(PTC_BED) int16_t z_offsets_bed[COUNT(ptc.z_offsets_bed)]; // M871 B I V #endif #if ENABLED(PTC_HOTEND) int16_t z_offsets_hotend[COUNT(ptc.z_offsets_hotend)]; // M871 E I V #endif #endif // // BLTOUCH // bool bltouch_od_5v_mode; #ifdef BLTOUCH_HS_MODE bool bltouch_high_speed_mode; // M401 S #endif // // Kinematic Settings // #if IS_KINEMATIC float segments_per_second; // M665 S #if ENABLED(DELTA) float delta_height; // M666 H abc_float_t delta_endstop_adj; // M666 X Y Z float delta_radius, // M665 R delta_diagonal_rod; // M665 L abc_float_t delta_tower_angle_trim, // M665 X Y Z delta_diagonal_rod_trim; // M665 A B C #endif #endif // // Extra Endstops offsets // #if HAS_EXTRA_ENDSTOPS float x2_endstop_adj, // M666 X y2_endstop_adj, // M666 Y z2_endstop_adj, // M666 (S2) Z z3_endstop_adj, // M666 (S3) Z z4_endstop_adj; // M666 (S4) Z #endif // // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS // #if ENABLED(Z_STEPPER_AUTO_ALIGN) xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y #endif #endif // // Material Presets // #if HAS_PREHEAT preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F #endif // // PIDTEMP // PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U int16_t lpq_len; // M301 L // // PIDTEMPBED // PID_t bedPID; // M304 PID / M303 E-1 U // // PIDTEMPCHAMBER // PID_t chamberPID; // M309 PID / M303 E-2 U // // User-defined Thermistors // #if HAS_USER_THERMISTORS user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950 #endif // // Power monitor // uint8_t power_monitor_flags; // M430 I V W // // HAS_LCD_CONTRAST // uint8_t lcd_contrast; // M250 C // // HAS_LCD_BRIGHTNESS // uint8_t lcd_brightness; // M256 B // // LCD_BACKLIGHT_TIMEOUT // #if LCD_BACKLIGHT_TIMEOUT uint16_t lcd_backlight_timeout; // (G-code needed) #endif // // Controller fan settings // controllerFan_settings_t controllerFan_settings; // M710 // // POWER_LOSS_RECOVERY // bool recovery_enabled; // M413 S // // FWRETRACT // fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R bool autoretract_enabled; // M209 S // // !NO_VOLUMETRIC // bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[] float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[] // // HAS_TRINAMIC_CONFIG // tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5 tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5 tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4 tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5 // // LIN_ADVANCE // float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K // // HAS_MOTOR_CURRENT_PWM // #ifndef MOTOR_CURRENT_COUNT #define MOTOR_CURRENT_COUNT LINEAR_AXES #endif uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E ... // // CNC_COORDINATE_SYSTEMS // xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3 // // SKEW_CORRECTION // skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor // // ADVANCED_PAUSE_FEATURE // #if HAS_EXTRUDERS fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L #endif // // Tool-change settings // #if HAS_MULTI_EXTRUDER toolchange_settings_t toolchange_settings; // M217 S P R #endif // // BACKLASH_COMPENSATION // xyz_float_t backlash_distance_mm; // M425 X Y Z uint8_t backlash_correction; // M425 F float backlash_smoothing_mm; // M425 S // // EXTENSIBLE_UI // #if ENABLED(EXTENSIBLE_UI) uint8_t extui_data[ExtUI::eeprom_data_size]; #endif // // Ender-3 V2 DWIN // #if ENABLED(DWIN_CREALITY_LCD_ENHANCED) uint8_t dwin_data[eeprom_data_size]; #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI) uint8_t dwin_settings[CrealityDWIN.eeprom_data_size]; #endif // // CASELIGHT_USES_BRIGHTNESS // #if CASELIGHT_USES_BRIGHTNESS uint8_t caselight_brightness; // M355 P #endif // // PASSWORD_FEATURE // #if ENABLED(PASSWORD_FEATURE) bool password_is_set; uint32_t password_value; #endif // // TOUCH_SCREEN_CALIBRATION // #if ENABLED(TOUCH_SCREEN_CALIBRATION) touch_calibration_t touch_calibration_data; #endif // Ethernet settings #if HAS_ETHERNET bool ethernet_hardware_enabled; // M552 S uint32_t ethernet_ip, // M552 P ethernet_dns, ethernet_gateway, // M553 P ethernet_subnet; // M554 P #endif // // Buzzer enable/disable // #if ENABLED(SOUND_MENU_ITEM) bool buzzer_enabled; #endif // // Fan tachometer check // #if HAS_FANCHECK bool fan_check_enabled; #endif // // MKS UI controller // #if ENABLED(DGUS_LCD_UI_MKS) uint8_t mks_language_index; // Display Language xy_int_t mks_corner_offsets[5]; // Bed Tramming xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK) celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value) #endif #if HAS_MULTI_LANGUAGE uint8_t ui_language; // M414 S #endif } SettingsData; //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!"); MarlinSettings settings; uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); } /** * Post-process after Retrieve or Reset */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float new_z_fade_height; #endif void MarlinSettings::postprocess() { xyze_pos_t oldpos = current_position; // steps per s2 needs to be updated to agree with units per s2 planner.reset_acceleration_rates(); // Make sure delta kinematics are updated before refreshing the // planner position so the stepper counts will be set correctly. TERN_(DELTA, recalc_delta_settings()); TERN_(PIDTEMP, thermalManager.updatePID()); #if DISABLED(NO_VOLUMETRICS) planner.calculate_volumetric_multipliers(); #elif EXTRUDERS for (uint8_t i = COUNT(planner.e_factor); i--;) planner.refresh_e_factor(i); #endif // Software endstops depend on home_offset LOOP_LINEAR_AXES(i) { update_workspace_offset((AxisEnum)i); update_software_endstops((AxisEnum)i); } TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level()); TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power()); TERN_(FWRETRACT, fwretract.refresh_autoretract()); TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk()); TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness()); TERN_(EXTENSIBLE_UI, ExtUI::onPostprocessSettings()); // Refresh mm_per_step with the reciprocal of axis_steps_per_mm // and init stepper.count[], planner.position[] with current_position planner.refresh_positioning(); // Various factors can change the current position if (oldpos != current_position) report_current_position(); // Moved as last update due to interference with Neopixel init TERN_(HAS_LCD_CONTRAST, ui.refresh_contrast()); TERN_(HAS_LCD_BRIGHTNESS, ui.refresh_brightness()); #if LCD_BACKLIGHT_TIMEOUT ui.refresh_backlight_timeout(); #endif } #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS) #include "printcounter.h" static_assert( !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) && !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), "STATS_EEPROM_ADDRESS collides with EEPROM settings storage." ); #endif #if ENABLED(SD_FIRMWARE_UPDATE) #if ENABLED(EEPROM_SETTINGS) static_assert( !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage." ); #endif bool MarlinSettings::sd_update_status() { uint8_t val; persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val); return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE); } bool MarlinSettings::set_sd_update_status(const bool enable) { if (enable != sd_update_status()) persistentStore.write_data( SD_FIRMWARE_UPDATE_EEPROM_ADDR, enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE ); return true; } #endif // SD_FIRMWARE_UPDATE #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE, "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."); #endif // // This file simply uses the DEBUG_ECHO macros to implement EEPROM_CHITCHAT. // For deeper debugging of EEPROM issues enable DEBUG_EEPROM_READWRITE. // #define DEBUG_OUT EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE) #include "../core/debug_out.h" #if BOTH(EEPROM_CHITCHAT, HOST_PROMPT_SUPPORT) #define HOST_EEPROM_CHITCHAT 1 #endif #if ENABLED(EEPROM_SETTINGS) #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0) #if ENABLED(DEBUG_EEPROM_READWRITE) #define _FIELD_TEST(FIELD) \ EEPROM_ASSERT( \ eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \ "Field " STRINGIFY(FIELD) " mismatch." \ ) #else #define _FIELD_TEST(FIELD) NOOP #endif const char version[4] = EEPROM_VERSION; #if ENABLED(EEPROM_INIT_NOW) constexpr uint32_t strhash32(const char *s, const uint32_t h=0) { return *s ? strhash32(s + 1, ((h + *s) << (*s & 3)) ^ *s) : h; } constexpr uint32_t build_hash = strhash32(__DATE__ __TIME__); #endif bool MarlinSettings::eeprom_error, MarlinSettings::validating; int MarlinSettings::eeprom_index; uint16_t MarlinSettings::working_crc; bool MarlinSettings::size_error(const uint16_t size) { if (size != datasize()) { DEBUG_ERROR_MSG("EEPROM datasize error." #if ENABLED(MARLIN_DEV_MODE) " (Actual:", size, " Expected:", datasize(), ")" #endif ); return true; } return false; } /** * M500 - Store Configuration */ bool MarlinSettings::save() { float dummyf = 0; char ver[4] = "ERR"; if (!EEPROM_START(EEPROM_OFFSET)) return false; eeprom_error = false; // Write or Skip version. (Flash doesn't allow rewrite without erase.) TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver); #if ENABLED(EEPROM_INIT_NOW) EEPROM_SKIP(build_hash); // Skip the hash slot #endif EEPROM_SKIP(working_crc); // Skip the checksum slot working_crc = 0; // clear before first "real data" const uint8_t e_factors = DISTINCT_AXES - (LINEAR_AXES); _FIELD_TEST(e_factors); EEPROM_WRITE(e_factors); // // Planner Motion // { EEPROM_WRITE(planner.settings); #if HAS_CLASSIC_JERK EEPROM_WRITE(planner.max_jerk); #if HAS_LINEAR_E_JERK dummyf = float(DEFAULT_EJERK); EEPROM_WRITE(dummyf); #endif #else const xyze_pos_t planner_max_jerk = LOGICAL_AXIS_ARRAY(float(DEFAULT_EJERK), 10, 10, 0.4, 0.4, 0.4, 0.4); EEPROM_WRITE(planner_max_jerk); #endif TERN_(CLASSIC_JERK, dummyf = 0.02f); EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm)); } // // Home Offset // { _FIELD_TEST(home_offset); #if HAS_SCARA_OFFSET EEPROM_WRITE(scara_home_offset); #else #if !HAS_HOME_OFFSET const xyz_pos_t home_offset{0}; #endif EEPROM_WRITE(home_offset); #endif } // // Hotend Offsets, if any // { #if HAS_HOTEND_OFFSET // Skip hotend 0 which must be 0 LOOP_S_L_N(e, 1, HOTENDS) EEPROM_WRITE(hotend_offset[e]); #endif } // // Filament Runout Sensor // { #if HAS_FILAMENT_SENSOR const bool &runout_sensor_enabled = runout.enabled; #else constexpr int8_t runout_sensor_enabled = -1; #endif _FIELD_TEST(runout_sensor_enabled); EEPROM_WRITE(runout_sensor_enabled); #if HAS_FILAMENT_RUNOUT_DISTANCE const float &runout_distance_mm = runout.runout_distance(); #else constexpr float runout_distance_mm = 0; #endif EEPROM_WRITE(runout_distance_mm); } // // Global Leveling // { const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT)); EEPROM_WRITE(zfh); } // // Mesh Bed Leveling // { #if ENABLED(MESH_BED_LEVELING) static_assert( sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]), "MBL Z array is the wrong size." ); #else dummyf = 0; #endif const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3), mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3); EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf)); EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) EEPROM_WRITE(mbl.z_values); #else for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf); #endif } // // Probe XYZ Offsets // { _FIELD_TEST(probe_offset); #if HAS_BED_PROBE const xyz_pos_t &zpo = probe.offset; #else constexpr xyz_pos_t zpo{0}; #endif EEPROM_WRITE(zpo); } // // Planar Bed Leveling matrix // { #if ABL_PLANAR EEPROM_WRITE(planner.bed_level_matrix); #else dummyf = 0; for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf); #endif } // // Bilinear Auto Bed Leveling // { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) static_assert( sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]), "Bilinear Z array is the wrong size." ); #else const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0}; #endif const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3), grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3); EEPROM_WRITE(grid_max_x); EEPROM_WRITE(grid_max_y); EEPROM_WRITE(bilinear_grid_spacing); EEPROM_WRITE(bilinear_start); #if ENABLED(AUTO_BED_LEVELING_BILINEAR) EEPROM_WRITE(z_values); // 9-256 floats #else dummyf = 0; for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf); #endif } // // X Axis Twist Compensation // #if ENABLED(X_AXIS_TWIST_COMPENSATION) _FIELD_TEST(xatc); EEPROM_WRITE(xatc); #endif // // Unified Bed Leveling // { _FIELD_TEST(planner_leveling_active); const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false); const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1); EEPROM_WRITE(ubl_active); EEPROM_WRITE(storage_slot); } // // Servo Angles // { _FIELD_TEST(servo_angles); #if !HAS_SERVO_ANGLES uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } }; #endif EEPROM_WRITE(servo_angles); } // // Thermal first layer compensation values // #if HAS_PTC #if ENABLED(PTC_PROBE) EEPROM_WRITE(ptc.z_offsets_probe); #endif #if ENABLED(PTC_BED) EEPROM_WRITE(ptc.z_offsets_bed); #endif #if ENABLED(PTC_HOTEND) EEPROM_WRITE(ptc.z_offsets_hotend); #endif #else // No placeholder data for this feature #endif // // BLTOUCH // { _FIELD_TEST(bltouch_od_5v_mode); const bool bltouch_od_5v_mode = TERN0(BLTOUCH, bltouch.od_5v_mode); EEPROM_WRITE(bltouch_od_5v_mode); #ifdef BLTOUCH_HS_MODE _FIELD_TEST(bltouch_high_speed_mode); const bool bltouch_high_speed_mode = TERN0(BLTOUCH, bltouch.high_speed_mode); EEPROM_WRITE(bltouch_high_speed_mode); #endif } // // Kinematic Settings // #if IS_KINEMATIC { EEPROM_WRITE(segments_per_second); #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_WRITE(delta_height); // 1 float EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_tower_angle_trim); // 3 floats EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats #endif } #endif // // Extra Endstops offsets // #if HAS_EXTRA_ENDSTOPS { _FIELD_TEST(x2_endstop_adj); // Write dual endstops in X, Y, Z order. Unused = 0.0 dummyf = 0; EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3 EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float #else EEPROM_WRITE(dummyf); #endif #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4 EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float #else EEPROM_WRITE(dummyf); #endif } #endif #if ENABLED(Z_STEPPER_AUTO_ALIGN) EEPROM_WRITE(z_stepper_align.xy); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) EEPROM_WRITE(z_stepper_align.stepper_xy); #endif #endif // // LCD Preheat settings // #if HAS_PREHEAT _FIELD_TEST(ui_material_preset); EEPROM_WRITE(ui.material_preset); #endif // // PIDTEMP // { _FIELD_TEST(hotendPID); HOTEND_LOOP() { PIDCF_t pidcf = { #if DISABLED(PIDTEMP) NAN, NAN, NAN, NAN, NAN #else PID_PARAM(Kp, e), unscalePID_i(PID_PARAM(Ki, e)), unscalePID_d(PID_PARAM(Kd, e)), PID_PARAM(Kc, e), PID_PARAM(Kf, e) #endif }; EEPROM_WRITE(pidcf); } _FIELD_TEST(lpq_len); #if DISABLED(PID_EXTRUSION_SCALING) const int16_t lpq_len = 20; #endif EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len)); } // // PIDTEMPBED // { _FIELD_TEST(bedPID); const PID_t bed_pid = { #if DISABLED(PIDTEMPBED) NAN, NAN, NAN #else // Store the unscaled PID values thermalManager.temp_bed.pid.Kp, unscalePID_i(thermalManager.temp_bed.pid.Ki), unscalePID_d(thermalManager.temp_bed.pid.Kd) #endif }; EEPROM_WRITE(bed_pid); } // // PIDTEMPCHAMBER // { _FIELD_TEST(chamberPID); const PID_t chamber_pid = { #if DISABLED(PIDTEMPCHAMBER) NAN, NAN, NAN #else // Store the unscaled PID values thermalManager.temp_chamber.pid.Kp, unscalePID_i(thermalManager.temp_chamber.pid.Ki), unscalePID_d(thermalManager.temp_chamber.pid.Kd) #endif }; EEPROM_WRITE(chamber_pid); } // // User-defined Thermistors // #if HAS_USER_THERMISTORS { _FIELD_TEST(user_thermistor); EEPROM_WRITE(thermalManager.user_thermistor); } #endif // // Power monitor // { #if HAS_POWER_MONITOR const uint8_t &power_monitor_flags = power_monitor.flags; #else constexpr uint8_t power_monitor_flags = 0x00; #endif _FIELD_TEST(power_monitor_flags); EEPROM_WRITE(power_monitor_flags); } // // LCD Contrast // { _FIELD_TEST(lcd_contrast); const uint8_t lcd_contrast = TERN(HAS_LCD_CONTRAST, ui.contrast, 127); EEPROM_WRITE(lcd_contrast); } // // LCD Brightness // { _FIELD_TEST(lcd_brightness); const uint8_t lcd_brightness = TERN(HAS_LCD_BRIGHTNESS, ui.brightness, 255); EEPROM_WRITE(lcd_brightness); } // // LCD Backlight Timeout // #if LCD_BACKLIGHT_TIMEOUT EEPROM_WRITE(ui.lcd_backlight_timeout); #endif // // Controller Fan // { _FIELD_TEST(controllerFan_settings); #if ENABLED(USE_CONTROLLER_FAN) const controllerFan_settings_t &cfs = controllerFan.settings; #else controllerFan_settings_t cfs = controllerFan_defaults; #endif EEPROM_WRITE(cfs); } // // Power-Loss Recovery // { _FIELD_TEST(recovery_enabled); const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT)); EEPROM_WRITE(recovery_enabled); } // // Firmware Retraction // { _FIELD_TEST(fwretract_settings); #if DISABLED(FWRETRACT) const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 }; #endif EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults)); #if DISABLED(FWRETRACT_AUTORETRACT) const bool autoretract_enabled = false; #endif EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled)); } // // Volumetric & Filament Size // { _FIELD_TEST(parser_volumetric_enabled); #if DISABLED(NO_VOLUMETRICS) EEPROM_WRITE(parser.volumetric_enabled); EEPROM_WRITE(planner.filament_size); #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) EEPROM_WRITE(planner.volumetric_extruder_limit); #else dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT; for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); #endif #else const bool volumetric_enabled = false; EEPROM_WRITE(volumetric_enabled); dummyf = DEFAULT_NOMINAL_FILAMENT_DIA; for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT; for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); #endif } // // TMC Configuration // { _FIELD_TEST(tmc_stepper_current); tmc_stepper_current_t tmc_stepper_current{0}; #if HAS_TRINAMIC_CONFIG #if AXIS_IS_TMC(X) tmc_stepper_current.X = stepperX.getMilliamps(); #endif #if AXIS_IS_TMC(Y) tmc_stepper_current.Y = stepperY.getMilliamps(); #endif #if AXIS_IS_TMC(Z) tmc_stepper_current.Z = stepperZ.getMilliamps(); #endif #if AXIS_IS_TMC(I) tmc_stepper_current.I = stepperI.getMilliamps(); #endif #if AXIS_IS_TMC(J) tmc_stepper_current.J = stepperJ.getMilliamps(); #endif #if AXIS_IS_TMC(K) tmc_stepper_current.K = stepperK.getMilliamps(); #endif #if AXIS_IS_TMC(X2) tmc_stepper_current.X2 = stepperX2.getMilliamps(); #endif #if AXIS_IS_TMC(Y2) tmc_stepper_current.Y2 = stepperY2.getMilliamps(); #endif #if AXIS_IS_TMC(Z2) tmc_stepper_current.Z2 = stepperZ2.getMilliamps(); #endif #if AXIS_IS_TMC(Z3) tmc_stepper_current.Z3 = stepperZ3.getMilliamps(); #endif #if AXIS_IS_TMC(Z4) tmc_stepper_current.Z4 = stepperZ4.getMilliamps(); #endif #if AXIS_IS_TMC(E0) tmc_stepper_current.E0 = stepperE0.getMilliamps(); #endif #if AXIS_IS_TMC(E1) tmc_stepper_current.E1 = stepperE1.getMilliamps(); #endif #if AXIS_IS_TMC(E2) tmc_stepper_current.E2 = stepperE2.getMilliamps(); #endif #if AXIS_IS_TMC(E3) tmc_stepper_current.E3 = stepperE3.getMilliamps(); #endif #if AXIS_IS_TMC(E4) tmc_stepper_current.E4 = stepperE4.getMilliamps(); #endif #if AXIS_IS_TMC(E5) tmc_stepper_current.E5 = stepperE5.getMilliamps(); #endif #if AXIS_IS_TMC(E6) tmc_stepper_current.E6 = stepperE6.getMilliamps(); #endif #if AXIS_IS_TMC(E7) tmc_stepper_current.E7 = stepperE7.getMilliamps(); #endif #endif EEPROM_WRITE(tmc_stepper_current); } // // TMC Hybrid Threshold, and placeholder values // { _FIELD_TEST(tmc_hybrid_threshold); #if ENABLED(HYBRID_THRESHOLD) tmc_hybrid_threshold_t tmc_hybrid_threshold{0}; TERN_(X_HAS_STEALTHCHOP, tmc_hybrid_threshold.X = stepperX.get_pwm_thrs()); TERN_(Y_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs()); TERN_(Z_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs()); TERN_(I_HAS_STEALTHCHOP, tmc_hybrid_threshold.I = stepperI.get_pwm_thrs()); TERN_(J_HAS_STEALTHCHOP, tmc_hybrid_threshold.J = stepperJ.get_pwm_thrs()); TERN_(K_HAS_STEALTHCHOP, tmc_hybrid_threshold.K = stepperK.get_pwm_thrs()); TERN_(X2_HAS_STEALTHCHOP, tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs()); TERN_(Y2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs()); TERN_(Z2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs()); TERN_(Z3_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs()); TERN_(Z4_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs()); TERN_(E0_HAS_STEALTHCHOP, tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs()); TERN_(E1_HAS_STEALTHCHOP, tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs()); TERN_(E2_HAS_STEALTHCHOP, tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs()); TERN_(E3_HAS_STEALTHCHOP, tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs()); TERN_(E4_HAS_STEALTHCHOP, tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs()); TERN_(E5_HAS_STEALTHCHOP, tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs()); TERN_(E6_HAS_STEALTHCHOP, tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs()); TERN_(E7_HAS_STEALTHCHOP, tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs()); #else #define _EN_ITEM(N) , .E##N = 30 const tmc_hybrid_threshold_t tmc_hybrid_threshold = { LINEAR_AXIS_LIST(.X = 100, .Y = 100, .Z = 3, .I = 3, .J = 3, .K = 3), .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3 REPEAT(E_STEPPERS, _EN_ITEM) }; #undef _EN_ITEM #endif EEPROM_WRITE(tmc_hybrid_threshold); } // // TMC StallGuard threshold // { tmc_sgt_t tmc_sgt{0}; #if USE_SENSORLESS LINEAR_AXIS_CODE( TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold()), TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold()), TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold()), TERN_(I_SENSORLESS, tmc_sgt.I = stepperI.homing_threshold()), TERN_(J_SENSORLESS, tmc_sgt.J = stepperJ.homing_threshold()), TERN_(K_SENSORLESS, tmc_sgt.K = stepperK.homing_threshold()) ); TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold()); TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold()); TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold()); TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold()); TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold()); #endif EEPROM_WRITE(tmc_sgt); } // // TMC stepping mode // { _FIELD_TEST(tmc_stealth_enabled); tmc_stealth_enabled_t tmc_stealth_enabled = { false }; TERN_(X_HAS_STEALTHCHOP, tmc_stealth_enabled.X = stepperX.get_stored_stealthChop()); TERN_(Y_HAS_STEALTHCHOP, tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop()); TERN_(Z_HAS_STEALTHCHOP, tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop()); TERN_(I_HAS_STEALTHCHOP, tmc_stealth_enabled.I = stepperI.get_stored_stealthChop()); TERN_(J_HAS_STEALTHCHOP, tmc_stealth_enabled.J = stepperJ.get_stored_stealthChop()); TERN_(K_HAS_STEALTHCHOP, tmc_stealth_enabled.K = stepperK.get_stored_stealthChop()); TERN_(X2_HAS_STEALTHCHOP, tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop()); TERN_(Y2_HAS_STEALTHCHOP, tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop()); TERN_(Z2_HAS_STEALTHCHOP, tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop()); TERN_(Z3_HAS_STEALTHCHOP, tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop()); TERN_(Z4_HAS_STEALTHCHOP, tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop()); TERN_(E0_HAS_STEALTHCHOP, tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop()); TERN_(E1_HAS_STEALTHCHOP, tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop()); TERN_(E2_HAS_STEALTHCHOP, tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop()); TERN_(E3_HAS_STEALTHCHOP, tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop()); TERN_(E4_HAS_STEALTHCHOP, tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop()); TERN_(E5_HAS_STEALTHCHOP, tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop()); TERN_(E6_HAS_STEALTHCHOP, tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop()); TERN_(E7_HAS_STEALTHCHOP, tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop()); EEPROM_WRITE(tmc_stealth_enabled); } // // Linear Advance // { _FIELD_TEST(planner_extruder_advance_K); #if ENABLED(LIN_ADVANCE) EEPROM_WRITE(planner.extruder_advance_K); #else dummyf = 0; for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf); #endif } // // Motor Current PWM // { _FIELD_TEST(motor_current_setting); #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM EEPROM_WRITE(stepper.motor_current_setting); #else const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 }; EEPROM_WRITE(no_current); #endif } // // CNC Coordinate Systems // _FIELD_TEST(coordinate_system); #if DISABLED(CNC_COORDINATE_SYSTEMS) const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } }; #endif EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system)); // // Skew correction factors // _FIELD_TEST(planner_skew_factor); EEPROM_WRITE(planner.skew_factor); // // Advanced Pause filament load & unload lengths // #if HAS_EXTRUDERS { #if DISABLED(ADVANCED_PAUSE_FEATURE) const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 }; #endif _FIELD_TEST(fc_settings); EEPROM_WRITE(fc_settings); } #endif // // Multiple Extruders // #if HAS_MULTI_EXTRUDER _FIELD_TEST(toolchange_settings); EEPROM_WRITE(toolchange_settings); #endif // // Backlash Compensation // { #if ENABLED(BACKLASH_GCODE) xyz_float_t backlash_distance_mm; LOOP_LINEAR_AXES(axis) backlash_distance_mm[axis] = backlash.get_distance_mm((AxisEnum)axis); const uint8_t backlash_correction = backlash.get_correction_uint8(); #else const xyz_float_t backlash_distance_mm{0}; const uint8_t backlash_correction = 0; #endif #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM) const float backlash_smoothing_mm = backlash.get_smoothing_mm(); #else const float backlash_smoothing_mm = 3; #endif _FIELD_TEST(backlash_distance_mm); EEPROM_WRITE(backlash_distance_mm); EEPROM_WRITE(backlash_correction); EEPROM_WRITE(backlash_smoothing_mm); } // // Extensible UI User Data // #if ENABLED(EXTENSIBLE_UI) { char extui_data[ExtUI::eeprom_data_size] = { 0 }; ExtUI::onStoreSettings(extui_data); _FIELD_TEST(extui_data); EEPROM_WRITE(extui_data); } #endif // // Creality DWIN User Data // #if ENABLED(DWIN_CREALITY_LCD_ENHANCED) { char dwin_data[eeprom_data_size] = { 0 }; DWIN_StoreSettings(dwin_data); _FIELD_TEST(dwin_data); EEPROM_WRITE(dwin_data); } #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI) { char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 }; CrealityDWIN.Save_Settings(dwin_settings); _FIELD_TEST(dwin_settings); EEPROM_WRITE(dwin_settings); } #endif // // Case Light Brightness // #if CASELIGHT_USES_BRIGHTNESS EEPROM_WRITE(caselight.brightness); #endif // // Password feature // #if ENABLED(PASSWORD_FEATURE) EEPROM_WRITE(password.is_set); EEPROM_WRITE(password.value); #endif // // TOUCH_SCREEN_CALIBRATION // #if ENABLED(TOUCH_SCREEN_CALIBRATION) EEPROM_WRITE(touch_calibration.calibration); #endif // // Ethernet network info // #if HAS_ETHERNET { _FIELD_TEST(ethernet_hardware_enabled); const bool ethernet_hardware_enabled = ethernet.hardware_enabled; const uint32_t ethernet_ip = ethernet.ip, ethernet_dns = ethernet.myDns, ethernet_gateway = ethernet.gateway, ethernet_subnet = ethernet.subnet; EEPROM_WRITE(ethernet_hardware_enabled); EEPROM_WRITE(ethernet_ip); EEPROM_WRITE(ethernet_dns); EEPROM_WRITE(ethernet_gateway); EEPROM_WRITE(ethernet_subnet); } #endif // // Buzzer enable/disable // #if ENABLED(SOUND_MENU_ITEM) EEPROM_WRITE(ui.buzzer_enabled); #endif // // Fan tachometer check // #if HAS_FANCHECK EEPROM_WRITE(fan_check.enabled); #endif // // MKS UI controller // #if ENABLED(DGUS_LCD_UI_MKS) EEPROM_WRITE(mks_language_index); EEPROM_WRITE(mks_corner_offsets); EEPROM_WRITE(mks_park_pos); EEPROM_WRITE(mks_min_extrusion_temp); #endif // // Selected LCD language // #if HAS_MULTI_LANGUAGE EEPROM_WRITE(ui.language); #endif // // Report final CRC and Data Size // if (!eeprom_error) { const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET), final_crc = working_crc; // Write the EEPROM header eeprom_index = EEPROM_OFFSET; EEPROM_WRITE(version); #if ENABLED(EEPROM_INIT_NOW) EEPROM_WRITE(build_hash); #endif EEPROM_WRITE(final_crc); // Report storage size DEBUG_ECHO_MSG("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")"); eeprom_error |= size_error(eeprom_size); } EEPROM_FINISH(); // // UBL Mesh // #if ENABLED(UBL_SAVE_ACTIVE_ON_M500) if (ubl.storage_slot >= 0) store_mesh(ubl.storage_slot); #endif if (!eeprom_error) { LCD_MESSAGE(MSG_SETTINGS_STORED); TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_SETTINGS_STORED))); } TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error)); return !eeprom_error; } /** * M501 - Retrieve Configuration */ bool MarlinSettings::_load() { if (!EEPROM_START(EEPROM_OFFSET)) return false; char stored_ver[4]; EEPROM_READ_ALWAYS(stored_ver); // Version has to match or defaults are used if (strncmp(version, stored_ver, 3) != 0) { if (stored_ver[3] != '\0') { stored_ver[0] = '?'; stored_ver[1] = '\0'; } DEBUG_ECHO_MSG("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")"); TERN_(DWIN_CREALITY_LCD_ENHANCED, LCD_MESSAGE(MSG_ERR_EEPROM_VERSION)); TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_ERR_EEPROM_VERSION))); IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version()); eeprom_error = true; } else { // Optionally reset on the first boot after flashing #if ENABLED(EEPROM_INIT_NOW) uint32_t stored_hash; EEPROM_READ_ALWAYS(stored_hash); if (stored_hash != build_hash) { EEPROM_FINISH(); return false; } #endif uint16_t stored_crc; EEPROM_READ_ALWAYS(stored_crc); float dummyf = 0; working_crc = 0; // Init to 0. Accumulated by EEPROM_READ _FIELD_TEST(e_factors); // Number of e_factors may change uint8_t e_factors; EEPROM_READ_ALWAYS(e_factors); // // Planner Motion // { // Get only the number of E stepper parameters previously stored // Any steppers added later are set to their defaults uint32_t tmp1[LINEAR_AXES + e_factors]; float tmp2[LINEAR_AXES + e_factors]; feedRate_t tmp3[LINEAR_AXES + e_factors]; EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2 EEPROM_READ(planner.settings.min_segment_time_us); EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s if (!validating) LOOP_DISTINCT_AXES(i) { const bool in = (i < e_factors + LINEAR_AXES); planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]); planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]); planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]); } EEPROM_READ(planner.settings.acceleration); EEPROM_READ(planner.settings.retract_acceleration); EEPROM_READ(planner.settings.travel_acceleration); EEPROM_READ(planner.settings.min_feedrate_mm_s); EEPROM_READ(planner.settings.min_travel_feedrate_mm_s); #if HAS_CLASSIC_JERK EEPROM_READ(planner.max_jerk); #if HAS_LINEAR_E_JERK EEPROM_READ(dummyf); #endif #else for (uint8_t q = LOGICAL_AXES; q--;) EEPROM_READ(dummyf); #endif EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm)); } // // Home Offset (M206 / M665) // { _FIELD_TEST(home_offset); #if HAS_SCARA_OFFSET EEPROM_READ(scara_home_offset); #else #if !HAS_HOME_OFFSET xyz_pos_t home_offset; #endif EEPROM_READ(home_offset); #endif } // // Hotend Offsets, if any // { #if HAS_HOTEND_OFFSET // Skip hotend 0 which must be 0 LOOP_S_L_N(e, 1, HOTENDS) EEPROM_READ(hotend_offset[e]); #endif } // // Filament Runout Sensor // { int8_t runout_sensor_enabled; _FIELD_TEST(runout_sensor_enabled); EEPROM_READ(runout_sensor_enabled); #if HAS_FILAMENT_SENSOR runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled; #endif TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset()); float runout_distance_mm; EEPROM_READ(runout_distance_mm); #if HAS_FILAMENT_RUNOUT_DISTANCE if (!validating) runout.set_runout_distance(runout_distance_mm); #endif } // // Global Leveling // EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf)); // // Mesh (Manual) Bed Leveling // { uint8_t mesh_num_x, mesh_num_y; EEPROM_READ(dummyf); EEPROM_READ_ALWAYS(mesh_num_x); EEPROM_READ_ALWAYS(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) if (!validating) mbl.z_offset = dummyf; if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) { // EEPROM data fits the current mesh EEPROM_READ(mbl.z_values); } else { // EEPROM data is stale if (!validating) mbl.reset(); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf); } #else // MBL is disabled - skip the stored data for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf); #endif // MESH_BED_LEVELING } // // Probe Z Offset // { _FIELD_TEST(probe_offset); #if HAS_BED_PROBE const xyz_pos_t &zpo = probe.offset; #else xyz_pos_t zpo; #endif EEPROM_READ(zpo); } // // Planar Bed Leveling matrix // { #if ABL_PLANAR EEPROM_READ(planner.bed_level_matrix); #else for (uint8_t q = 9; q--;) EEPROM_READ(dummyf); #endif } // // Bilinear Auto Bed Leveling // { uint8_t grid_max_x, grid_max_y; EEPROM_READ_ALWAYS(grid_max_x); // 1 byte EEPROM_READ_ALWAYS(grid_max_y); // 1 byte #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) { if (!validating) set_bed_leveling_enabled(false); EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(z_values); // 9 to 256 floats } else // EEPROM data is stale #endif // AUTO_BED_LEVELING_BILINEAR { // Skip past disabled (or stale) Bilinear Grid data xy_pos_t bgs, bs; EEPROM_READ(bgs); EEPROM_READ(bs); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf); } } // // X Axis Twist Compensation // #if ENABLED(X_AXIS_TWIST_COMPENSATION) EEPROM_READ(xatc); #endif // // Unified Bed Leveling active state // { _FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL) const bool &planner_leveling_active = planner.leveling_active; const int8_t &ubl_storage_slot = ubl.storage_slot; #else bool planner_leveling_active; int8_t ubl_storage_slot; #endif EEPROM_READ(planner_leveling_active); EEPROM_READ(ubl_storage_slot); } // // SERVO_ANGLES // { _FIELD_TEST(servo_angles); #if ENABLED(EDITABLE_SERVO_ANGLES) uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles; #else uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2]; #endif EEPROM_READ(servo_angles_arr); } // // Thermal first layer compensation values // #if HAS_PTC #if ENABLED(PTC_PROBE) EEPROM_READ(ptc.z_offsets_probe); #endif # if ENABLED(PTC_BED) EEPROM_READ(ptc.z_offsets_bed); #endif #if ENABLED(PTC_HOTEND) EEPROM_READ(ptc.z_offsets_hotend); #endif ptc.reset_index(); #else // No placeholder data for this feature #endif // // BLTOUCH // { _FIELD_TEST(bltouch_od_5v_mode); #if ENABLED(BLTOUCH) const bool &bltouch_od_5v_mode = bltouch.od_5v_mode; #else bool bltouch_od_5v_mode; #endif EEPROM_READ(bltouch_od_5v_mode); #ifdef BLTOUCH_HS_MODE _FIELD_TEST(bltouch_high_speed_mode); #if ENABLED(BLTOUCH) const bool &bltouch_high_speed_mode = bltouch.high_speed_mode; #else bool bltouch_high_speed_mode; #endif EEPROM_READ(bltouch_high_speed_mode); #endif } // // Kinematic Segments-per-second // #if IS_KINEMATIC { EEPROM_READ(segments_per_second); #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_READ(delta_height); // 1 float EEPROM_READ(delta_endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_tower_angle_trim); // 3 floats EEPROM_READ(delta_diagonal_rod_trim); // 3 floats #endif } #endif // // Extra Endstops offsets // #if HAS_EXTRA_ENDSTOPS { _FIELD_TEST(x2_endstop_adj); EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3 EEPROM_READ(endstops.z3_endstop_adj); // 1 float #else EEPROM_READ(dummyf); #endif #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4 EEPROM_READ(endstops.z4_endstop_adj); // 1 float #else EEPROM_READ(dummyf); #endif } #endif #if ENABLED(Z_STEPPER_AUTO_ALIGN) EEPROM_READ(z_stepper_align.xy); #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) EEPROM_READ(z_stepper_align.stepper_xy); #endif #endif // // LCD Preheat settings // #if HAS_PREHEAT _FIELD_TEST(ui_material_preset); EEPROM_READ(ui.material_preset); #endif // // Hotend PID // { HOTEND_LOOP() { PIDCF_t pidcf; EEPROM_READ(pidcf); #if ENABLED(PIDTEMP) if (!validating && !isnan(pidcf.Kp)) { // Scale PID values since EEPROM values are unscaled PID_PARAM(Kp, e) = pidcf.Kp; PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki); PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd); TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc); TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf); } #endif } } // // PID Extrusion Scaling // { _FIELD_TEST(lpq_len); #if ENABLED(PID_EXTRUSION_SCALING) const int16_t &lpq_len = thermalManager.lpq_len; #else int16_t lpq_len; #endif EEPROM_READ(lpq_len); } // // Heated Bed PID // { PID_t pid; EEPROM_READ(pid); #if ENABLED(PIDTEMPBED) if (!validating && !isnan(pid.Kp)) { // Scale PID values since EEPROM values are unscaled thermalManager.temp_bed.pid.Kp = pid.Kp; thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki); thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd); } #endif } // // Heated Chamber PID // { PID_t pid; EEPROM_READ(pid); #if ENABLED(PIDTEMPCHAMBER) if (!validating && !isnan(pid.Kp)) { // Scale PID values since EEPROM values are unscaled thermalManager.temp_chamber.pid.Kp = pid.Kp; thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki); thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd); } #endif } // // User-defined Thermistors // #if HAS_USER_THERMISTORS { user_thermistor_t user_thermistor[USER_THERMISTORS]; _FIELD_TEST(user_thermistor); EEPROM_READ(user_thermistor); if (!validating) COPY(thermalManager.user_thermistor, user_thermistor); } #endif // // Power monitor // { uint8_t power_monitor_flags; _FIELD_TEST(power_monitor_flags); EEPROM_READ(power_monitor_flags); TERN_(HAS_POWER_MONITOR, if (!validating) power_monitor.flags = power_monitor_flags); } // // LCD Contrast // { uint8_t lcd_contrast; _FIELD_TEST(lcd_contrast); EEPROM_READ(lcd_contrast); TERN_(HAS_LCD_CONTRAST, if (!validating) ui.contrast = lcd_contrast); } // // LCD Brightness // { uint8_t lcd_brightness; _FIELD_TEST(lcd_brightness); EEPROM_READ(lcd_brightness); TERN_(HAS_LCD_BRIGHTNESS, if (!validating) ui.brightness = lcd_brightness); } // // LCD Backlight Timeout // #if LCD_BACKLIGHT_TIMEOUT EEPROM_READ(ui.lcd_backlight_timeout); #endif // // Controller Fan // { controllerFan_settings_t cfs = { 0 }; _FIELD_TEST(controllerFan_settings); EEPROM_READ(cfs); TERN_(CONTROLLER_FAN_EDITABLE, if (!validating) controllerFan.settings = cfs); } // // Power-Loss Recovery // { bool recovery_enabled; _FIELD_TEST(recovery_enabled); EEPROM_READ(recovery_enabled); TERN_(POWER_LOSS_RECOVERY, if (!validating) recovery.enabled = recovery_enabled); } // // Firmware Retraction // { fwretract_settings_t fwretract_settings; bool autoretract_enabled; _FIELD_TEST(fwretract_settings); EEPROM_READ(fwretract_settings); EEPROM_READ(autoretract_enabled); #if ENABLED(FWRETRACT) if (!validating) { fwretract.settings = fwretract_settings; TERN_(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled = autoretract_enabled); } #endif } // // Volumetric & Filament Size // { struct { bool volumetric_enabled; float filament_size[EXTRUDERS]; float volumetric_extruder_limit[EXTRUDERS]; } storage; _FIELD_TEST(parser_volumetric_enabled); EEPROM_READ(storage); #if DISABLED(NO_VOLUMETRICS) if (!validating) { parser.volumetric_enabled = storage.volumetric_enabled; COPY(planner.filament_size, storage.filament_size); #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit); #endif } #endif } // // TMC Stepper Settings // if (!validating) reset_stepper_drivers(); // TMC Stepper Current { _FIELD_TEST(tmc_stepper_current); tmc_stepper_current_t currents; EEPROM_READ(currents); #if HAS_TRINAMIC_CONFIG #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT) if (!validating) { #if AXIS_IS_TMC(X) SET_CURR(X); #endif #if AXIS_IS_TMC(Y) SET_CURR(Y); #endif #if AXIS_IS_TMC(Z) SET_CURR(Z); #endif #if AXIS_IS_TMC(X2) SET_CURR(X2); #endif #if AXIS_IS_TMC(Y2) SET_CURR(Y2); #endif #if AXIS_IS_TMC(Z2) SET_CURR(Z2); #endif #if AXIS_IS_TMC(Z3) SET_CURR(Z3); #endif #if AXIS_IS_TMC(Z4) SET_CURR(Z4); #endif #if AXIS_IS_TMC(I) SET_CURR(I); #endif #if AXIS_IS_TMC(J) SET_CURR(J); #endif #if AXIS_IS_TMC(K) SET_CURR(K); #endif #if AXIS_IS_TMC(E0) SET_CURR(E0); #endif #if AXIS_IS_TMC(E1) SET_CURR(E1); #endif #if AXIS_IS_TMC(E2) SET_CURR(E2); #endif #if AXIS_IS_TMC(E3) SET_CURR(E3); #endif #if AXIS_IS_TMC(E4) SET_CURR(E4); #endif #if AXIS_IS_TMC(E5) SET_CURR(E5); #endif #if AXIS_IS_TMC(E6) SET_CURR(E6); #endif #if AXIS_IS_TMC(E7) SET_CURR(E7); #endif } #endif } // TMC Hybrid Threshold { tmc_hybrid_threshold_t tmc_hybrid_threshold; _FIELD_TEST(tmc_hybrid_threshold); EEPROM_READ(tmc_hybrid_threshold); #if ENABLED(HYBRID_THRESHOLD) if (!validating) { TERN_(X_HAS_STEALTHCHOP, stepperX.set_pwm_thrs(tmc_hybrid_threshold.X)); TERN_(Y_HAS_STEALTHCHOP, stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y)); TERN_(Z_HAS_STEALTHCHOP, stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z)); TERN_(X2_HAS_STEALTHCHOP, stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2)); TERN_(Y2_HAS_STEALTHCHOP, stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2)); TERN_(Z2_HAS_STEALTHCHOP, stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2)); TERN_(Z3_HAS_STEALTHCHOP, stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3)); TERN_(Z4_HAS_STEALTHCHOP, stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4)); TERN_(I_HAS_STEALTHCHOP, stepperI.set_pwm_thrs(tmc_hybrid_threshold.I)); TERN_(J_HAS_STEALTHCHOP, stepperJ.set_pwm_thrs(tmc_hybrid_threshold.J)); TERN_(K_HAS_STEALTHCHOP, stepperK.set_pwm_thrs(tmc_hybrid_threshold.K)); TERN_(E0_HAS_STEALTHCHOP, stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0)); TERN_(E1_HAS_STEALTHCHOP, stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1)); TERN_(E2_HAS_STEALTHCHOP, stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2)); TERN_(E3_HAS_STEALTHCHOP, stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3)); TERN_(E4_HAS_STEALTHCHOP, stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4)); TERN_(E5_HAS_STEALTHCHOP, stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5)); TERN_(E6_HAS_STEALTHCHOP, stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6)); TERN_(E7_HAS_STEALTHCHOP, stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7)); } #endif } // // TMC StallGuard threshold. // { tmc_sgt_t tmc_sgt; _FIELD_TEST(tmc_sgt); EEPROM_READ(tmc_sgt); #if USE_SENSORLESS if (!validating) { LINEAR_AXIS_CODE( TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X)), TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y)), TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z)), TERN_(I_SENSORLESS, stepperI.homing_threshold(tmc_sgt.I)), TERN_(J_SENSORLESS, stepperJ.homing_threshold(tmc_sgt.J)), TERN_(K_SENSORLESS, stepperK.homing_threshold(tmc_sgt.K)) ); TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2)); TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2)); TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2)); TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3)); TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4)); } #endif } // TMC stepping mode { _FIELD_TEST(tmc_stealth_enabled); tmc_stealth_enabled_t tmc_stealth_enabled; EEPROM_READ(tmc_stealth_enabled); #if HAS_TRINAMIC_CONFIG #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode(); if (!validating) { TERN_(X_HAS_STEALTHCHOP, SET_STEPPING_MODE(X)); TERN_(Y_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y)); TERN_(Z_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z)); TERN_(I_HAS_STEALTHCHOP, SET_STEPPING_MODE(I)); TERN_(J_HAS_STEALTHCHOP, SET_STEPPING_MODE(J)); TERN_(K_HAS_STEALTHCHOP, SET_STEPPING_MODE(K)); TERN_(X2_HAS_STEALTHCHOP, SET_STEPPING_MODE(X2)); TERN_(Y2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y2)); TERN_(Z2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z2)); TERN_(Z3_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z3)); TERN_(Z4_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z4)); TERN_(E0_HAS_STEALTHCHOP, SET_STEPPING_MODE(E0)); TERN_(E1_HAS_STEALTHCHOP, SET_STEPPING_MODE(E1)); TERN_(E2_HAS_STEALTHCHOP, SET_STEPPING_MODE(E2)); TERN_(E3_HAS_STEALTHCHOP, SET_STEPPING_MODE(E3)); TERN_(E4_HAS_STEALTHCHOP, SET_STEPPING_MODE(E4)); TERN_(E5_HAS_STEALTHCHOP, SET_STEPPING_MODE(E5)); TERN_(E6_HAS_STEALTHCHOP, SET_STEPPING_MODE(E6)); TERN_(E7_HAS_STEALTHCHOP, SET_STEPPING_MODE(E7)); } #endif } // // Linear Advance // { float extruder_advance_K[_MAX(EXTRUDERS, 1)]; _FIELD_TEST(planner_extruder_advance_K); EEPROM_READ(extruder_advance_K); #if ENABLED(LIN_ADVANCE) if (!validating) COPY(planner.extruder_advance_K, extruder_advance_K); #endif } // // Motor Current PWM // { _FIELD_TEST(motor_current_setting); uint32_t motor_current_setting[MOTOR_CURRENT_COUNT] #if HAS_MOTOR_CURRENT_SPI = DIGIPOT_MOTOR_CURRENT #endif ; #if HAS_MOTOR_CURRENT_SPI DEBUG_ECHO_MSG("DIGIPOTS Loading"); #endif EEPROM_READ(motor_current_setting); #if HAS_MOTOR_CURRENT_SPI DEBUG_ECHO_MSG("DIGIPOTS Loaded"); #endif #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM if (!validating) COPY(stepper.motor_current_setting, motor_current_setting); #endif } // // CNC Coordinate System // { _FIELD_TEST(coordinate_system); #if ENABLED(CNC_COORDINATE_SYSTEMS) if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space EEPROM_READ(gcode.coordinate_system); #else xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; EEPROM_READ(coordinate_system); #endif } // // Skew correction factors // { skew_factor_t skew_factor; _FIELD_TEST(planner_skew_factor); EEPROM_READ(skew_factor); #if ENABLED(SKEW_CORRECTION_GCODE) if (!validating) { planner.skew_factor.xy = skew_factor.xy; #if ENABLED(SKEW_CORRECTION_FOR_Z) planner.skew_factor.xz = skew_factor.xz; planner.skew_factor.yz = skew_factor.yz; #endif } #endif } // // Advanced Pause filament load & unload lengths // #if HAS_EXTRUDERS { #if DISABLED(ADVANCED_PAUSE_FEATURE) fil_change_settings_t fc_settings[EXTRUDERS]; #endif _FIELD_TEST(fc_settings); EEPROM_READ(fc_settings); } #endif // // Tool-change settings // #if HAS_MULTI_EXTRUDER _FIELD_TEST(toolchange_settings); EEPROM_READ(toolchange_settings); #endif // // Backlash Compensation // { xyz_float_t backlash_distance_mm; uint8_t backlash_correction; float backlash_smoothing_mm; _FIELD_TEST(backlash_distance_mm); EEPROM_READ(backlash_distance_mm); EEPROM_READ(backlash_correction); EEPROM_READ(backlash_smoothing_mm); #if ENABLED(BACKLASH_GCODE) LOOP_LINEAR_AXES(axis) backlash.set_distance_mm((AxisEnum)axis, backlash_distance_mm[axis]); backlash.set_correction_uint8(backlash_correction); #ifdef BACKLASH_SMOOTHING_MM backlash.set_smoothing_mm(backlash_smoothing_mm); #endif #endif } // // Extensible UI User Data // #if ENABLED(EXTENSIBLE_UI) { // This is a significant hardware change; don't reserve EEPROM space when not present const char extui_data[ExtUI::eeprom_data_size] = { 0 }; _FIELD_TEST(extui_data); EEPROM_READ(extui_data); if (!validating) ExtUI::onLoadSettings(extui_data); } #endif // // Creality DWIN User Data // #if ENABLED(DWIN_CREALITY_LCD_ENHANCED) { const char dwin_data[eeprom_data_size] = { 0 }; _FIELD_TEST(dwin_data); EEPROM_READ(dwin_data); if (!validating) DWIN_LoadSettings(dwin_data); } #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI) { const char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 }; _FIELD_TEST(dwin_settings); EEPROM_READ(dwin_settings); if (!validating) CrealityDWIN.Load_Settings(dwin_settings); } #endif // // Case Light Brightness // #if CASELIGHT_USES_BRIGHTNESS _FIELD_TEST(caselight_brightness); EEPROM_READ(caselight.brightness); #endif // // Password feature // #if ENABLED(PASSWORD_FEATURE) _FIELD_TEST(password_is_set); EEPROM_READ(password.is_set); EEPROM_READ(password.value); #endif // // TOUCH_SCREEN_CALIBRATION // #if ENABLED(TOUCH_SCREEN_CALIBRATION) _FIELD_TEST(touch_calibration_data); EEPROM_READ(touch_calibration.calibration); #endif // // Ethernet network info // #if HAS_ETHERNET _FIELD_TEST(ethernet_hardware_enabled); uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet; EEPROM_READ(ethernet.hardware_enabled); EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip; EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns; EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway; EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet; #endif // // Buzzer enable/disable // #if ENABLED(SOUND_MENU_ITEM) _FIELD_TEST(buzzer_enabled); EEPROM_READ(ui.buzzer_enabled); #endif // // Fan tachometer check // #if HAS_FANCHECK _FIELD_TEST(fan_check_enabled); EEPROM_READ(fan_check.enabled); #endif // // MKS UI controller // #if ENABLED(DGUS_LCD_UI_MKS) _FIELD_TEST(mks_language_index); EEPROM_READ(mks_language_index); EEPROM_READ(mks_corner_offsets); EEPROM_READ(mks_park_pos); EEPROM_READ(mks_min_extrusion_temp); #endif // // Selected LCD language // #if HAS_MULTI_LANGUAGE { uint8_t ui_language; EEPROM_READ(ui_language); if (ui_language >= NUM_LANGUAGES) ui_language = 0; ui.set_language(ui_language); } #endif // // Validate Final Size and CRC // eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET)); if (eeprom_error) { DEBUG_ECHO_MSG("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize()); IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index()); } else if (working_crc != stored_crc) { eeprom_error = true; DEBUG_ERROR_MSG("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!"); TERN_(DWIN_CREALITY_LCD_ENHANCED, LCD_MESSAGE(MSG_ERR_EEPROM_CRC)); TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(GET_TEXT_F(MSG_ERR_EEPROM_CRC))); IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc()); } else if (!validating) { DEBUG_ECHO_START(); DEBUG_ECHO(version); DEBUG_ECHOLNPGM(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")"); TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(F("Stored settings retrieved"))); } if (!validating && !eeprom_error) postprocess(); #if ENABLED(AUTO_BED_LEVELING_UBL) if (!validating) { ubl.report_state(); if (!ubl.sanity_check()) { #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE) ubl.echo_name(); DEBUG_ECHOLNPGM(" initialized.\n"); #endif } else { eeprom_error = true; #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE) DEBUG_ECHOPGM("?Can't enable "); ubl.echo_name(); DEBUG_ECHOLNPGM("."); #endif ubl.reset(); } if (ubl.storage_slot >= 0) { load_mesh(ubl.storage_slot); DEBUG_ECHOLNPGM("Mesh ", ubl.storage_slot, " loaded from storage."); } else { ubl.reset(); DEBUG_ECHOLNPGM("UBL reset"); } } #endif } #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503) // Report the EEPROM settings if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report(); #endif EEPROM_FINISH(); return !eeprom_error; } #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE extern bool restoreEEPROM(); #endif bool MarlinSettings::validate() { validating = true; #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE bool success = _load(); if (!success && restoreEEPROM()) { SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash"); success = _load(); } #else const bool success = _load(); #endif validating = false; return success; } bool MarlinSettings::load() { if (validate()) { const bool success = _load(); TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success)); return success; } reset(); #if EITHER(EEPROM_AUTO_INIT, EEPROM_INIT_NOW) (void)save(); SERIAL_ECHO_MSG("EEPROM Initialized"); #endif return false; } #if ENABLED(AUTO_BED_LEVELING_UBL) inline void ubl_invalid_slot(const int s) { DEBUG_ECHOLNPGM("?Invalid slot.\n", s, " mesh slots available."); UNUSED(s); } // 128 (+1 because of the change to capacity rather than last valid address) // is a placeholder for the size of the MAT; the MAT will always // live at the very end of the eeprom const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; uint16_t MarlinSettings::meshes_start_index() { // Pad the end of configuration data so it can float up // or down a little bit without disrupting the mesh data return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; } #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values)) uint16_t MarlinSettings::calc_num_meshes() { return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE; } int MarlinSettings::mesh_slot_offset(const int8_t slot) { return meshes_end - (slot + 1) * MESH_STORE_SIZE; } void MarlinSettings::store_mesh(const int8_t slot) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { ubl_invalid_slot(a); DEBUG_ECHOLNPGM("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot); DEBUG_EOL(); return; } int pos = mesh_slot_offset(slot); uint16_t crc = 0; #if ENABLED(OPTIMIZED_MESH_STORAGE) int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; ubl.set_store_from_mesh(ubl.z_values, z_mesh_store); uint8_t * const src = (uint8_t*)&z_mesh_store; #else uint8_t * const src = (uint8_t*)&ubl.z_values; #endif // Write crc to MAT along with other data, or just tack on to the beginning or end persistentStore.access_start(); const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc); persistentStore.access_finish(); if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data."); else DEBUG_ECHOLNPGM("Mesh saved in slot ", slot); #else // Other mesh types #endif } void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = settings.calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { ubl_invalid_slot(a); return; } int pos = mesh_slot_offset(slot); uint16_t crc = 0; #if ENABLED(OPTIMIZED_MESH_STORAGE) int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; uint8_t * const dest = (uint8_t*)&z_mesh_store; #else uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values; #endif persistentStore.access_start(); const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc); persistentStore.access_finish(); #if ENABLED(OPTIMIZED_MESH_STORAGE) if (into) { float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; ubl.set_mesh_from_store(z_mesh_store, z_values); memcpy(into, z_values, sizeof(z_values)); } else ubl.set_mesh_from_store(z_mesh_store, ubl.z_values); #endif if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data."); else DEBUG_ECHOLNPGM("Mesh loaded from slot ", slot); EEPROM_FINISH(); #else // Other mesh types #endif } //void MarlinSettings::delete_mesh() { return; } //void MarlinSettings::defrag_meshes() { return; } #endif // AUTO_BED_LEVELING_UBL #else // !EEPROM_SETTINGS bool MarlinSettings::save() { DEBUG_ERROR_MSG("EEPROM disabled"); return false; } #endif // !EEPROM_SETTINGS /** * M502 - Reset Configuration */ void MarlinSettings::reset() { LOOP_DISTINCT_AXES(i) { planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]); planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]); planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]); } planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME; planner.settings.acceleration = DEFAULT_ACCELERATION; planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE); planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE); #if HAS_CLASSIC_JERK #ifndef DEFAULT_XJERK #define DEFAULT_XJERK 0 #endif #if HAS_Y_AXIS && !defined(DEFAULT_YJERK) #define DEFAULT_YJERK 0 #endif #if HAS_Z_AXIS && !defined(DEFAULT_ZJERK) #define DEFAULT_ZJERK 0 #endif #if HAS_I_AXIS && !defined(DEFAULT_IJERK) #define DEFAULT_IJERK 0 #endif #if HAS_J_AXIS && !defined(DEFAULT_JJERK) #define DEFAULT_JJERK 0 #endif #if HAS_K_AXIS && !defined(DEFAULT_KJERK) #define DEFAULT_KJERK 0 #endif planner.max_jerk.set( LINEAR_AXIS_LIST(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_IJERK, DEFAULT_JJERK, DEFAULT_KJERK) ); TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK); #endif TERN_(HAS_JUNCTION_DEVIATION, planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM)); #if HAS_SCARA_OFFSET scara_home_offset.reset(); #elif HAS_HOME_OFFSET home_offset.reset(); #endif TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets()); // // Filament Runout Sensor // #if HAS_FILAMENT_SENSOR runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT; runout.reset(); TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM)); #endif // // Tool-change Settings // #if HAS_MULTI_EXTRUDER #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH; toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH; toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED; toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED; toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME; toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED; toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED; toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME; #endif #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED) enable_first_prime = false; #endif #if ENABLED(TOOLCHANGE_PARK) constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY; toolchange_settings.enable_park = true; toolchange_settings.change_point = tpxy; #endif toolchange_settings.z_raise = TOOLCHANGE_ZRAISE; #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE) migration = migration_defaults; #endif #endif #if ENABLED(BACKLASH_GCODE) backlash.set_correction(BACKLASH_CORRECTION); constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM; LOOP_LINEAR_AXES(axis) backlash.set_distance_mm((AxisEnum)axis, tmp[axis]); #ifdef BACKLASH_SMOOTHING_MM backlash.set_smoothing_mm(BACKLASH_SMOOTHING_MM); #endif #endif TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_SetDataDefaults()); TERN_(DWIN_CREALITY_LCD_JYERSUI, CrealityDWIN.Reset_Settings()); // // Case Light Brightness // TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS); // // TOUCH_SCREEN_CALIBRATION // TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset()); // // Buzzer enable/disable // TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true); // // Magnetic Parking Extruder // TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init()); // // Global Leveling // TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT)); TERN_(HAS_LEVELING, reset_bed_level()); // // X Axis Twist Compensation // TERN_(X_AXIS_TWIST_COMPENSATION, xatc.reset()); // // Nozzle-to-probe Offset // #if HAS_BED_PROBE constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET; static_assert(COUNT(dpo) == LINEAR_AXES, "NOZZLE_TO_PROBE_OFFSET must contain offsets for each linear axis X, Y, Z...."); #if HAS_PROBE_XY_OFFSET LOOP_LINEAR_AXES(a) probe.offset[a] = dpo[a]; #else probe.offset.set(LINEAR_AXIS_LIST(0, 0, dpo[Z_AXIS], 0, 0, 0)); #endif #endif // // Z Stepper Auto-alignment points // TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default()); // // Servo Angles // TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists // // Probe Temperature Compensation // TERN_(HAS_PTC, ptc.reset()); // // BLTouch // #ifdef BLTOUCH_HS_MODE bltouch.high_speed_mode = ENABLED(BLTOUCH_HS_MODE); #endif // // Kinematic settings // #if IS_KINEMATIC segments_per_second = ( TERN_(DELTA, DELTA_SEGMENTS_PER_SECOND) TERN_(IS_SCARA, SCARA_SEGMENTS_PER_SECOND) TERN_(POLARGRAPH, POLAR_SEGMENTS_PER_SECOND) ); #if ENABLED(DELTA) const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER; delta_height = DELTA_HEIGHT; delta_endstop_adj = adj; delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_tower_angle_trim = dta; delta_diagonal_rod_trim = ddr; #endif #endif // // Endstop Adjustments // #if ENABLED(X_DUAL_ENDSTOPS) #ifndef X2_ENDSTOP_ADJUSTMENT #define X2_ENDSTOP_ADJUSTMENT 0 #endif endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT; #endif #if ENABLED(Y_DUAL_ENDSTOPS) #ifndef Y2_ENDSTOP_ADJUSTMENT #define Y2_ENDSTOP_ADJUSTMENT 0 #endif endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT; #endif #if ENABLED(Z_MULTI_ENDSTOPS) #ifndef Z2_ENDSTOP_ADJUSTMENT #define Z2_ENDSTOP_ADJUSTMENT 0 #endif endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT; #if NUM_Z_STEPPER_DRIVERS >= 3 #ifndef Z3_ENDSTOP_ADJUSTMENT #define Z3_ENDSTOP_ADJUSTMENT 0 #endif endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT; #endif #if NUM_Z_STEPPER_DRIVERS >= 4 #ifndef Z4_ENDSTOP_ADJUSTMENT #define Z4_ENDSTOP_ADJUSTMENT 0 #endif endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT; #endif #endif // // Preheat parameters // #if HAS_PREHEAT #define _PITEM(N,T) PREHEAT_##N##_##T, #if HAS_HOTEND constexpr uint16_t hpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_HOTEND) }; #endif #if HAS_HEATED_BED constexpr uint16_t bpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_BED) }; #endif #if HAS_FAN constexpr uint8_t fpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, FAN_SPEED) }; #endif LOOP_L_N(i, PREHEAT_COUNT) { TERN_(HAS_HOTEND, ui.material_preset[i].hotend_temp = hpre[i]); TERN_(HAS_HEATED_BED, ui.material_preset[i].bed_temp = bpre[i]); TERN_(HAS_FAN, ui.material_preset[i].fan_speed = fpre[i]); } #endif // // Hotend PID // #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) constexpr float defKp[] = #ifdef DEFAULT_Kp_LIST DEFAULT_Kp_LIST #else ARRAY_BY_HOTENDS1(DEFAULT_Kp) #endif , defKi[] = #ifdef DEFAULT_Ki_LIST DEFAULT_Ki_LIST #else ARRAY_BY_HOTENDS1(DEFAULT_Ki) #endif , defKd[] = #ifdef DEFAULT_Kd_LIST DEFAULT_Kd_LIST #else ARRAY_BY_HOTENDS1(DEFAULT_Kd) #endif ; static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items."); static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items."); static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items."); #if ENABLED(PID_EXTRUSION_SCALING) constexpr float defKc[] = #ifdef DEFAULT_Kc_LIST DEFAULT_Kc_LIST #else ARRAY_BY_HOTENDS1(DEFAULT_Kc) #endif ; static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items."); #endif #if ENABLED(PID_FAN_SCALING) constexpr float defKf[] = #ifdef DEFAULT_Kf_LIST DEFAULT_Kf_LIST #else ARRAY_BY_HOTENDS1(DEFAULT_Kf) #endif ; static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items."); #endif #define PID_DEFAULT(N,E) def##N[E] #else #define PID_DEFAULT(N,E) DEFAULT_##N #endif HOTEND_LOOP() { PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp))); PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi))); PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd))); TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc)))); TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf)))); } #endif // // PID Extrusion Scaling // TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size // // Heated Bed PID // #if ENABLED(PIDTEMPBED) thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp; thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi); thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd); #endif // // Heated Chamber PID // #if ENABLED(PIDTEMPCHAMBER) thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp; thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi); thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd); #endif // // User-Defined Thermistors // TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors()); // // Power Monitor // TERN_(POWER_MONITOR, power_monitor.reset()); // // LCD Contrast // TERN_(HAS_LCD_CONTRAST, ui.contrast = LCD_CONTRAST_DEFAULT); // // LCD Brightness // TERN_(HAS_LCD_BRIGHTNESS, ui.brightness = LCD_BRIGHTNESS_DEFAULT); // // LCD Backlight Timeout // #if LCD_BACKLIGHT_TIMEOUT ui.lcd_backlight_timeout = LCD_BACKLIGHT_TIMEOUT; #endif // // Controller Fan // TERN_(USE_CONTROLLER_FAN, controllerFan.reset()); // // Power-Loss Recovery // TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT))); // // Firmware Retraction // TERN_(FWRETRACT, fwretract.reset()); // // Volumetric & Filament Size // #if DISABLED(NO_VOLUMETRICS) parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON); LOOP_L_N(q, COUNT(planner.filament_size)) planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit)) planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT; #endif #endif endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)); reset_stepper_drivers(); // // Linear Advance // #if ENABLED(LIN_ADVANCE) LOOP_L_N(i, EXTRUDERS) { planner.extruder_advance_K[i] = LIN_ADVANCE_K; TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K); } #endif // // Motor Current PWM // #if HAS_MOTOR_CURRENT_PWM constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT; LOOP_L_N(q, MOTOR_CURRENT_COUNT) stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q])); #endif // // DIGIPOTS // #if HAS_MOTOR_CURRENT_SPI static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT; DEBUG_ECHOLNPGM("Writing Digipot"); LOOP_L_N(q, COUNT(tmp_motor_current_setting)) stepper.set_digipot_current(q, tmp_motor_current_setting[q]); DEBUG_ECHOLNPGM("Digipot Written"); #endif // // CNC Coordinate System // TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space // // Skew Correction // #if ENABLED(SKEW_CORRECTION_GCODE) planner.skew_factor.xy = XY_SKEW_FACTOR; #if ENABLED(SKEW_CORRECTION_FOR_Z) planner.skew_factor.xz = XZ_SKEW_FACTOR; planner.skew_factor.yz = YZ_SKEW_FACTOR; #endif #endif // // Advanced Pause filament load & unload lengths // #if ENABLED(ADVANCED_PAUSE_FEATURE) LOOP_L_N(e, EXTRUDERS) { fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH; fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH; } #endif #if ENABLED(PASSWORD_FEATURE) #ifdef PASSWORD_DEFAULT_VALUE password.is_set = true; password.value = PASSWORD_DEFAULT_VALUE; #else password.is_set = false; #endif #endif // // Fan tachometer check // TERN_(HAS_FANCHECK, fan_check.enabled = true); // // MKS UI controller // TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings()); postprocess(); FSTR_P const hdsl = F("Hardcoded Default Settings Loaded"); TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(hdsl)); DEBUG_ECHO_START(); DEBUG_ECHOLNF(hdsl); TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset()); } #if DISABLED(DISABLE_M503) #define CONFIG_ECHO_START() gcode.report_echo_start(forReplay) #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(V); }while(0) #define CONFIG_ECHO_MSG_P(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM_P(V); }while(0) #define CONFIG_ECHO_HEADING(STR) gcode.report_heading(forReplay, F(STR)) void M92_report(const bool echo=true, const int8_t e=-1); /** * M503 - Report current settings in RAM * * Unless specifically disabled, M503 is available even without EEPROM */ void MarlinSettings::report(const bool forReplay) { // // Announce current units, in case inches are being displayed // CONFIG_ECHO_HEADING("Linear Units"); CONFIG_ECHO_START(); #if ENABLED(INCH_MODE_SUPPORT) SERIAL_ECHOPGM(" G2", AS_DIGIT(parser.linear_unit_factor == 1.0), " ;"); #else SERIAL_ECHOPGM(" G21 ;"); #endif gcode.say_units(); // " (in/mm)" // // M149 Temperature units // #if ENABLED(TEMPERATURE_UNITS_SUPPORT) gcode.M149_report(forReplay); #else CONFIG_ECHO_HEADING(STR_TEMPERATURE_UNITS); CONFIG_ECHO_MSG(" M149 C ; Units in Celsius"); #endif // // M200 Volumetric Extrusion // IF_DISABLED(NO_VOLUMETRICS, gcode.M200_report(forReplay)); // // M92 Steps per Unit // gcode.M92_report(forReplay); // // M203 Maximum feedrates (units/s) // gcode.M203_report(forReplay); // // M201 Maximum Acceleration (units/s2) // gcode.M201_report(forReplay); // // M204 Acceleration (units/s2) // gcode.M204_report(forReplay); // // M205 "Advanced" Settings // gcode.M205_report(forReplay); // // M206 Home Offset // TERN_(HAS_M206_COMMAND, gcode.M206_report(forReplay)); // // M218 Hotend offsets // TERN_(HAS_HOTEND_OFFSET, gcode.M218_report(forReplay)); // // Bed Leveling // #if HAS_LEVELING gcode.M420_report(forReplay); #if ENABLED(MESH_BED_LEVELING) if (leveling_is_valid()) { LOOP_L_N(py, GRID_MAX_POINTS_Y) { LOOP_L_N(px, GRID_MAX_POINTS_X) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" G29 S3 I", px, " J", py); SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5); } } CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(mbl.z_offset), 5); } #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { SERIAL_EOL(); ubl.report_state(); SERIAL_ECHO_MSG("Active Mesh Slot ", ubl.storage_slot); SERIAL_ECHO_MSG("EEPROM can hold ", calc_num_meshes(), " meshes.\n"); } //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse) // solution needs to be found. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (leveling_is_valid()) { LOOP_L_N(py, GRID_MAX_POINTS_Y) { LOOP_L_N(px, GRID_MAX_POINTS_X) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" G29 W I", px, " J", py); SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5); } } } #endif // TODO: Create G-code for settings //#if ENABLED(X_AXIS_TWIST_COMPENSATION) // CONFIG_ECHO_START(); // xatc.print_points(); //#endif #endif // HAS_LEVELING // // Editable Servo Angles // TERN_(EDITABLE_SERVO_ANGLES, gcode.M281_report(forReplay)); // // Kinematic Settings // TERN_(IS_KINEMATIC, gcode.M665_report(forReplay)); // // M666 Endstops Adjustment // #if EITHER(DELTA, HAS_EXTRA_ENDSTOPS) gcode.M666_report(forReplay); #endif // // Z Auto-Align // TERN_(Z_STEPPER_AUTO_ALIGN, gcode.M422_report(forReplay)); // // LCD Preheat Settings // #if HAS_PREHEAT gcode.M145_report(forReplay); #endif // // PID // TERN_(PIDTEMP, gcode.M301_report(forReplay)); TERN_(PIDTEMPBED, gcode.M304_report(forReplay)); TERN_(PIDTEMPCHAMBER, gcode.M309_report(forReplay)); #if HAS_USER_THERMISTORS LOOP_L_N(i, USER_THERMISTORS) thermalManager.M305_report(i, forReplay); #endif // // LCD Contrast // TERN_(HAS_LCD_CONTRAST, gcode.M250_report(forReplay)); // // LCD Brightness // TERN_(HAS_LCD_BRIGHTNESS, gcode.M256_report(forReplay)); // // Controller Fan // TERN_(CONTROLLER_FAN_EDITABLE, gcode.M710_report(forReplay)); // // Power-Loss Recovery // TERN_(POWER_LOSS_RECOVERY, gcode.M413_report(forReplay)); // // Firmware Retraction // #if ENABLED(FWRETRACT) gcode.M207_report(forReplay); gcode.M208_report(forReplay); TERN_(FWRETRACT_AUTORETRACT, gcode.M209_report(forReplay)); #endif // // Probe Offset // TERN_(HAS_BED_PROBE, gcode.M851_report(forReplay)); // // Bed Skew Correction // TERN_(SKEW_CORRECTION_GCODE, gcode.M852_report(forReplay)); #if HAS_TRINAMIC_CONFIG // // TMC Stepper driver current // gcode.M906_report(forReplay); // // TMC Hybrid Threshold // TERN_(HYBRID_THRESHOLD, gcode.M913_report(forReplay)); // // TMC Sensorless homing thresholds // TERN_(USE_SENSORLESS, gcode.M914_report(forReplay)); #endif // // TMC stepping mode // TERN_(HAS_STEALTHCHOP, gcode.M569_report(forReplay)); // // Linear Advance // TERN_(LIN_ADVANCE, gcode.M900_report(forReplay)); // // Motor Current (SPI or PWM) // #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM gcode.M907_report(forReplay); #endif // // Advanced Pause filament load & unload lengths // TERN_(ADVANCED_PAUSE_FEATURE, gcode.M603_report(forReplay)); // // Tool-changing Parameters // E_TERN_(gcode.M217_report(forReplay)); // // Backlash Compensation // TERN_(BACKLASH_GCODE, gcode.M425_report(forReplay)); // // Filament Runout Sensor // TERN_(HAS_FILAMENT_SENSOR, gcode.M412_report(forReplay)); #if HAS_ETHERNET CONFIG_ECHO_HEADING("Ethernet"); if (!forReplay) ETH0_report(); CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report(); CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M552_report(); CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M553_report(); CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M554_report(); #endif TERN_(HAS_MULTI_LANGUAGE, gcode.M414_report(forReplay)); } #endif // !DISABLE_M503 #pragma pack(pop)