/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * temperature.cpp - temperature control */ // Useful when debugging thermocouples //#define IGNORE_THERMOCOUPLE_ERRORS #include "../MarlinCore.h" #include "../HAL/shared/Delay.h" #include "../lcd/marlinui.h" #include "temperature.h" #include "endstops.h" #include "planner.h" #if EITHER(HAS_COOLER, LASER_COOLANT_FLOW_METER) #include "../feature/cooler.h" #include "../feature/spindle_laser.h" #endif #if ENABLED(EMERGENCY_PARSER) #include "motion.h" #endif #if ENABLED(DWIN_CREALITY_LCD) #include "../lcd/dwin/e3v2/dwin.h" #endif #if ENABLED(EXTENSIBLE_UI) #include "../lcd/extui/ui_api.h" #endif #if ENABLED(HOST_PROMPT_SUPPORT) #include "../feature/host_actions.h" #endif // LIB_MAX31855 can be added to the build_flags in platformio.ini to use a user-defined library #if LIB_USR_MAX31855 #include #if PIN_EXISTS(MAX31855_MISO) && PIN_EXISTS(MAX31855_SCK) #define MAX31855_USES_SW_SPI 1 #endif #if TEMP_SENSOR_0_IS_MAX31855 && PIN_EXISTS(MAX31855_CS) #define HAS_MAX31855_TEMP 1 Adafruit_MAX31855 max31855_0 = Adafruit_MAX31855(MAX31855_CS_PIN #if MAX31855_USES_SW_SPI , MAX31855_MISO_PIN, MAX31855_SCK_PIN // For software SPI also set MISO/SCK #endif #if ENABLED(LARGE_PINMAP) , HIGH #endif ); #endif #if TEMP_SENSOR_1_IS_MAX31855 && PIN_EXISTS(MAX31855_CS2) #define HAS_MAX31855_TEMP 1 Adafruit_MAX31855 max31855_1 = Adafruit_MAX31855(MAX31855_CS2_PIN #if MAX31855_USES_SW_SPI , MAX31855_MISO_PIN, MAX31855_SCK_PIN // For software SPI also set MISO/SCK #endif #if ENABLED(LARGE_PINMAP) , HIGH #endif ); #endif #endif // LIB_MAX31865 can be added to the build_flags in platformio.ini to use a user-defined library. // If LIB_MAX31865 is not on the build_flags then the Adafruit MAX31865 V1.1.0 library is used. #if HAS_MAX31865 #include #ifndef MAX31865_MOSI_PIN #define MAX31865_MOSI_PIN SD_MOSI_PIN #endif #if PIN_EXISTS(MAX31865_MISO) && PIN_EXISTS(MAX31865_SCK) #define MAX31865_USES_SW_SPI 1 #endif #if TEMP_SENSOR_0_IS_MAX31865 && PIN_EXISTS(MAX31865_CS) #define HAS_MAX31865_TEMP 1 Adafruit_MAX31865 max31865_0 = Adafruit_MAX31865(MAX31865_CS_PIN #if MAX31865_USES_SW_SPI && PIN_EXISTS(MAX31865_MOSI) , MAX31865_MOSI_PIN, MAX31865_MISO_PIN, MAX31865_SCK_PIN // For software SPI also set MOSI/MISO/SCK #endif #if ENABLED(LARGE_PINMAP) , HIGH #endif ); #endif #if TEMP_SENSOR_1_IS_MAX31865 && PIN_EXISTS(MAX31865_CS2) #define HAS_MAX31865_TEMP 1 Adafruit_MAX31865 max31865_1 = Adafruit_MAX31865(MAX31865_CS2_PIN #if MAX31865_USES_SW_SPI && PIN_EXISTS(MAX31865_MOSI) , MAX31865_MOSI_PIN, MAX31865_MISO_PIN, MAX31865_SCK_PIN // For software SPI also set MOSI/MISO/SCK #endif #if ENABLED(LARGE_PINMAP) , HIGH #endif ); #endif #endif // LIB_MAX6675 can be added to the build_flags in platformio.ini to use a user-defined library #if LIB_USR_MAX6675 #include #if PIN_EXISTS(MAX6675_MISO) && PIN_EXISTS(MAX6675_SCK) #define MAX6675_USES_SW_SPI 1 #endif #if TEMP_SENSOR_0_IS_MAX6675 && PIN_EXISTS(MAX6675_CS) #define HAS_MAX6675_TEMP 1 MAX6675 max6675_0 = MAX6675(MAX6675_CS_PIN #if MAX6675_USES_SW_SPI , MAX6675_MISO_PIN, MAX6675_SCK_PIN // For software SPI also set MISO/SCK #endif #if ENABLED(LARGE_PINMAP) , HIGH #endif ); #endif #if TEMP_SENSOR_1_IS_MAX6675 && PIN_EXISTS(MAX6675_CS2) #define HAS_MAX6675_TEMP 1 MAX6675 max6675_1 = MAX6675(MAX6675_CS2_PIN #if MAX6675_USES_SW_SPI , MAX6675_MISO_PIN, MAX6675_SCK_PIN // For software SPI also set MISO/SCK #endif #if ENABLED(LARGE_PINMAP) , HIGH #endif ); #endif #endif #if !HAS_MAX6675_TEMP && !HAS_MAX31855_TEMP && !HAS_MAX31865_TEMP #define NO_THERMO_TEMPS 1 #endif #if (TEMP_SENSOR_0_IS_MAX_TC || TEMP_SENSOR_1_IS_MAX_TC) && PINS_EXIST(MAX6675_SCK, MAX6675_DO) && NO_THERMO_TEMPS #define THERMO_SEPARATE_SPI 1 #endif #if THERMO_SEPARATE_SPI #include "../libs/private_spi.h" #endif #if ENABLED(PID_EXTRUSION_SCALING) #include "stepper.h" #endif #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING) #include "../feature/babystep.h" #endif #include "printcounter.h" #if ENABLED(FILAMENT_WIDTH_SENSOR) #include "../feature/filwidth.h" #endif #if HAS_POWER_MONITOR #include "../feature/power_monitor.h" #endif #if ENABLED(EMERGENCY_PARSER) #include "../feature/e_parser.h" #endif #if ENABLED(PRINTER_EVENT_LEDS) #include "../feature/leds/printer_event_leds.h" #endif #if ENABLED(JOYSTICK) #include "../feature/joystick.h" #endif #if ENABLED(SINGLENOZZLE) #include "tool_change.h" #endif #if USE_BEEPER #include "../libs/buzzer.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if ANY(TEMP_SENSOR_0_IS_THERMISTOR, TEMP_SENSOR_1_IS_THERMISTOR, TEMP_SENSOR_2_IS_THERMISTOR, TEMP_SENSOR_3_IS_THERMISTOR, \ TEMP_SENSOR_4_IS_THERMISTOR, TEMP_SENSOR_5_IS_THERMISTOR, TEMP_SENSOR_6_IS_THERMISTOR, TEMP_SENSOR_7_IS_THERMISTOR ) #define HAS_HOTEND_THERMISTOR 1 #endif #if HAS_HOTEND_THERMISTOR #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) static const temp_entry_t* heater_ttbl_map[2] = { TEMPTABLE_0, TEMPTABLE_1 }; static constexpr uint8_t heater_ttbllen_map[2] = { TEMPTABLE_0_LEN, TEMPTABLE_1_LEN }; #else #define NEXT_TEMPTABLE(N) ,TEMPTABLE_##N #define NEXT_TEMPTABLE_LEN(N) ,TEMPTABLE_##N##_LEN static const temp_entry_t* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS(TEMPTABLE_0 REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE)); static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(TEMPTABLE_0_LEN REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE_LEN)); #endif #endif Temperature thermalManager; const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY, str_t_heating_failed[] PROGMEM = STR_T_HEATING_FAILED; /** * Macros to include the heater id in temp errors. The compiler's dead-code * elimination should (hopefully) optimize out the unused strings. */ #if HAS_HEATED_BED #define _BED_PSTR(h) (h) == H_BED ? GET_TEXT(MSG_BED) : #else #define _BED_PSTR(h) #endif #if HAS_HEATED_CHAMBER #define _CHAMBER_PSTR(h) (h) == H_CHAMBER ? GET_TEXT(MSG_CHAMBER) : #else #define _CHAMBER_PSTR(h) #endif #if HAS_COOLER #define _COOLER_PSTR(h) (h) == H_COOLER ? GET_TEXT(MSG_COOLER) : #else #define _COOLER_PSTR(h) #endif #define _E_PSTR(h,N) ((HOTENDS) > N && (h) == N) ? PSTR(LCD_STR_E##N) : #define HEATER_PSTR(h) _BED_PSTR(h) _CHAMBER_PSTR(h) _COOLER_PSTR(h) _E_PSTR(h,1) _E_PSTR(h,2) _E_PSTR(h,3) _E_PSTR(h,4) _E_PSTR(h,5) PSTR(LCD_STR_E0) // public: #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) bool Temperature::adaptive_fan_slowing = true; #endif #if HAS_HOTEND hotend_info_t Temperature::temp_hotend[HOTENDS]; #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) temp_info_t Temperature::temp_redundant; #endif #define _HMT(N) HEATER_##N##_MAXTEMP, const celsius_t Temperature::hotend_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP); #endif #if ENABLED(AUTO_POWER_E_FANS) uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 } #endif #if ENABLED(AUTO_POWER_CHAMBER_FAN) uint8_t Temperature::chamberfan_speed; // = 0 #endif #if ENABLED(AUTO_POWER_COOLER_FAN) uint8_t Temperature::coolerfan_speed; // = 0 #endif #if HAS_FAN uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 } #if ENABLED(EXTRA_FAN_SPEED) Temperature::extra_fan_t Temperature::extra_fan_speed[FAN_COUNT]; /** * Handle the M106 P T command: * T1 = Restore fan speed saved on the last T2 * T2 = Save the fan speed, then set to the last T<3-255> value * T<3-255> = Set the "extra fan speed" */ void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t command_or_speed) { switch (command_or_speed) { case 1: set_fan_speed(fan, extra_fan_speed[fan].saved); break; case 2: extra_fan_speed[fan].saved = fan_speed[fan]; set_fan_speed(fan, extra_fan_speed[fan].speed); break; default: extra_fan_speed[fan].speed = _MIN(command_or_speed, 255U); break; } } #endif #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) bool Temperature::fans_paused; // = false; uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 } #endif #if ENABLED(ADAPTIVE_FAN_SLOWING) uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128, 128, 128); #endif /** * Set the print fan speed for a target extruder */ void Temperature::set_fan_speed(uint8_t fan, uint16_t speed) { NOMORE(speed, 255U); #if ENABLED(SINGLENOZZLE_STANDBY_FAN) if (fan != active_extruder) { if (fan < EXTRUDERS) singlenozzle_fan_speed[fan] = speed; return; } #endif TERN_(SINGLENOZZLE, fan = 0); // Always use fan index 0 with SINGLENOZZLE if (fan >= FAN_COUNT) return; fan_speed[fan] = speed; TERN_(REPORT_FAN_CHANGE, report_fan_speed(fan)); } #if ENABLED(REPORT_FAN_CHANGE) /** * Report print fan speed for a target extruder */ void Temperature::report_fan_speed(const uint8_t fan) { if (fan >= FAN_COUNT) return; PORT_REDIRECT(SerialMask::All); SERIAL_ECHOLNPAIR("M106 P", fan, " S", fan_speed[fan]); } #endif #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) void Temperature::set_fans_paused(const bool p) { if (p != fans_paused) { fans_paused = p; if (p) FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; } else FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i]; } } #endif #endif // HAS_FAN #if WATCH_HOTENDS hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } } #endif #if HEATER_IDLE_HANDLER Temperature::heater_idle_t Temperature::heater_idle[NR_HEATER_IDLE]; // = { { 0 } } #endif #if HAS_HEATED_BED bed_info_t Temperature::temp_bed; // = { 0 } // Init min and max temp with extreme values to prevent false errors during startup int16_t Temperature::mintemp_raw_BED = TEMP_SENSOR_BED_RAW_LO_TEMP, Temperature::maxtemp_raw_BED = TEMP_SENSOR_BED_RAW_HI_TEMP; TERN_(WATCH_BED, bed_watch_t Temperature::watch_bed); // = { 0 } IF_DISABLED(PIDTEMPBED, millis_t Temperature::next_bed_check_ms); #endif #if HAS_TEMP_CHAMBER chamber_info_t Temperature::temp_chamber; // = { 0 } #if HAS_HEATED_CHAMBER millis_t next_cool_check_ms_2 = 0; celsius_float_t old_temp = 9999; int16_t Temperature::mintemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_LO_TEMP, Temperature::maxtemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_HI_TEMP; TERN_(WATCH_CHAMBER, chamber_watch_t Temperature::watch_chamber{0}); IF_DISABLED(PIDTEMPCHAMBER, millis_t Temperature::next_chamber_check_ms); #endif #endif #if HAS_TEMP_COOLER cooler_info_t Temperature::temp_cooler; // = { 0 } #if HAS_COOLER bool flag_cooler_state; //bool flag_cooler_excess = false; celsius_float_t previous_temp = 9999; int16_t Temperature::mintemp_raw_COOLER = TEMP_SENSOR_COOLER_RAW_LO_TEMP, Temperature::maxtemp_raw_COOLER = TEMP_SENSOR_COOLER_RAW_HI_TEMP; #if WATCH_COOLER cooler_watch_t Temperature::watch_cooler{0}; #endif millis_t Temperature::next_cooler_check_ms, Temperature::cooler_fan_flush_ms; #endif #endif #if HAS_TEMP_PROBE probe_info_t Temperature::temp_probe; // = { 0 } #endif #if ENABLED(PREVENT_COLD_EXTRUSION) bool Temperature::allow_cold_extrude = false; celsius_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP; #endif // private: volatile bool Temperature::raw_temps_ready = false; #if ENABLED(PID_EXTRUSION_SCALING) int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN]; lpq_ptr_t Temperature::lpq_ptr = 0; #endif #define TEMPDIR(N) ((TEMP_SENSOR_##N##_RAW_LO_TEMP) < (TEMP_SENSOR_##N##_RAW_HI_TEMP) ? 1 : -1) #if HAS_HOTEND // Init mintemp and maxtemp with extreme values to prevent false errors during startup constexpr temp_range_t sensor_heater_0 { TEMP_SENSOR_0_RAW_LO_TEMP, TEMP_SENSOR_0_RAW_HI_TEMP, 0, 16383 }, sensor_heater_1 { TEMP_SENSOR_1_RAW_LO_TEMP, TEMP_SENSOR_1_RAW_HI_TEMP, 0, 16383 }, sensor_heater_2 { TEMP_SENSOR_2_RAW_LO_TEMP, TEMP_SENSOR_2_RAW_HI_TEMP, 0, 16383 }, sensor_heater_3 { TEMP_SENSOR_3_RAW_LO_TEMP, TEMP_SENSOR_3_RAW_HI_TEMP, 0, 16383 }, sensor_heater_4 { TEMP_SENSOR_4_RAW_LO_TEMP, TEMP_SENSOR_4_RAW_HI_TEMP, 0, 16383 }, sensor_heater_5 { TEMP_SENSOR_5_RAW_LO_TEMP, TEMP_SENSOR_5_RAW_HI_TEMP, 0, 16383 }, sensor_heater_6 { TEMP_SENSOR_6_RAW_LO_TEMP, TEMP_SENSOR_6_RAW_HI_TEMP, 0, 16383 }, sensor_heater_7 { TEMP_SENSOR_7_RAW_LO_TEMP, TEMP_SENSOR_7_RAW_HI_TEMP, 0, 16383 }; temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7); #endif #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1 uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 }; #endif #if MILLISECONDS_PREHEAT_TIME > 0 millis_t Temperature::preheat_end_time[HOTENDS] = { 0 }; #endif #if HAS_AUTO_FAN millis_t Temperature::next_auto_fan_check_ms = 0; #endif #if ENABLED(FAN_SOFT_PWM) uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT], Temperature::soft_pwm_count_fan[FAN_COUNT]; #endif #if ENABLED(SINGLENOZZLE_STANDBY_TEMP) celsius_t Temperature::singlenozzle_temp[EXTRUDERS]; #endif #if ENABLED(SINGLENOZZLE_STANDBY_FAN) uint8_t Temperature::singlenozzle_fan_speed[EXTRUDERS]; #endif #if ENABLED(PROBING_HEATERS_OFF) bool Temperature::paused_for_probing; #endif // public: #if HAS_ADC_BUTTONS uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE; uint16_t Temperature::ADCKey_count = 0; #endif #if ENABLED(PID_EXTRUSION_SCALING) int16_t Temperature::lpq_len; // Initialized in settings.cpp #endif #if HAS_PID_HEATING inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); } /** * PID Autotuning (M303) * * Alternately heat and cool the nozzle, observing its behavior to * determine the best PID values to achieve a stable temperature. * Needs sufficient heater power to make some overshoot at target * temperature to succeed. */ void Temperature::PID_autotune(const celsius_t target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result/*=false*/) { celsius_float_t current_temp = 0.0; int cycles = 0; bool heating = true; millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms; long t_high = 0, t_low = 0; PID_t tune_pid = { 0, 0, 0 }; celsius_float_t maxT = 0, minT = 10000; const bool isbed = (heater_id == H_BED); const bool ischamber = (heater_id == H_CHAMBER); #if ENABLED(PIDTEMPCHAMBER) #define C_TERN(T,A,B) ((T) ? (A) : (B)) #else #define C_TERN(T,A,B) (B) #endif #if ENABLED(PIDTEMPBED) #define B_TERN(T,A,B) ((T) ? (A) : (B)) #else #define B_TERN(T,A,B) (B) #endif #define GHV(C,B,H) C_TERN(ischamber, C, B_TERN(isbed, B, H)) #define SHV(V) C_TERN(ischamber, temp_chamber.soft_pwm_amount = V, B_TERN(isbed, temp_bed.soft_pwm_amount = V, temp_hotend[heater_id].soft_pwm_amount = V)) #define ONHEATINGSTART() C_TERN(ischamber, printerEventLEDs.onChamberHeatingStart(), B_TERN(isbed, printerEventLEDs.onBedHeatingStart(), printerEventLEDs.onHotendHeatingStart())) #define ONHEATING(S,C,T) C_TERN(ischamber, printerEventLEDs.onChamberHeating(S,C,T), B_TERN(isbed, printerEventLEDs.onBedHeating(S,C,T), printerEventLEDs.onHotendHeating(S,C,T))) #define WATCH_PID BOTH(WATCH_CHAMBER, PIDTEMPCHAMBER) || BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP) #if WATCH_PID #if BOTH(THERMAL_PROTECTION_CHAMBER, PIDTEMPCHAMBER) #define C_GTV(T,A,B) ((T) ? (A) : (B)) #else #define C_GTV(T,A,B) (B) #endif #if BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED) #define B_GTV(T,A,B) ((T) ? (A) : (B)) #else #define B_GTV(T,A,B) (B) #endif #define GTV(C,B,H) C_GTV(ischamber, C, B_GTV(isbed, B, H)) const uint16_t watch_temp_period = GTV(WATCH_CHAMBER_TEMP_PERIOD, WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD); const uint8_t watch_temp_increase = GTV(WATCH_CHAMBER_TEMP_INCREASE, WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE); const celsius_float_t watch_temp_target = celsius_float_t(target - (watch_temp_increase + GTV(TEMP_CHAMBER_HYSTERESIS, TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1)); millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period); celsius_float_t next_watch_temp = 0.0; bool heated = false; #endif TERN_(HAS_AUTO_FAN, next_auto_fan_check_ms = next_temp_ms + 2500UL); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_STARTED)); if (target > GHV(CHAMBER_MAX_TARGET, BED_MAX_TARGET, temp_range[heater_id].maxtemp - (HOTEND_OVERSHOOT))) { SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH)); return; } SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START); disable_all_heaters(); TERN_(AUTO_POWER_CONTROL, powerManager.power_on()); long bias = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX) >> 1, d = bias; SHV(bias); #if ENABLED(PRINTER_EVENT_LEDS) const celsius_float_t start_temp = GHV(degChamber(), degBed(), degHotend(heater_id)); LEDColor color = ONHEATINGSTART(); #endif TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false); // PID Tuning loop wait_for_heatup = true; // Can be interrupted with M108 while (wait_for_heatup) { const millis_t ms = millis(); if (updateTemperaturesIfReady()) { // temp sample ready // Get the current temperature and constrain it current_temp = GHV(degChamber(), degBed(), degHotend(heater_id)); NOLESS(maxT, current_temp); NOMORE(minT, current_temp); #if ENABLED(PRINTER_EVENT_LEDS) ONHEATING(start_temp, current_temp, target); #endif #if HAS_AUTO_FAN if (ELAPSED(ms, next_auto_fan_check_ms)) { checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500UL; } #endif if (heating && current_temp > target && ELAPSED(ms, t2 + 5000UL)) { heating = false; SHV((bias - d) >> 1); t1 = ms; t_high = t1 - t2; maxT = target; } if (!heating && current_temp < target && ELAPSED(ms, t1 + 5000UL)) { heating = true; t2 = ms; t_low = t2 - t1; if (cycles > 0) { const long max_pow = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX); bias += (d * (t_high - t_low)) / (t_low + t_high); LIMIT(bias, 20, max_pow - 20); d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias; SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT); if (cycles > 2) { const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f), Tu = float(t_low + t_high) * 0.001f, pf = ischamber ? 0.2f : (isbed ? 0.2f : 0.6f), df = ischamber ? 1.0f / 3.0f : (isbed ? 1.0f / 3.0f : 1.0f / 8.0f); tune_pid.Kp = Ku * pf; tune_pid.Ki = tune_pid.Kp * 2.0f / Tu; tune_pid.Kd = tune_pid.Kp * Tu * df; SERIAL_ECHOLNPAIR(STR_KU, Ku, STR_TU, Tu); if (ischamber || isbed) SERIAL_ECHOLNPGM(" No overshoot"); else SERIAL_ECHOLNPGM(STR_CLASSIC_PID); SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd); } } SHV((bias + d) >> 1); cycles++; minT = target; } } // Did the temperature overshoot very far? #ifndef MAX_OVERSHOOT_PID_AUTOTUNE #define MAX_OVERSHOOT_PID_AUTOTUNE 30 #endif if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) { SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH)); break; } // Report heater states every 2 seconds if (ELAPSED(ms, next_temp_ms)) { #if HAS_TEMP_SENSOR print_heater_states(ischamber ? active_extruder : (isbed ? active_extruder : heater_id)); SERIAL_EOL(); #endif next_temp_ms = ms + 2000UL; // Make sure heating is actually working #if WATCH_PID if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS) || ischamber == DISABLED(WATCH_HOTENDS)) { if (!heated) { // If not yet reached target... if (current_temp > next_watch_temp) { // Over the watch temp? next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for temp_change_ms = ms + SEC_TO_MS(watch_temp_period); // - move the expiration timer up if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached } else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired _temp_error(heater_id, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); } else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far? _temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY)); } #endif } // every 2 seconds // Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle #ifndef MAX_CYCLE_TIME_PID_AUTOTUNE #define MAX_CYCLE_TIME_PID_AUTOTUNE 20L #endif if ((ms - _MIN(t1, t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) { TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT)); SERIAL_ECHOLNPGM(STR_PID_TIMEOUT); break; } if (cycles > ncycles && cycles > 2) { SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED); #if EITHER(PIDTEMPBED, PIDTEMPCHAMBER) PGM_P const estring = GHV(PSTR("chamber"), PSTR("bed"), NUL_STR); say_default_(); SERIAL_ECHOPGM_P(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); say_default_(); SERIAL_ECHOPGM_P(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); say_default_(); SERIAL_ECHOPGM_P(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); #else say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); #endif auto _set_hotend_pid = [](const uint8_t e, const PID_t &in_pid) { #if ENABLED(PIDTEMP) PID_PARAM(Kp, e) = in_pid.Kp; PID_PARAM(Ki, e) = scalePID_i(in_pid.Ki); PID_PARAM(Kd, e) = scalePID_d(in_pid.Kd); updatePID(); #else UNUSED(e); UNUSED(in_pid); #endif }; #if ENABLED(PIDTEMPBED) auto _set_bed_pid = [](const PID_t &in_pid) { temp_bed.pid.Kp = in_pid.Kp; temp_bed.pid.Ki = scalePID_i(in_pid.Ki); temp_bed.pid.Kd = scalePID_d(in_pid.Kd); }; #endif #if ENABLED(PIDTEMPCHAMBER) auto _set_chamber_pid = [](const PID_t &in_pid) { temp_chamber.pid.Kp = in_pid.Kp; temp_chamber.pid.Ki = scalePID_i(in_pid.Ki); temp_chamber.pid.Kd = scalePID_d(in_pid.Kd); }; #endif // Use the result? (As with "M303 U1") if (set_result) GHV(_set_chamber_pid(tune_pid), _set_bed_pid(tune_pid), _set_hotend_pid(heater_id, tune_pid)); TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color)); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE)); goto EXIT_M303; } // Run HAL idle tasks TERN_(HAL_IDLETASK, HAL_idletask()); // Run UI update TERN(DWIN_CREALITY_LCD, DWIN_Update(), ui.update()); } wait_for_heatup = false; disable_all_heaters(); TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color)); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE)); EXIT_M303: TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = true); return; } #endif // HAS_PID_HEATING /** * Class and Instance Methods */ int16_t Temperature::getHeaterPower(const heater_id_t heater_id) { switch (heater_id) { #if HAS_HEATED_BED case H_BED: return temp_bed.soft_pwm_amount; #endif #if HAS_HEATED_CHAMBER case H_CHAMBER: return temp_chamber.soft_pwm_amount; #endif #if HAS_COOLER case H_COOLER: return temp_cooler.soft_pwm_amount; #endif default: return TERN0(HAS_HOTEND, temp_hotend[heater_id].soft_pwm_amount); } } #define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B) #if HAS_AUTO_FAN #define CHAMBER_FAN_INDEX HOTENDS void Temperature::checkExtruderAutoFans() { #define _EFAN(B,A) _EFANOVERLAP(A,B) ? B : static const uint8_t fanBit[] PROGMEM = { 0 #if HAS_MULTI_HOTEND #define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N RREPEAT_S(1, HOTENDS, _NEXT_FAN) #endif #if HAS_AUTO_CHAMBER_FAN #define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B : , REPEAT(HOTENDS,_CFAN) (HOTENDS) #endif }; uint8_t fanState = 0; HOTEND_LOOP() if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE) SBI(fanState, pgm_read_byte(&fanBit[e])); #if HAS_AUTO_CHAMBER_FAN if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE) SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX])); #endif #if HAS_AUTO_COOLER_FAN if (temp_cooler.celsius >= COOLER_AUTO_FAN_TEMPERATURE) SBI(fanState, pgm_read_byte(&fanBit[COOLER_FAN_INDEX])); #endif #define _UPDATE_AUTO_FAN(P,D,A) do{ \ if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \ analogWrite(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \ else \ WRITE(P##_AUTO_FAN_PIN, D); \ }while(0) uint8_t fanDone = 0; LOOP_L_N(f, COUNT(fanBit)) { const uint8_t realFan = pgm_read_byte(&fanBit[f]); if (TEST(fanDone, realFan)) continue; const bool fan_on = TEST(fanState, realFan); switch (f) { #if ENABLED(AUTO_POWER_CHAMBER_FAN) case CHAMBER_FAN_INDEX: chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0; break; #endif default: #if ENABLED(AUTO_POWER_E_FANS) autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0; #endif break; } switch (f) { #if HAS_AUTO_FAN_0 case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_1 case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_2 case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_3 case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_4 case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_5 case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_6 case 6: _UPDATE_AUTO_FAN(E6, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_7 case 7: _UPDATE_AUTO_FAN(E7, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break; #endif } SBI(fanDone, realFan); } } #endif // HAS_AUTO_FAN // // Temperature Error Handlers // inline void loud_kill(PGM_P const lcd_msg, const heater_id_t heater_id) { marlin_state = MF_KILLED; #if USE_BEEPER thermalManager.disable_all_heaters(); for (uint8_t i = 20; i--;) { WRITE(BEEPER_PIN, HIGH); delay(25); watchdog_refresh(); WRITE(BEEPER_PIN, LOW); delay(40); watchdog_refresh(); delay(40); watchdog_refresh(); } WRITE(BEEPER_PIN, HIGH); #endif kill(lcd_msg, HEATER_PSTR(heater_id)); } void Temperature::_temp_error(const heater_id_t heater_id, PGM_P const serial_msg, PGM_P const lcd_msg) { static uint8_t killed = 0; if (IsRunning() && TERN1(BOGUS_TEMPERATURE_GRACE_PERIOD, killed == 2)) { SERIAL_ERROR_START(); SERIAL_ECHOPGM_P(serial_msg); SERIAL_ECHOPGM(STR_STOPPED_HEATER); if (heater_id >= 0) SERIAL_ECHO(heater_id); else if (TERN0(HAS_HEATED_CHAMBER, heater_id == H_CHAMBER)) SERIAL_ECHOPGM(STR_HEATER_CHAMBER); else if (TERN0(HAS_COOLER, heater_id == H_COOLER)) SERIAL_ECHOPGM(STR_COOLER); else SERIAL_ECHOPGM(STR_HEATER_BED); SERIAL_EOL(); } disable_all_heaters(); // always disable (even for bogus temp) watchdog_refresh(); #if BOGUS_TEMPERATURE_GRACE_PERIOD const millis_t ms = millis(); static millis_t expire_ms; switch (killed) { case 0: expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD; ++killed; break; case 1: if (ELAPSED(ms, expire_ms)) ++killed; break; case 2: loud_kill(lcd_msg, heater_id); ++killed; break; } #elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD) UNUSED(killed); #else if (!killed) { killed = 1; loud_kill(lcd_msg, heater_id); } #endif } void Temperature::max_temp_error(const heater_id_t heater_id) { #if ENABLED(DWIN_CREALITY_LCD) && (HAS_HOTEND || HAS_HEATED_BED) DWIN_Popup_Temperature(1); #endif _temp_error(heater_id, PSTR(STR_T_MAXTEMP), GET_TEXT(MSG_ERR_MAXTEMP)); } void Temperature::min_temp_error(const heater_id_t heater_id) { #if ENABLED(DWIN_CREALITY_LCD) && (HAS_HOTEND || HAS_HEATED_BED) DWIN_Popup_Temperature(0); #endif _temp_error(heater_id, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP)); } #if ANY(PID_DEBUG, PID_BED_DEBUG, PID_CHAMBER_DEBUG) bool Temperature::pid_debug_flag; // = 0 #endif #if HAS_HOTEND float Temperature::get_pid_output_hotend(const uint8_t E_NAME) { const uint8_t ee = HOTEND_INDEX; #if ENABLED(PIDTEMP) #if DISABLED(PID_OPENLOOP) static hotend_pid_t work_pid[HOTENDS]; static float temp_iState[HOTENDS] = { 0 }, temp_dState[HOTENDS] = { 0 }; static bool pid_reset[HOTENDS] = { false }; const float pid_error = temp_hotend[ee].target - temp_hotend[ee].celsius; float pid_output; if (temp_hotend[ee].target == 0 || pid_error < -(PID_FUNCTIONAL_RANGE) || TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out) ) { pid_output = 0; pid_reset[ee] = true; } else if (pid_error > PID_FUNCTIONAL_RANGE) { pid_output = BANG_MAX; pid_reset[ee] = true; } else { if (pid_reset[ee]) { temp_iState[ee] = 0.0; work_pid[ee].Kd = 0.0; pid_reset[ee] = false; } work_pid[ee].Kd = work_pid[ee].Kd + PID_K2 * (PID_PARAM(Kd, ee) * (temp_dState[ee] - temp_hotend[ee].celsius) - work_pid[ee].Kd); const float max_power_over_i_gain = float(PID_MAX) / PID_PARAM(Ki, ee) - float(MIN_POWER); temp_iState[ee] = constrain(temp_iState[ee] + pid_error, 0, max_power_over_i_gain); work_pid[ee].Kp = PID_PARAM(Kp, ee) * pid_error; work_pid[ee].Ki = PID_PARAM(Ki, ee) * temp_iState[ee]; pid_output = work_pid[ee].Kp + work_pid[ee].Ki + work_pid[ee].Kd + float(MIN_POWER); #if ENABLED(PID_EXTRUSION_SCALING) #if HOTENDS == 1 constexpr bool this_hotend = true; #else const bool this_hotend = (ee == active_extruder); #endif work_pid[ee].Kc = 0; if (this_hotend) { const long e_position = stepper.position(E_AXIS); if (e_position > last_e_position) { lpq[lpq_ptr] = e_position - last_e_position; last_e_position = e_position; } else lpq[lpq_ptr] = 0; if (++lpq_ptr >= lpq_len) lpq_ptr = 0; work_pid[ee].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, ee); pid_output += work_pid[ee].Kc; } #endif // PID_EXTRUSION_SCALING #if ENABLED(PID_FAN_SCALING) if (fan_speed[active_extruder] > PID_FAN_SCALING_MIN_SPEED) { work_pid[ee].Kf = PID_PARAM(Kf, ee) + (PID_FAN_SCALING_LIN_FACTOR) * fan_speed[active_extruder]; pid_output += work_pid[ee].Kf; } //pid_output -= work_pid[ee].Ki; //pid_output += work_pid[ee].Ki * work_pid[ee].Kf #endif // PID_FAN_SCALING LIMIT(pid_output, 0, PID_MAX); } temp_dState[ee] = temp_hotend[ee].celsius; #else // PID_OPENLOOP const float pid_output = constrain(temp_hotend[ee].target, 0, PID_MAX); #endif // PID_OPENLOOP #if ENABLED(PID_DEBUG) if (ee == active_extruder && pid_debug_flag) { SERIAL_ECHO_MSG(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output #if DISABLED(PID_OPENLOOP) , STR_PID_DEBUG_PTERM, work_pid[ee].Kp , STR_PID_DEBUG_ITERM, work_pid[ee].Ki , STR_PID_DEBUG_DTERM, work_pid[ee].Kd #if ENABLED(PID_EXTRUSION_SCALING) , STR_PID_DEBUG_CTERM, work_pid[ee].Kc #endif #endif ); } #endif #else // No PID enabled const bool is_idling = TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out); const float pid_output = (!is_idling && temp_hotend[ee].celsius < temp_hotend[ee].target) ? BANG_MAX : 0; #endif return pid_output; } #endif // HAS_HOTEND #if ENABLED(PIDTEMPBED) float Temperature::get_pid_output_bed() { #if DISABLED(PID_OPENLOOP) static PID_t work_pid{0}; static float temp_iState = 0, temp_dState = 0; static bool pid_reset = true; float pid_output = 0; const float max_power_over_i_gain = float(MAX_BED_POWER) / temp_bed.pid.Ki - float(MIN_BED_POWER), pid_error = temp_bed.target - temp_bed.celsius; if (!temp_bed.target || pid_error < -(PID_FUNCTIONAL_RANGE)) { pid_output = 0; pid_reset = true; } else if (pid_error > PID_FUNCTIONAL_RANGE) { pid_output = MAX_BED_POWER; pid_reset = true; } else { if (pid_reset) { temp_iState = 0.0; work_pid.Kd = 0.0; pid_reset = false; } temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain); work_pid.Kp = temp_bed.pid.Kp * pid_error; work_pid.Ki = temp_bed.pid.Ki * temp_iState; work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.celsius) - work_pid.Kd); temp_dState = temp_bed.celsius; pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_BED_POWER), 0, MAX_BED_POWER); } #else // PID_OPENLOOP const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER); #endif // PID_OPENLOOP #if ENABLED(PID_BED_DEBUG) if (pid_debug_flag) { SERIAL_ECHO_MSG( " PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output #if DISABLED(PID_OPENLOOP) , STR_PID_DEBUG_PTERM, work_pid.Kp , STR_PID_DEBUG_ITERM, work_pid.Ki , STR_PID_DEBUG_DTERM, work_pid.Kd #endif ); } #endif return pid_output; } #endif // PIDTEMPBED #if ENABLED(PIDTEMPCHAMBER) float Temperature::get_pid_output_chamber() { #if DISABLED(PID_OPENLOOP) static PID_t work_pid{0}; static float temp_iState = 0, temp_dState = 0; static bool pid_reset = true; float pid_output = 0; const float max_power_over_i_gain = float(MAX_CHAMBER_POWER) / temp_chamber.pid.Ki - float(MIN_CHAMBER_POWER), pid_error = temp_chamber.target - temp_chamber.celsius; if (!temp_chamber.target || pid_error < -(PID_FUNCTIONAL_RANGE)) { pid_output = 0; pid_reset = true; } else if (pid_error > PID_FUNCTIONAL_RANGE) { pid_output = MAX_CHAMBER_POWER; pid_reset = true; } else { if (pid_reset) { temp_iState = 0.0; work_pid.Kd = 0.0; pid_reset = false; } temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain); work_pid.Kp = temp_chamber.pid.Kp * pid_error; work_pid.Ki = temp_chamber.pid.Ki * temp_iState; work_pid.Kd = work_pid.Kd + PID_K2 * (temp_chamber.pid.Kd * (temp_dState - temp_chamber.celsius) - work_pid.Kd); temp_dState = temp_chamber.celsius; pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_CHAMBER_POWER), 0, MAX_CHAMBER_POWER); } #else // PID_OPENLOOP const float pid_output = constrain(temp_chamber.target, 0, MAX_CHAMBER_POWER); #endif // PID_OPENLOOP #if ENABLED(PID_CHAMBER_DEBUG) { SERIAL_ECHO_MSG( " PID_CHAMBER_DEBUG : Input ", temp_chamber.celsius, " Output ", pid_output #if DISABLED(PID_OPENLOOP) , STR_PID_DEBUG_PTERM, work_pid.Kp , STR_PID_DEBUG_ITERM, work_pid.Ki , STR_PID_DEBUG_DTERM, work_pid.Kd #endif ); } #endif return pid_output; } #endif // PIDTEMPCHAMBER /** * Manage heating activities for extruder hot-ends and a heated bed * - Acquire updated temperature readings * - Also resets the watchdog timer * - Invoke thermal runaway protection * - Manage extruder auto-fan * - Apply filament width to the extrusion rate (may move) * - Update the heated bed PID output value */ void Temperature::manage_heater() { if (marlin_state == MF_INITIALIZING) return watchdog_refresh(); // If Marlin isn't started, at least reset the watchdog! #if ENABLED(EMERGENCY_PARSER) if (emergency_parser.killed_by_M112) kill(M112_KILL_STR, nullptr, true); if (emergency_parser.quickstop_by_M410) { emergency_parser.quickstop_by_M410 = false; // quickstop_stepper may call idle so clear this now! quickstop_stepper(); } #endif if (!updateTemperaturesIfReady()) return; // Will also reset the watchdog if temperatures are ready #if DISABLED(IGNORE_THERMOCOUPLE_ERRORS) #if TEMP_SENSOR_0_IS_MAX_TC if (degHotend(0) > _MIN(HEATER_0_MAXTEMP, TEMP_SENSOR_0_MAX_TC_TMAX - 1.0)) max_temp_error(H_E0); if (degHotend(0) < _MAX(HEATER_0_MINTEMP, TEMP_SENSOR_0_MAX_TC_TMIN + .01)) min_temp_error(H_E0); #endif #if TEMP_SENSOR_1_IS_MAX_TC if (TERN(TEMP_SENSOR_1_AS_REDUNDANT, degHotendRedundant(), degHotend(1)) > _MIN(HEATER_1_MAXTEMP, TEMP_SENSOR_1_MAX_TC_TMAX - 1.0)) max_temp_error(H_E1); if (TERN(TEMP_SENSOR_1_AS_REDUNDANT, degHotendRedundant(), degHotend(1)) < _MAX(HEATER_1_MINTEMP, TEMP_SENSOR_1_MAX_TC_TMIN + .01)) min_temp_error(H_E1); #endif #endif millis_t ms = millis(); #if HAS_HOTEND HOTEND_LOOP() { #if ENABLED(THERMAL_PROTECTION_HOTENDS) if (degHotend(e) > temp_range[e].maxtemp) max_temp_error((heater_id_t)e); #endif TERN_(HEATER_IDLE_HANDLER, heater_idle[e].update(ms)); #if ENABLED(THERMAL_PROTECTION_HOTENDS) // Check for thermal runaway tr_state_machine[e].run(temp_hotend[e].celsius, temp_hotend[e].target, (heater_id_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS); #endif temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0; #if WATCH_HOTENDS // Make sure temperature is increasing if (watch_hotend[e].elapsed(ms)) { // Enabled and time to check? if (watch_hotend[e].check(degHotend(e))) // Increased enough? start_watching_hotend(e); // If temp reached, turn off elapsed check else { TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); _temp_error((heater_id_t)e, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); } } #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) // Make sure measured temperatures are close together if (ABS(degHotend(0) - degHotendRedundant()) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) _temp_error(H_E0, PSTR(STR_REDUNDANCY), GET_TEXT(MSG_ERR_REDUNDANT_TEMP)); #endif } // HOTEND_LOOP #endif // HAS_HOTEND #if HAS_AUTO_FAN if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500UL; } #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * Dynamically set the volumetric multiplier based * on the delayed Filament Width measurement. */ filwidth.update_volumetric(); #endif #if HAS_HEATED_BED #if ENABLED(THERMAL_PROTECTION_BED) if (degBed() > BED_MAXTEMP) max_temp_error(H_BED); #endif #if WATCH_BED // Make sure temperature is increasing if (watch_bed.elapsed(ms)) { // Time to check the bed? if (watch_bed.check(degBed())) // Increased enough? start_watching_bed(); // If temp reached, turn off elapsed check else { TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); _temp_error(H_BED, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); } } #endif // WATCH_BED #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING) #define PAUSE_CHANGE_REQD 1 #endif #if PAUSE_CHANGE_REQD static bool last_pause_state; #endif do { #if DISABLED(PIDTEMPBED) if (PENDING(ms, next_bed_check_ms) && TERN1(PAUSE_CHANGE_REQD, paused_for_probing == last_pause_state) ) break; next_bed_check_ms = ms + BED_CHECK_INTERVAL; TERN_(PAUSE_CHANGE_REQD, last_pause_state = paused_for_probing); #endif TERN_(HEATER_IDLE_HANDLER, heater_idle[IDLE_INDEX_BED].update(ms)); #if HAS_THERMALLY_PROTECTED_BED tr_state_machine[RUNAWAY_IND_BED].run(temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS); #endif #if HEATER_IDLE_HANDLER if (heater_idle[IDLE_INDEX_BED].timed_out) { temp_bed.soft_pwm_amount = 0; #if DISABLED(PIDTEMPBED) WRITE_HEATER_BED(LOW); #endif } else #endif { #if ENABLED(PIDTEMPBED) temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0; #else // Check if temperature is within the correct band if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) { #if ENABLED(BED_LIMIT_SWITCHING) if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS) temp_bed.soft_pwm_amount = 0; else if (temp_bed.celsius <= temp_bed.target - (BED_HYSTERESIS)) temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1; #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING temp_bed.soft_pwm_amount = temp_bed.celsius < temp_bed.target ? MAX_BED_POWER >> 1 : 0; #endif } else { temp_bed.soft_pwm_amount = 0; WRITE_HEATER_BED(LOW); } #endif } } while (false); #endif // HAS_HEATED_BED #if HAS_HEATED_CHAMBER #ifndef CHAMBER_CHECK_INTERVAL #define CHAMBER_CHECK_INTERVAL 1000UL #endif #if ENABLED(THERMAL_PROTECTION_CHAMBER) if (degChamber() > CHAMBER_MAXTEMP) max_temp_error(H_CHAMBER); #endif #if WATCH_CHAMBER // Make sure temperature is increasing if (watch_chamber.elapsed(ms)) { // Time to check the chamber? if (watch_chamber.check(degChamber())) // Increased enough? Error below. start_watching_chamber(); // If temp reached, turn off elapsed check. else _temp_error(H_CHAMBER, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD)); } #endif #if EITHER(CHAMBER_FAN, CHAMBER_VENT) || DISABLED(PIDTEMPCHAMBER) static bool flag_chamber_excess_heat; // = false; #endif #if EITHER(CHAMBER_FAN, CHAMBER_VENT) static bool flag_chamber_off; // = false if (temp_chamber.target > CHAMBER_MINTEMP) { flag_chamber_off = false; #if ENABLED(CHAMBER_FAN) int16_t fan_chamber_pwm; #if CHAMBER_FAN_MODE == 0 fan_chamber_pwm = CHAMBER_FAN_BASE; #elif CHAMBER_FAN_MODE == 1 fan_chamber_pwm = (temp_chamber.celsius > temp_chamber.target) ? (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target) : 0; #elif CHAMBER_FAN_MODE == 2 fan_chamber_pwm = (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * ABS(temp_chamber.celsius - temp_chamber.target); if (temp_chamber.soft_pwm_amount) fan_chamber_pwm += (CHAMBER_FAN_FACTOR) * 2; #elif CHAMBER_FAN_MODE == 3 fan_chamber_pwm = CHAMBER_FAN_BASE + _MAX((CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target), 0); #endif NOMORE(fan_chamber_pwm, 225); set_fan_speed(2, fan_chamber_pwm); // TODO: instead of fan 2, set to chamber fan #endif #if ENABLED(CHAMBER_VENT) #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER_VENT #define MIN_COOLING_SLOPE_TIME_CHAMBER_VENT 20 #endif #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER_VENT #define MIN_COOLING_SLOPE_DEG_CHAMBER_VENT 1.5 #endif if (!flag_chamber_excess_heat && temp_chamber.celsius - temp_chamber.target >= HIGH_EXCESS_HEAT_LIMIT) { // Open vent after MIN_COOLING_SLOPE_TIME_CHAMBER_VENT seconds if the // temperature didn't drop at least MIN_COOLING_SLOPE_DEG_CHAMBER_VENT if (next_cool_check_ms_2 == 0 || ELAPSED(ms, next_cool_check_ms_2)) { if (temp_chamber.celsius - old_temp > MIN_COOLING_SLOPE_DEG_CHAMBER_VENT) flag_chamber_excess_heat = true; // the bed is heating the chamber too much next_cool_check_ms_2 = ms + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER_VENT); old_temp = temp_chamber.celsius; } } else { next_cool_check_ms_2 = 0; old_temp = 9999; } if (flag_chamber_excess_heat && (temp_chamber.target - temp_chamber.celsius >= LOW_EXCESS_HEAT_LIMIT)) flag_chamber_excess_heat = false; #endif } else if (!flag_chamber_off) { #if ENABLED(CHAMBER_FAN) flag_chamber_off = true; set_fan_speed(2, 0); #endif #if ENABLED(CHAMBER_VENT) flag_chamber_excess_heat = false; MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 90); #endif } #endif #if ENABLED(PIDTEMPCHAMBER) // PIDTEMPCHAMBER doens't support a CHAMBER_VENT yet. temp_chamber.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0; #else if (ELAPSED(ms, next_chamber_check_ms)) { next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL; if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) { if (flag_chamber_excess_heat) { temp_chamber.soft_pwm_amount = 0; #if ENABLED(CHAMBER_VENT) if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, temp_chamber.celsius <= temp_chamber.target ? 0 : 90); #endif } else { #if ENABLED(CHAMBER_LIMIT_SWITCHING) if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS) temp_chamber.soft_pwm_amount = 0; else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS)) temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1; #else temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? (MAX_CHAMBER_POWER) >> 1 : 0; #endif #if ENABLED(CHAMBER_VENT) if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 0); #endif } } else { temp_chamber.soft_pwm_amount = 0; WRITE_HEATER_CHAMBER(LOW); } } #if ENABLED(THERMAL_PROTECTION_CHAMBER) tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS); #endif #endif #endif // HAS_HEATED_CHAMBER #if HAS_COOLER #ifndef COOLER_CHECK_INTERVAL #define COOLER_CHECK_INTERVAL 2000UL #endif #if ENABLED(THERMAL_PROTECTION_COOLER) if (degCooler() > COOLER_MAXTEMP) max_temp_error(H_COOLER); #endif #if WATCH_COOLER // Make sure temperature is decreasing if (watch_cooler.elapsed(ms)) { // Time to check the cooler? if (degCooler() > watch_cooler.target) // Failed to decrease enough? _temp_error(H_COOLER, GET_TEXT(MSG_COOLING_FAILED), GET_TEXT(MSG_COOLING_FAILED)); else start_watching_cooler(); // Start again if the target is still far off } #endif static bool flag_cooler_state; // = false if (cooler.enabled) { flag_cooler_state = true; // used to allow M106 fan control when cooler is disabled if (temp_cooler.target == 0) temp_cooler.target = COOLER_MIN_TARGET; if (ELAPSED(ms, next_cooler_check_ms)) { next_cooler_check_ms = ms + COOLER_CHECK_INTERVAL; if (temp_cooler.celsius > temp_cooler.target) { temp_cooler.soft_pwm_amount = temp_cooler.celsius > temp_cooler.target ? MAX_COOLER_POWER : 0; flag_cooler_state = temp_cooler.soft_pwm_amount > 0 ? true : false; // used to allow M106 fan control when cooler is disabled #if ENABLED(COOLER_FAN) int16_t fan_cooler_pwm = (COOLER_FAN_BASE) + (COOLER_FAN_FACTOR) * ABS(temp_cooler.celsius - temp_cooler.target); NOMORE(fan_cooler_pwm, 255); set_fan_speed(COOLER_FAN_INDEX, fan_cooler_pwm); // Set cooler fan pwm cooler_fan_flush_ms = ms + 5000; #endif } else { temp_cooler.soft_pwm_amount = 0; #if ENABLED(COOLER_FAN) set_fan_speed(COOLER_FAN_INDEX, temp_cooler.celsius > temp_cooler.target - 2 ? COOLER_FAN_BASE : 0); #endif WRITE_HEATER_COOLER(LOW); } } } else { temp_cooler.soft_pwm_amount = 0; if (flag_cooler_state) { flag_cooler_state = false; thermalManager.set_fan_speed(COOLER_FAN_INDEX, 0); } WRITE_HEATER_COOLER(LOW); } #if ENABLED(THERMAL_PROTECTION_COOLER) tr_state_machine[RUNAWAY_IND_COOLER].run(temp_cooler.celsius, temp_cooler.target, H_COOLER, THERMAL_PROTECTION_COOLER_PERIOD, THERMAL_PROTECTION_COOLER_HYSTERESIS); #endif #endif // HAS_COOLER #if ENABLED(LASER_COOLANT_FLOW_METER) cooler.flowmeter_task(ms); #if ENABLED(FLOWMETER_SAFETY) if (cutter.enabled() && cooler.check_flow_too_low()) { cutter.disable(); ui.flow_fault(); } #endif #endif UNUSED(ms); } #define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET) #define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET) /** * Bisect search for the range of the 'raw' value, then interpolate * proportionally between the under and over values. */ #define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \ uint8_t l = 0, r = LEN, m; \ for (;;) { \ m = (l + r) >> 1; \ if (!m) return celsius_t(pgm_read_word(&TBL[0].celsius)); \ if (m == l || m == r) return celsius_t(pgm_read_word(&TBL[LEN-1].celsius)); \ int16_t v00 = pgm_read_word(&TBL[m-1].value), \ v10 = pgm_read_word(&TBL[m-0].value); \ if (raw < v00) r = m; \ else if (raw > v10) l = m; \ else { \ const celsius_t v01 = celsius_t(pgm_read_word(&TBL[m-1].celsius)), \ v11 = celsius_t(pgm_read_word(&TBL[m-0].celsius)); \ return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \ } \ } \ }while(0) #if HAS_USER_THERMISTORS user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load() void Temperature::reset_user_thermistors() { user_thermistor_t default_user_thermistor[USER_THERMISTORS] = { #if TEMP_SENSOR_0_IS_CUSTOM { true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 }, #endif #if TEMP_SENSOR_1_IS_CUSTOM { true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 }, #endif #if TEMP_SENSOR_2_IS_CUSTOM { true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 }, #endif #if TEMP_SENSOR_3_IS_CUSTOM { true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 }, #endif #if TEMP_SENSOR_4_IS_CUSTOM { true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 }, #endif #if TEMP_SENSOR_5_IS_CUSTOM { true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 }, #endif #if TEMP_SENSOR_6_IS_CUSTOM { true, 0, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 }, #endif #if TEMP_SENSOR_7_IS_CUSTOM { true, 0, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 }, #endif #if TEMP_SENSOR_BED_IS_CUSTOM { true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 }, #endif #if TEMP_SENSOR_CHAMBER_IS_CUSTOM { true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 } #endif #if TEMP_SENSOR_COOLER_IS_CUSTOM { true, 0, 0, COOLER_PULLUP_RESISTOR_OHMS, COOLER_RESISTANCE_25C_OHMS, 0, 0, COOLER_BETA, 0 } #endif #if TEMP_SENSOR_PROBE_IS_CUSTOM { true, 0, 0, PROBE_PULLUP_RESISTOR_OHMS, PROBE_RESISTANCE_25C_OHMS, 0, 0, PROBE_BETA, 0 } #endif }; COPY(user_thermistor, default_user_thermistor); } void Temperature::log_user_thermistor(const uint8_t t_index, const bool eprom/*=false*/) { if (eprom) SERIAL_ECHOPGM(" M305 "); else SERIAL_ECHO_START(); SERIAL_CHAR('P', '0' + t_index); const user_thermistor_t &t = user_thermistor[t_index]; SERIAL_ECHOPAIR_F(" R", t.series_res, 1); SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1); SERIAL_ECHOPAIR_F_P(SP_B_STR, t.beta, 1); SERIAL_ECHOPAIR_F_P(SP_C_STR, t.sh_c_coeff, 9); SERIAL_ECHOPGM(" ; "); SERIAL_ECHOPGM_P( TERN_(TEMP_SENSOR_0_IS_CUSTOM, t_index == CTI_HOTEND_0 ? PSTR("HOTEND 0") :) TERN_(TEMP_SENSOR_1_IS_CUSTOM, t_index == CTI_HOTEND_1 ? PSTR("HOTEND 1") :) TERN_(TEMP_SENSOR_2_IS_CUSTOM, t_index == CTI_HOTEND_2 ? PSTR("HOTEND 2") :) TERN_(TEMP_SENSOR_3_IS_CUSTOM, t_index == CTI_HOTEND_3 ? PSTR("HOTEND 3") :) TERN_(TEMP_SENSOR_4_IS_CUSTOM, t_index == CTI_HOTEND_4 ? PSTR("HOTEND 4") :) TERN_(TEMP_SENSOR_5_IS_CUSTOM, t_index == CTI_HOTEND_5 ? PSTR("HOTEND 5") :) TERN_(TEMP_SENSOR_6_IS_CUSTOM, t_index == CTI_HOTEND_6 ? PSTR("HOTEND 6") :) TERN_(TEMP_SENSOR_7_IS_CUSTOM, t_index == CTI_HOTEND_7 ? PSTR("HOTEND 7") :) TERN_(TEMP_SENSOR_BED_IS_CUSTOM, t_index == CTI_BED ? PSTR("BED") :) TERN_(TEMP_SENSOR_CHAMBER_IS_CUSTOM, t_index == CTI_CHAMBER ? PSTR("CHAMBER") :) TERN_(TEMP_SENSOR_COOLER_IS_CUSTOM, t_index == CTI_COOLER ? PSTR("COOLER") :) TERN_(TEMP_SENSOR_PROBE_IS_CUSTOM, t_index == CTI_PROBE ? PSTR("PROBE") :) nullptr ); SERIAL_EOL(); } celsius_float_t Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int16_t raw) { //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB) // static uint32_t clocks_total = 0; // static uint32_t calls = 0; // uint32_t tcnt5 = TCNT5; //#endif if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25; user_thermistor_t &t = user_thermistor[t_index]; if (t.pre_calc) { // pre-calculate some variables t.pre_calc = false; t.res_25_recip = 1.0f / t.res_25; t.res_25_log = logf(t.res_25); t.beta_recip = 1.0f / t.beta; t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C)) - (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log)); } // maximum adc value .. take into account the over sampling const int adc_max = MAX_RAW_THERMISTOR_VALUE, adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero const float adc_inverse = (adc_max - adc_raw) - 0.5f, resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse, log_resistance = logf(resistance); float value = t.sh_alpha; value += log_resistance * t.beta_recip; if (t.sh_c_coeff != 0) value += t.sh_c_coeff * cu(log_resistance); value = 1.0f / value; //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB) // int32_t clocks = TCNT5 - tcnt5; // if (clocks >= 0) { // clocks_total += clocks; // calls++; // } //#endif // Return degrees C (up to 999, as the LCD only displays 3 digits) return _MIN(value + THERMISTOR_ABS_ZERO_C, 999); } #endif #if HAS_HOTEND // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. celsius_float_t Temperature::analog_to_celsius_hotend(const int16_t raw, const uint8_t e) { if (e >= HOTENDS + ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)) { SERIAL_ERROR_START(); SERIAL_ECHO(e); SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM); kill(); return 0; } switch (e) { case 0: #if TEMP_SENSOR_0_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_0, raw); #elif TEMP_SENSOR_0_IS_MAX_TC return TERN(TEMP_SENSOR_0_IS_MAX31865, max31865_0.temperature(MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0), raw * 0.25); #elif TEMP_SENSOR_0_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_0_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 1: #if TEMP_SENSOR_1_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_1, raw); #elif TEMP_SENSOR_1_IS_MAX_TC return TERN(TEMP_SENSOR_1_IS_MAX31865, max31865_1.temperature(MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1), raw * 0.25); #elif TEMP_SENSOR_1_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_1_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 2: #if TEMP_SENSOR_2_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_2, raw); #elif TEMP_SENSOR_2_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_2_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 3: #if TEMP_SENSOR_3_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_3, raw); #elif TEMP_SENSOR_3_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_3_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 4: #if TEMP_SENSOR_4_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_4, raw); #elif TEMP_SENSOR_4_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_4_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 5: #if TEMP_SENSOR_5_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_5, raw); #elif TEMP_SENSOR_5_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_5_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 6: #if TEMP_SENSOR_6_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_6, raw); #elif TEMP_SENSOR_6_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_6_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif case 7: #if TEMP_SENSOR_7_IS_CUSTOM return user_thermistor_to_deg_c(CTI_HOTEND_7, raw); #elif TEMP_SENSOR_7_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_7_IS_AD8495 return TEMP_AD8495(raw); #else break; #endif default: break; } #if HAS_HOTEND_THERMISTOR // Thermistor with conversion table? const temp_entry_t(*tt)[] = (temp_entry_t(*)[])(heater_ttbl_map[e]); SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]); #endif return 0; } #endif // HAS_HOTEND #if HAS_HEATED_BED // For bed temperature measurement. celsius_float_t Temperature::analog_to_celsius_bed(const int16_t raw) { #if TEMP_SENSOR_BED_IS_CUSTOM return user_thermistor_to_deg_c(CTI_BED, raw); #elif TEMP_SENSOR_BED_IS_THERMISTOR SCAN_THERMISTOR_TABLE(TEMPTABLE_BED, TEMPTABLE_BED_LEN); #elif TEMP_SENSOR_BED_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_BED_IS_AD8495 return TEMP_AD8495(raw); #else UNUSED(raw); return 0; #endif } #endif // HAS_HEATED_BED #if HAS_TEMP_CHAMBER // For chamber temperature measurement. celsius_float_t Temperature::analog_to_celsius_chamber(const int16_t raw) { #if TEMP_SENSOR_CHAMBER_IS_CUSTOM return user_thermistor_to_deg_c(CTI_CHAMBER, raw); #elif TEMP_SENSOR_CHAMBER_IS_THERMISTOR SCAN_THERMISTOR_TABLE(TEMPTABLE_CHAMBER, TEMPTABLE_CHAMBER_LEN); #elif TEMP_SENSOR_CHAMBER_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_CHAMBER_IS_AD8495 return TEMP_AD8495(raw); #else UNUSED(raw); return 0; #endif } #endif // HAS_TEMP_CHAMBER #if HAS_TEMP_COOLER // For cooler temperature measurement. celsius_float_t Temperature::analog_to_celsius_cooler(const int16_t raw) { #if TEMP_SENSOR_COOLER_IS_CUSTOM return user_thermistor_to_deg_c(CTI_COOLER, raw); #elif TEMP_SENSOR_COOLER_IS_THERMISTOR SCAN_THERMISTOR_TABLE(TEMPTABLE_COOLER, TEMPTABLE_COOLER_LEN); #elif TEMP_SENSOR_COOLER_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_COOLER_IS_AD8495 return TEMP_AD8495(raw); #else UNUSED(raw); return 0; #endif } #endif // HAS_TEMP_COOLER #if HAS_TEMP_PROBE // For probe temperature measurement. celsius_float_t Temperature::analog_to_celsius_probe(const int16_t raw) { #if TEMP_SENSOR_PROBE_IS_CUSTOM return user_thermistor_to_deg_c(CTI_PROBE, raw); #elif TEMP_SENSOR_PROBE_IS_THERMISTOR SCAN_THERMISTOR_TABLE(TEMPTABLE_PROBE, TEMPTABLE_PROBE_LEN); #elif TEMP_SENSOR_PROBE_IS_AD595 return TEMP_AD595(raw); #elif TEMP_SENSOR_PROBE_IS_AD8495 return TEMP_AD8495(raw); #else UNUSED(raw); return 0; #endif } #endif // HAS_TEMP_PROBE /** * Convert the raw sensor readings into actual Celsius temperatures and * validate raw temperatures. Bad readings generate min/maxtemp errors. * * The raw values are generated entirely in interrupt context, and this * method is called from normal context once 'raw_temps_ready' has been * set by update_raw_temperatures(). * * The watchdog is dependent on this method. If 'raw_temps_ready' stops * being set by the interrupt so that this method is not called for over * 4 seconds then something has gone afoul and the machine will be reset. */ void Temperature::updateTemperaturesFromRawValues() { watchdog_refresh(); // Reset because raw_temps_ready was set by the interrupt TERN_(TEMP_SENSOR_0_IS_MAX_TC, temp_hotend[0].raw = READ_MAX_TC(0)); TERN_(TEMP_SENSOR_1_IS_MAX_TC, TERN(TEMP_SENSOR_1_AS_REDUNDANT, temp_redundant, temp_hotend[1]).raw = READ_MAX_TC(1)); #if HAS_HOTEND HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].raw, e); #endif TERN_(TEMP_SENSOR_1_AS_REDUNDANT, temp_redundant.celsius = analog_to_celsius_hotend(temp_redundant.raw, 1)); TERN_(HAS_HEATED_BED, temp_bed.celsius = analog_to_celsius_bed(temp_bed.raw)); TERN_(HAS_TEMP_CHAMBER, temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.raw)); TERN_(HAS_TEMP_COOLER, temp_cooler.celsius = analog_to_celsius_cooler(temp_cooler.raw)); TERN_(HAS_TEMP_PROBE, temp_probe.celsius = analog_to_celsius_probe(temp_probe.raw)); TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_measured_mm()); TERN_(HAS_POWER_MONITOR, power_monitor.capture_values()); #if HAS_HOTEND static constexpr int8_t temp_dir[] = { TERN(TEMP_SENSOR_0_IS_MAX_TC, 0, TEMPDIR(0)) #if HAS_MULTI_HOTEND , TERN(TEMP_SENSOR_1_IS_MAX_TC, 0, TEMPDIR(1)) #if HOTENDS > 2 #define _TEMPDIR(N) , TEMPDIR(N) REPEAT_S(2, HOTENDS, _TEMPDIR) #endif #endif }; LOOP_L_N(e, COUNT(temp_dir)) { const int8_t tdir = temp_dir[e]; if (tdir) { const int16_t rawtemp = temp_hotend[e].raw * tdir; // normal direction, +rawtemp, else -rawtemp if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error((heater_id_t)e); const bool heater_on = temp_hotend[e].target > 0; if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) { #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1 if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED) #endif min_temp_error((heater_id_t)e); } #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1 else consecutive_low_temperature_error[e] = 0; #endif } } #endif // HAS_HOTEND #if ENABLED(THERMAL_PROTECTION_BED) #define BEDCMP(A,B) (TEMPDIR(BED) < 0 ? ((A)<(B)) : ((A)>(B))) if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(H_BED); if (temp_bed.target > 0 && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(H_BED); #endif #if BOTH(HAS_HEATED_CHAMBER, THERMAL_PROTECTION_CHAMBER) #define CHAMBERCMP(A,B) (TEMPDIR(CHAMBER) < 0 ? ((A)<(B)) : ((A)>(B))) if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER); if (temp_chamber.target > 0 && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(H_CHAMBER); #endif #if BOTH(HAS_COOLER, THERMAL_PROTECTION_COOLER) #define COOLERCMP(A,B) (TEMPDIR(COOLER) < 0 ? ((A)<(B)) : ((A)>(B))) if (cutter.unitPower > 0 && COOLERCMP(temp_cooler.raw, maxtemp_raw_COOLER)) max_temp_error(H_COOLER); if (COOLERCMP(mintemp_raw_COOLER, temp_cooler.raw)) min_temp_error(H_COOLER); #endif } #if THERMO_SEPARATE_SPI template SoftSPI SPIclass::softSPI; SPIclass max_tc_spi; #endif // Init fans according to whether they're native PWM or Software PWM #ifdef BOARD_OPENDRAIN_MOSFETS #define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH) #else #define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH) #endif #if ENABLED(FAN_SOFT_PWM) #define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P) #else #define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0) #endif #if ENABLED(FAST_PWM_FAN) #define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY) #else #define SET_FAST_PWM_FREQ(P) NOOP #endif #define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0) #if EXTRUDER_AUTO_FAN_SPEED != 255 #define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0) #else #define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P) #endif #if CHAMBER_AUTO_FAN_SPEED != 255 #define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0) #else #define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P) #endif /** * Initialize the temperature manager * * The manager is implemented by periodic calls to manage_heater() * * - Init (and disable) SPI thermocouples like MAX6675 and MAX31865 * - Disable RUMBA JTAG to accommodate a thermocouple extension * - Read-enable thermistors with a read-enable pin * - Init HEATER and COOLER pins for OUTPUT in OFF state * - Init the FAN pins as PWM or OUTPUT * - Init the SPI interface for SPI thermocouples * - Init ADC according to the HAL * - Set thermistor pins to analog inputs according to the HAL * - Start the Temperature ISR timer * - Init the AUTO FAN pins as PWM or OUTPUT * - Wait 250ms for temperatures to settle * - Init temp_range[], used for catching min/maxtemp */ void Temperature::init() { TERN_(PROBING_HEATERS_OFF, paused_for_probing = false); #if BOTH(PIDTEMP, PID_EXTRUSION_SCALING) last_e_position = 0; #endif // Init (and disable) SPI thermocouples #if TEMP_SENSOR_0_IS_MAX6675 && PIN_EXISTS(MAX6675_CS) OUT_WRITE(MAX6675_CS_PIN, HIGH); #endif #if TEMP_SENSOR_1_IS_MAX6675 && PIN_EXISTS(MAX6675_CS2) OUT_WRITE(MAX6675_CS2_PIN, HIGH); #endif #if TEMP_SENSOR_0_IS_MAX6675 && PIN_EXISTS(MAX31855_CS) OUT_WRITE(MAX31855_CS_PIN, HIGH); #endif #if TEMP_SENSOR_1_IS_MAX6675 && PIN_EXISTS(MAX31855_CS2) OUT_WRITE(MAX31855_CS2_PIN, HIGH); #endif #if TEMP_SENSOR_0_IS_MAX6675 && PIN_EXISTS(MAX31865_CS) OUT_WRITE(MAX31865_CS_PIN, HIGH); #endif #if TEMP_SENSOR_1_IS_MAX6675 && PIN_EXISTS(MAX31865_CS2) OUT_WRITE(MAX31865_CS2_PIN, HIGH); #endif #if HAS_MAX31865_TEMP TERN_(TEMP_SENSOR_0_IS_MAX31865, max31865_0.begin(MAX31865_2WIRE)); // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE TERN_(TEMP_SENSOR_1_IS_MAX31865, max31865_1.begin(MAX31865_2WIRE)); #endif #if HAS_MAX31855_TEMP TERN_(TEMP_SENSOR_0_IS_MAX31855, max31855_0.begin()); TERN_(TEMP_SENSOR_1_IS_MAX31855, max31855_1.begin()); #endif #if HAS_MAX6675_TEMP TERN_(TEMP_SENSOR_0_IS_MAX6675, max6675_0.begin()); TERN_(TEMP_SENSOR_1_IS_MAX6675, max6675_1.begin()); #endif #if MB(RUMBA) // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector #define _AD(N) (TEMP_SENSOR_##N##_IS_AD595 || TEMP_SENSOR_##N##_IS_AD8495) #if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER) MCUCR = _BV(JTD); MCUCR = _BV(JTD); #endif #endif // Thermistor activation by MCU pin #if PIN_EXISTS(TEMP_0_TR_ENABLE) OUT_WRITE(TEMP_0_TR_ENABLE_PIN, ENABLED(TEMP_SENSOR_0_IS_MAX_TC)); #endif #if PIN_EXISTS(TEMP_1_TR_ENABLE) OUT_WRITE(TEMP_1_TR_ENABLE_PIN, ENABLED(TEMP_SENSOR_1_IS_MAX_TC)); #endif #if HAS_HEATER_0 #ifdef BOARD_OPENDRAIN_MOSFETS OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING); #else OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING); #endif #endif #if HAS_HEATER_1 OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING); #endif #if HAS_HEATER_2 OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING); #endif #if HAS_HEATER_3 OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING); #endif #if HAS_HEATER_4 OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING); #endif #if HAS_HEATER_5 OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING); #endif #if HAS_HEATER_6 OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING); #endif #if HAS_HEATER_7 OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING); #endif #if HAS_HEATED_BED #ifdef BOARD_OPENDRAIN_MOSFETS OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING); #else OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING); #endif #endif #if HAS_HEATED_CHAMBER OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING); #endif #if HAS_COOLER OUT_WRITE(COOLER_PIN, COOLER_INVERTING); #endif #if HAS_FAN0 INIT_FAN_PIN(FAN_PIN); #endif #if HAS_FAN1 INIT_FAN_PIN(FAN1_PIN); #endif #if HAS_FAN2 INIT_FAN_PIN(FAN2_PIN); #endif #if HAS_FAN3 INIT_FAN_PIN(FAN3_PIN); #endif #if HAS_FAN4 INIT_FAN_PIN(FAN4_PIN); #endif #if HAS_FAN5 INIT_FAN_PIN(FAN5_PIN); #endif #if HAS_FAN6 INIT_FAN_PIN(FAN6_PIN); #endif #if HAS_FAN7 INIT_FAN_PIN(FAN7_PIN); #endif #if ENABLED(USE_CONTROLLER_FAN) INIT_FAN_PIN(CONTROLLER_FAN_PIN); #endif TERN_(THERMO_SEPARATE_SPI, max_tc_spi.init()); HAL_adc_init(); #if HAS_TEMP_ADC_0 HAL_ANALOG_SELECT(TEMP_0_PIN); #endif #if HAS_TEMP_ADC_1 HAL_ANALOG_SELECT(TEMP_1_PIN); #endif #if HAS_TEMP_ADC_2 HAL_ANALOG_SELECT(TEMP_2_PIN); #endif #if HAS_TEMP_ADC_3 HAL_ANALOG_SELECT(TEMP_3_PIN); #endif #if HAS_TEMP_ADC_4 HAL_ANALOG_SELECT(TEMP_4_PIN); #endif #if HAS_TEMP_ADC_5 HAL_ANALOG_SELECT(TEMP_5_PIN); #endif #if HAS_TEMP_ADC_6 HAL_ANALOG_SELECT(TEMP_6_PIN); #endif #if HAS_TEMP_ADC_7 HAL_ANALOG_SELECT(TEMP_7_PIN); #endif #if HAS_JOY_ADC_X HAL_ANALOG_SELECT(JOY_X_PIN); #endif #if HAS_JOY_ADC_Y HAL_ANALOG_SELECT(JOY_Y_PIN); #endif #if HAS_JOY_ADC_Z HAL_ANALOG_SELECT(JOY_Z_PIN); #endif #if HAS_JOY_ADC_EN SET_INPUT_PULLUP(JOY_EN_PIN); #endif #if HAS_TEMP_ADC_BED HAL_ANALOG_SELECT(TEMP_BED_PIN); #endif #if HAS_TEMP_ADC_CHAMBER HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN); #endif #if HAS_TEMP_ADC_COOLER HAL_ANALOG_SELECT(TEMP_COOLER_PIN); #endif #if HAS_TEMP_ADC_PROBE HAL_ANALOG_SELECT(TEMP_PROBE_PIN); #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) HAL_ANALOG_SELECT(FILWIDTH_PIN); #endif #if HAS_ADC_BUTTONS HAL_ANALOG_SELECT(ADC_KEYPAD_PIN); #endif #if ENABLED(POWER_MONITOR_CURRENT) HAL_ANALOG_SELECT(POWER_MONITOR_CURRENT_PIN); #endif #if ENABLED(POWER_MONITOR_VOLTAGE) HAL_ANALOG_SELECT(POWER_MONITOR_VOLTAGE_PIN); #endif HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY); ENABLE_TEMPERATURE_INTERRUPT(); #if HAS_AUTO_FAN_0 INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0) INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1)) INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2)) INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3)) INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4)) INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5)) INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6)) INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN); #endif #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN); #endif // Wait for temperature measurement to settle //delay(250); #if HAS_HOTEND #define _TEMP_MIN_E(NR) do{ \ const celsius_t tmin = _MAX(HEATER_##NR##_MINTEMP, TERN(TEMP_SENSOR_##NR##_IS_CUSTOM, 0, (int)pgm_read_word(&TEMPTABLE_##NR [TEMP_SENSOR_##NR##_MINTEMP_IND].celsius))); \ temp_range[NR].mintemp = tmin; \ while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < tmin) \ temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \ }while(0) #define _TEMP_MAX_E(NR) do{ \ const celsius_t tmax = _MIN(HEATER_##NR##_MAXTEMP, TERN(TEMP_SENSOR_##NR##_IS_CUSTOM, 2000, (int)pgm_read_word(&TEMPTABLE_##NR [TEMP_SENSOR_##NR##_MAXTEMP_IND].celsius) - 1)); \ temp_range[NR].maxtemp = tmax; \ while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > tmax) \ temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \ }while(0) #define _MINMAX_TEST(N,M) (HOTENDS > N && TEMP_SENSOR_ ##N## _THERMISTOR_ID && TEMP_SENSOR_ ##N## _THERMISTOR_ID != 998 && TEMP_SENSOR_ ##N## _THERMISTOR_ID != 999 && defined(HEATER_##N##_##M##TEMP)) #if _MINMAX_TEST(0, MIN) _TEMP_MIN_E(0); #endif #if _MINMAX_TEST(0, MAX) _TEMP_MAX_E(0); #endif #if _MINMAX_TEST(1, MIN) _TEMP_MIN_E(1); #endif #if _MINMAX_TEST(1, MAX) _TEMP_MAX_E(1); #endif #if _MINMAX_TEST(2, MIN) _TEMP_MIN_E(2); #endif #if _MINMAX_TEST(2, MAX) _TEMP_MAX_E(2); #endif #if _MINMAX_TEST(3, MIN) _TEMP_MIN_E(3); #endif #if _MINMAX_TEST(3, MAX) _TEMP_MAX_E(3); #endif #if _MINMAX_TEST(4, MIN) _TEMP_MIN_E(4); #endif #if _MINMAX_TEST(4, MAX) _TEMP_MAX_E(4); #endif #if _MINMAX_TEST(5, MIN) _TEMP_MIN_E(5); #endif #if _MINMAX_TEST(5, MAX) _TEMP_MAX_E(5); #endif #if _MINMAX_TEST(6, MIN) _TEMP_MIN_E(6); #endif #if _MINMAX_TEST(6, MAX) _TEMP_MAX_E(6); #endif #if _MINMAX_TEST(7, MIN) _TEMP_MIN_E(7); #endif #if _MINMAX_TEST(7, MAX) _TEMP_MAX_E(7); #endif #endif // HAS_HOTEND #if HAS_HEATED_BED while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR); while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR); #endif #if HAS_HEATED_CHAMBER while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR); while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR); #endif #if HAS_COOLER while (analog_to_celsius_cooler(mintemp_raw_COOLER) > COOLER_MINTEMP) mintemp_raw_COOLER += TEMPDIR(COOLER) * (OVERSAMPLENR); while (analog_to_celsius_cooler(maxtemp_raw_COOLER) < COOLER_MAXTEMP) maxtemp_raw_COOLER -= TEMPDIR(COOLER) * (OVERSAMPLENR); #endif } #if HAS_THERMAL_PROTECTION Temperature::tr_state_machine_t Temperature::tr_state_machine[NR_HEATER_RUNAWAY]; // = { { TRInactive, 0 } }; /** * @brief Thermal Runaway state machine for a single heater * @param current current measured temperature * @param target current target temperature * @param heater_id extruder index * @param period_seconds missed temperature allowed time * @param hysteresis_degc allowed distance from target * * TODO: Embed the last 3 parameters during init, if not less optimal */ void Temperature::tr_state_machine_t::run(const_celsius_float_t current, const_celsius_float_t target, const heater_id_t heater_id, const uint16_t period_seconds, const celsius_t hysteresis_degc) { #if HEATER_IDLE_HANDLER // Convert the given heater_id_t to an idle array index const IdleIndex idle_index = idle_index_for_id(heater_id); #endif /** SERIAL_ECHO_START(); SERIAL_ECHOPGM("Thermal Runaway Running. Heater ID: "); switch (heater_id) { case H_BED: SERIAL_ECHOPGM("bed"); break; case H_CHAMBER: SERIAL_ECHOPGM("chamber"); break; default: SERIAL_ECHO(heater_id); } SERIAL_ECHOLNPAIR( " ; sizeof(running_temp):", sizeof(running_temp), " ; State:", state, " ; Timer:", timer, " ; Temperature:", current, " ; Target Temp:", target #if HEATER_IDLE_HANDLER , " ; Idle Timeout:", heater_idle[idle_index].timed_out #endif ); //*/ #if HEATER_IDLE_HANDLER // If the heater idle timeout expires, restart if (heater_idle[idle_index].timed_out) { state = TRInactive; running_temp = 0; } else #endif { // If the target temperature changes, restart if (running_temp != target) { running_temp = target; state = target > 0 ? TRFirstHeating : TRInactive; } } switch (state) { // Inactive state waits for a target temperature to be set case TRInactive: break; // When first heating, wait for the temperature to be reached then go to Stable state case TRFirstHeating: if (current < running_temp) break; state = TRStable; // While the temperature is stable watch for a bad temperature case TRStable: #if ENABLED(ADAPTIVE_FAN_SLOWING) if (adaptive_fan_slowing && heater_id >= 0) { const int fan_index = _MIN(heater_id, FAN_COUNT - 1); if (fan_speed[fan_index] == 0 || current >= running_temp - (hysteresis_degc * 0.25f)) fan_speed_scaler[fan_index] = 128; else if (current >= running_temp - (hysteresis_degc * 0.3335f)) fan_speed_scaler[fan_index] = 96; else if (current >= running_temp - (hysteresis_degc * 0.5f)) fan_speed_scaler[fan_index] = 64; else if (current >= running_temp - (hysteresis_degc * 0.8f)) fan_speed_scaler[fan_index] = 32; else fan_speed_scaler[fan_index] = 0; } #endif if (current >= running_temp - hysteresis_degc) { timer = millis() + SEC_TO_MS(period_seconds); break; } else if (PENDING(millis(), timer)) break; state = TRRunaway; case TRRunaway: TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0)); _temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY)); } } #endif // HAS_THERMAL_PROTECTION void Temperature::disable_all_heaters() { TERN_(AUTOTEMP, planner.autotemp_enabled = false); // Unpause and reset everything TERN_(PROBING_HEATERS_OFF, pause(false)); #if HAS_HOTEND HOTEND_LOOP() { setTargetHotend(0, e); temp_hotend[e].soft_pwm_amount = 0; } #endif #if HAS_TEMP_HOTEND #define DISABLE_HEATER(N) WRITE_HEATER_##N(LOW); REPEAT(HOTENDS, DISABLE_HEATER); #endif #if HAS_HEATED_BED setTargetBed(0); temp_bed.soft_pwm_amount = 0; WRITE_HEATER_BED(LOW); #endif #if HAS_HEATED_CHAMBER setTargetChamber(0); temp_chamber.soft_pwm_amount = 0; WRITE_HEATER_CHAMBER(LOW); #endif #if HAS_COOLER setTargetCooler(0); temp_cooler.soft_pwm_amount = 0; WRITE_HEATER_COOLER(LOW); #endif } #if ENABLED(PRINTJOB_TIMER_AUTOSTART) #include "printcounter.h" bool Temperature::auto_job_over_threshold() { #if HAS_HOTEND HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true; #endif return TERN0(HAS_HEATED_BED, degTargetBed() > BED_MINTEMP) || TERN0(HAS_HEATED_CHAMBER, degTargetChamber() > CHAMBER_MINTEMP); } void Temperature::auto_job_check_timer(const bool can_start, const bool can_stop) { if (auto_job_over_threshold()) { if (can_start) startOrResumeJob(); } else if (can_stop) { print_job_timer.stop(); ui.reset_status(); } } #endif #if ENABLED(PROBING_HEATERS_OFF) void Temperature::pause(const bool p) { if (p != paused_for_probing) { paused_for_probing = p; if (p) { HOTEND_LOOP() heater_idle[e].expire(); // Timeout immediately TERN_(HAS_HEATED_BED, heater_idle[IDLE_INDEX_BED].expire()); // Timeout immediately } else { HOTEND_LOOP() reset_hotend_idle_timer(e); TERN_(HAS_HEATED_BED, reset_bed_idle_timer()); } } } #endif // PROBING_HEATERS_OFF #if EITHER(SINGLENOZZLE_STANDBY_TEMP, SINGLENOZZLE_STANDBY_FAN) void Temperature::singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool) { #if ENABLED(SINGLENOZZLE_STANDBY_FAN) singlenozzle_fan_speed[old_tool] = fan_speed[0]; fan_speed[0] = singlenozzle_fan_speed[new_tool]; #endif #if ENABLED(SINGLENOZZLE_STANDBY_TEMP) singlenozzle_temp[old_tool] = temp_hotend[0].target; if (singlenozzle_temp[new_tool] && singlenozzle_temp[new_tool] != singlenozzle_temp[old_tool]) { setTargetHotend(singlenozzle_temp[new_tool], 0); TERN_(AUTOTEMP, planner.autotemp_update()); TERN_(HAS_STATUS_MESSAGE, set_heating_message(0)); (void)wait_for_hotend(0, false); // Wait for heating or cooling } #endif } #endif #if HAS_MAX_TC #ifndef THERMOCOUPLE_MAX_ERRORS #define THERMOCOUPLE_MAX_ERRORS 15 #endif int Temperature::read_max_tc(TERN_(HAS_MULTI_MAX_TC, const uint8_t hindex/*=0*/)) { #define MAX6675_HEAT_INTERVAL 250UL #if HAS_MAX31855_TEMP static uint32_t max_tc_temp = 2000; #define MAX_TC_ERROR_MASK 7 #define MAX_TC_DISCARD_BITS 18 #define MAX_TC_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64 #elif HAS_MAX31865_TEMP static uint16_t max_tc_temp = 2000; // From datasheet 16 bits D15-D0 #define MAX_TC_ERROR_MASK 1 // D0 Bit not used #define MAX_TC_DISCARD_BITS 1 // Data is in D15-D1 #define MAX_TC_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64 #else static uint16_t max_tc_temp = 2000; #define MAX_TC_ERROR_MASK 4 #define MAX_TC_DISCARD_BITS 3 #define MAX_TC_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16 #endif #if HAS_MULTI_MAX_TC // Needed to return the correct temp when this is called between readings static celsius_t max_tc_temp_previous[MAX_TC_COUNT] = { 0 }; #define THERMO_TEMP(I) max_tc_temp_previous[I] #define THERMO_SEL(A,B) (hindex ? (B) : (A)) #define MAX6675_WRITE(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0) #define MAX6675_SET_OUTPUT() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0) #else constexpr uint8_t hindex = 0; #define THERMO_TEMP(I) max_tc_temp #if TEMP_SENSOR_1_IS_MAX31865 #define THERMO_SEL(A,B) B #else #define THERMO_SEL(A,B) A #endif #if TEMP_SENSOR_0_IS_MAX6675 #define MAX6675_WRITE(V) WRITE(MAX6675_SS_PIN, V) #define MAX6675_SET_OUTPUT() SET_OUTPUT(MAX6675_SS_PIN) #else #define MAX6675_WRITE(V) WRITE(MAX6675_SS2_PIN, V) #define MAX6675_SET_OUTPUT() SET_OUTPUT(MAX6675_SS2_PIN) #endif #endif static uint8_t max_tc_errors[MAX_TC_COUNT] = { 0 }; // Return last-read value between readings static millis_t next_max_tc_ms[MAX_TC_COUNT] = { 0 }; millis_t ms = millis(); if (PENDING(ms, next_max_tc_ms[hindex])) return int(THERMO_TEMP(hindex)); next_max_tc_ms[hindex] = ms + MAX6675_HEAT_INTERVAL; // // TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used. // #if !THERMO_SEPARATE_SPI && NO_THERMO_TEMPS spiBegin(); spiInit(MAX_TC_SPEED_BITS); #endif #if NO_THERMO_TEMPS MAX6675_WRITE(LOW); // enable TT_MAX6675 DELAY_NS(100); // Ensure 100ns delay #endif max_tc_temp = 0; // Read a big-endian temperature value #if NO_THERMO_TEMPS for (uint8_t i = sizeof(max_tc_temp); i--;) { max_tc_temp |= TERN(THERMO_SEPARATE_SPI, max_tc_spi.receive(), spiRec()); if (i > 0) max_tc_temp <<= 8; // shift left if not the last byte } MAX6675_WRITE(HIGH); // disable TT_MAX6675 #endif #if HAS_MAX31855_TEMP Adafruit_MAX31855 &max855ref = THERMO_SEL(max31855_0, max31855_1); max_tc_temp = max855ref.readRaw32(); #endif #if HAS_MAX31865_TEMP Adafruit_MAX31865 &max865ref = THERMO_SEL(max31865_0, max31865_1); #if ENABLED(LIB_USR_MAX31865) max_tc_temp = max865ref.readRTD_with_Fault(); #endif #endif #if HAS_MAX6675_TEMP MAX6675 &max6675ref = THERMO_SEL(max6675_0, max6675_1); max_tc_temp = max6675ref.readRaw16(); #endif #if ENABLED(LIB_ADAFRUIT_MAX31865) const uint8_t fault_31865 = max865ref.readFault() & 0x3FU; #endif if (DISABLED(IGNORE_THERMOCOUPLE_ERRORS) && TERN(LIB_ADAFRUIT_MAX31865, fault_31865, (max_tc_temp & MAX_TC_ERROR_MASK)) ) { max_tc_errors[hindex]++; if (max_tc_errors[hindex] > THERMOCOUPLE_MAX_ERRORS) { SERIAL_ERROR_START(); SERIAL_ECHOPGM("Temp measurement error! "); #if MAX_TC_ERROR_MASK == 7 SERIAL_ECHOPGM("MAX31855 Fault : (", max_tc_temp & 0x7, ") >> "); if (max_tc_temp & 0x1) SERIAL_ECHOLNPGM("Open Circuit"); else if (max_tc_temp & 0x2) SERIAL_ECHOLNPGM("Short to GND"); else if (max_tc_temp & 0x4) SERIAL_ECHOLNPGM("Short to VCC"); #elif HAS_MAX31865 #if ENABLED(LIB_USR_MAX31865) // At the present time we do not have the ability to set the MAX31865 HIGH threshold // or thr LOW threshold, so no need to check for them, zero these bits out const uint8_t fault_31865 = max865ref.readFault() & 0x3FU; #endif max865ref.clearFault(); if (fault_31865) { SERIAL_EOL(); SERIAL_ECHOLNPAIR("\nMAX31865 Fault :(", fault_31865, ") >>"); if (fault_31865 & MAX31865_FAULT_HIGHTHRESH) SERIAL_ECHOLNPGM("RTD High Threshold"); if (fault_31865 & MAX31865_FAULT_LOWTHRESH) SERIAL_ECHOLNPGM("RTD Low Threshold"); if (fault_31865 & MAX31865_FAULT_REFINLOW) SERIAL_ECHOLNPGM("REFIN- > 0.85 x Bias"); if (fault_31865 & MAX31865_FAULT_REFINHIGH) SERIAL_ECHOLNPGM("REFIN- < 0.85 x Bias - FORCE- open"); if (fault_31865 & MAX31865_FAULT_RTDINLOW) SERIAL_ECHOLNPGM("REFIN- < 0.85 x Bias - FORCE- open"); if (fault_31865 & MAX31865_FAULT_OVUV) SERIAL_ECHOLNPGM("Under/Over voltage"); } #else SERIAL_ECHOLNPGM("MAX6675 Open Circuit"); #endif // Thermocouple open max_tc_temp = 4 * THERMO_SEL(TEMP_SENSOR_0_MAX_TC_TMAX, TEMP_SENSOR_1_MAX_TC_TMAX); } else max_tc_temp >>= MAX_TC_DISCARD_BITS; } else { max_tc_temp >>= MAX_TC_DISCARD_BITS; max_tc_errors[hindex] = 0; } #if HAS_MAX31855 if (max_tc_temp & 0x00002000) max_tc_temp |= 0xFFFFC000; // Support negative temperature #endif // Return the RTD resistance for MAX31865 for display in SHOW_TEMP_ADC_VALUES #if HAS_MAX31865_TEMP #if ENABLED(LIB_ADAFRUIT_MAX31865) max_tc_temp = (uint32_t(max865ref.readRTD()) * THERMO_SEL(MAX31865_CALIBRATION_OHMS_0, MAX31865_CALIBRATION_OHMS_1)) >> 16; #elif ENABLED(LIB_USR_MAX31865) max_tc_temp = (uint32_t(max_tc_temp) * THERMO_SEL(MAX31865_CALIBRATION_OHMS_0, MAX31865_CALIBRATION_OHMS_1)) >> 16; #endif #endif THERMO_TEMP(hindex) = max_tc_temp; return int(max_tc_temp); } #endif // HAS_MAX_TC /** * Update raw temperatures * * Called by ISR => readings_ready when new temperatures have been set by updateTemperaturesFromRawValues. * Applies all the accumulators to the current raw temperatures. */ void Temperature::update_raw_temperatures() { #if HAS_TEMP_ADC_0 && !TEMP_SENSOR_0_IS_MAX_TC temp_hotend[0].update(); #endif #if HAS_TEMP_ADC_1 #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) temp_redundant.update(); #elif !TEMP_SENSOR_1_IS_MAX_TC temp_hotend[1].update(); #endif #endif TERN_(HAS_TEMP_ADC_2, temp_hotend[2].update()); TERN_(HAS_TEMP_ADC_3, temp_hotend[3].update()); TERN_(HAS_TEMP_ADC_4, temp_hotend[4].update()); TERN_(HAS_TEMP_ADC_5, temp_hotend[5].update()); TERN_(HAS_TEMP_ADC_6, temp_hotend[6].update()); TERN_(HAS_TEMP_ADC_7, temp_hotend[7].update()); TERN_(HAS_TEMP_ADC_BED, temp_bed.update()); TERN_(HAS_TEMP_ADC_CHAMBER, temp_chamber.update()); TERN_(HAS_TEMP_ADC_PROBE, temp_probe.update()); TERN_(HAS_TEMP_ADC_COOLER, temp_cooler.update()); TERN_(HAS_JOY_ADC_X, joystick.x.update()); TERN_(HAS_JOY_ADC_Y, joystick.y.update()); TERN_(HAS_JOY_ADC_Z, joystick.z.update()); } /** * Called by the Temperature ISR when all the ADCs have been processed. * Reset all the ADC accumulators for another round of updates. */ void Temperature::readings_ready() { // Update raw values only if they're not already set. if (!raw_temps_ready) { update_raw_temperatures(); raw_temps_ready = true; } // Filament Sensor - can be read any time since IIR filtering is used TERN_(FILAMENT_WIDTH_SENSOR, filwidth.reading_ready()); #if HAS_HOTEND HOTEND_LOOP() temp_hotend[e].reset(); TERN_(TEMP_SENSOR_1_AS_REDUNDANT, temp_redundant.reset()); #endif TERN_(HAS_HEATED_BED, temp_bed.reset()); TERN_(HAS_TEMP_CHAMBER, temp_chamber.reset()); TERN_(HAS_TEMP_PROBE, temp_probe.reset()); TERN_(HAS_TEMP_COOLER, temp_cooler.reset()); TERN_(HAS_JOY_ADC_X, joystick.x.reset()); TERN_(HAS_JOY_ADC_Y, joystick.y.reset()); TERN_(HAS_JOY_ADC_Z, joystick.z.reset()); } /** * Timer 0 is shared with millies so don't change the prescaler. * * On AVR this ISR uses the compare method so it runs at the base * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set * in OCR0B above (128 or halfway between OVFs). * * - Manage PWM to all the heaters and fan * - Prepare or Measure one of the raw ADC sensor values * - Check new temperature values for MIN/MAX errors (kill on error) * - Step the babysteps value for each axis towards 0 * - For PINS_DEBUGGING, monitor and report endstop pins * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged * - Call planner.isr to count down its "ignore" time */ HAL_TEMP_TIMER_ISR() { HAL_timer_isr_prologue(TEMP_TIMER_NUM); Temperature::isr(); HAL_timer_isr_epilogue(TEMP_TIMER_NUM); } #if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME) #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds #endif class SoftPWM { public: uint8_t count; inline bool add(const uint8_t mask, const uint8_t amount) { count = (count & mask) + amount; return (count > mask); } #if ENABLED(SLOW_PWM_HEATERS) bool state_heater; uint8_t state_timer_heater; inline void dec() { if (state_timer_heater > 0) state_timer_heater--; } inline bool ready(const bool v) { const bool rdy = !state_timer_heater; if (rdy && state_heater != v) { state_heater = v; state_timer_heater = MIN_STATE_TIME; } return rdy; } #endif }; /** * Handle various ~1KHz tasks associated with temperature * - Heater PWM (~1KHz with scaler) * - LCD Button polling (~500Hz) * - Start / Read one ADC sensor * - Advance Babysteps * - Endstop polling * - Planner clean buffer */ void Temperature::isr() { static int8_t temp_count = -1; static ADCSensorState adc_sensor_state = StartupDelay; static uint8_t pwm_count = _BV(SOFT_PWM_SCALE); // avoid multiple loads of pwm_count uint8_t pwm_count_tmp = pwm_count; #if HAS_ADC_BUTTONS static unsigned int raw_ADCKey_value = 0; static bool ADCKey_pressed = false; #endif #if HAS_HOTEND static SoftPWM soft_pwm_hotend[HOTENDS]; #endif #if HAS_HEATED_BED static SoftPWM soft_pwm_bed; #endif #if HAS_HEATED_CHAMBER static SoftPWM soft_pwm_chamber; #endif #if HAS_COOLER static SoftPWM soft_pwm_cooler; #endif #define WRITE_FAN(n, v) WRITE(FAN##n##_PIN, (v) ^ FAN_INVERTING) #if DISABLED(SLOW_PWM_HEATERS) #if ANY(HAS_HOTEND, HAS_HEATED_BED, HAS_HEATED_CHAMBER, HAS_COOLER, FAN_SOFT_PWM) constexpr uint8_t pwm_mask = TERN0(SOFT_PWM_DITHER, _BV(SOFT_PWM_SCALE) - 1); #define _PWM_MOD(N,S,T) do{ \ const bool on = S.add(pwm_mask, T.soft_pwm_amount); \ WRITE_HEATER_##N(on); \ }while(0) #endif /** * Standard heater PWM modulation */ if (pwm_count_tmp >= 127) { pwm_count_tmp -= 127; #if HAS_HOTEND #define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]); REPEAT(HOTENDS, _PWM_MOD_E); #endif #if HAS_HEATED_BED _PWM_MOD(BED,soft_pwm_bed,temp_bed); #endif #if HAS_HEATED_CHAMBER _PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber); #endif #if HAS_COOLER _PWM_MOD(COOLER,soft_pwm_cooler,temp_cooler); #endif #if ENABLED(FAN_SOFT_PWM) #define _FAN_PWM(N) do{ \ uint8_t &spcf = soft_pwm_count_fan[N]; \ spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \ WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \ }while(0) #if HAS_FAN0 _FAN_PWM(0); #endif #if HAS_FAN1 _FAN_PWM(1); #endif #if HAS_FAN2 _FAN_PWM(2); #endif #if HAS_FAN3 _FAN_PWM(3); #endif #if HAS_FAN4 _FAN_PWM(4); #endif #if HAS_FAN5 _FAN_PWM(5); #endif #if HAS_FAN6 _FAN_PWM(6); #endif #if HAS_FAN7 _FAN_PWM(7); #endif #endif } else { #define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0) #if HAS_HOTEND #define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]); REPEAT(HOTENDS, _PWM_LOW_E); #endif #if HAS_HEATED_BED _PWM_LOW(BED, soft_pwm_bed); #endif #if HAS_HEATED_CHAMBER _PWM_LOW(CHAMBER, soft_pwm_chamber); #endif #if HAS_COOLER _PWM_LOW(COOLER, soft_pwm_cooler); #endif #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW); #endif #if HAS_FAN1 if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW); #endif #if HAS_FAN2 if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW); #endif #if HAS_FAN3 if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW); #endif #if HAS_FAN4 if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW); #endif #if HAS_FAN5 if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW); #endif #if HAS_FAN6 if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW); #endif #if HAS_FAN7 if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW); #endif #endif } // SOFT_PWM_SCALE to frequency: // // 0: 16000000/64/256/128 = 7.6294 Hz // 1: / 64 = 15.2588 Hz // 2: / 32 = 30.5176 Hz // 3: / 16 = 61.0352 Hz // 4: / 8 = 122.0703 Hz // 5: / 4 = 244.1406 Hz pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); #else // SLOW_PWM_HEATERS /** * SLOW PWM HEATERS * * For relay-driven heaters */ #define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0) #define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0) #define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0) static uint8_t slow_pwm_count = 0; if (slow_pwm_count == 0) { #if HAS_HOTEND #define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]); REPEAT(HOTENDS, _SLOW_PWM_E); #endif #if HAS_HEATED_BED _SLOW_PWM(BED, soft_pwm_bed, temp_bed); #endif #if HAS_HEATED_CHAMBER _SLOW_PWM(CHAMBER, soft_pwm_chamber, temp_chamber); #endif #if HAS_COOLER _SLOW_PWM(COOLER, soft_pwm_cooler, temp_cooler); #endif } // slow_pwm_count == 0 #if HAS_HOTEND #define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]); REPEAT(HOTENDS, _PWM_OFF_E); #endif #if HAS_HEATED_BED _PWM_OFF(BED, soft_pwm_bed); #endif #if HAS_HEATED_CHAMBER _PWM_OFF(CHAMBER, soft_pwm_chamber); #endif #if HAS_COOLER _PWM_OFF(COOLER, soft_pwm_cooler, temp_cooler); #endif #if ENABLED(FAN_SOFT_PWM) if (pwm_count_tmp >= 127) { pwm_count_tmp = 0; #define _PWM_FAN(N) do{ \ soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \ WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \ }while(0) #if HAS_FAN0 _PWM_FAN(0); #endif #if HAS_FAN1 _PWM_FAN(1); #endif #if HAS_FAN2 _PWM_FAN(2); #endif #if HAS_FAN3 _FAN_PWM(3); #endif #if HAS_FAN4 _FAN_PWM(4); #endif #if HAS_FAN5 _FAN_PWM(5); #endif #if HAS_FAN6 _FAN_PWM(6); #endif #if HAS_FAN7 _FAN_PWM(7); #endif } #if HAS_FAN0 if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW); #endif #if HAS_FAN1 if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW); #endif #if HAS_FAN2 if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW); #endif #if HAS_FAN3 if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW); #endif #if HAS_FAN4 if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW); #endif #if HAS_FAN5 if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW); #endif #if HAS_FAN6 if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW); #endif #if HAS_FAN7 if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW); #endif #endif // FAN_SOFT_PWM // SOFT_PWM_SCALE to frequency: // // 0: 16000000/64/256/128 = 7.6294 Hz // 1: / 64 = 15.2588 Hz // 2: / 32 = 30.5176 Hz // 3: / 16 = 61.0352 Hz // 4: / 8 = 122.0703 Hz // 5: / 4 = 244.1406 Hz pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); // increment slow_pwm_count only every 64th pwm_count, // i.e. yielding a PWM frequency of 16/128 Hz (8s). if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) { slow_pwm_count++; slow_pwm_count &= 0x7F; #if HAS_HOTEND HOTEND_LOOP() soft_pwm_hotend[e].dec(); #endif TERN_(HAS_HEATED_BED, soft_pwm_bed.dec()); TERN_(HAS_HEATED_CHAMBER, soft_pwm_chamber.dec()); TERN_(HAS_COOLER, soft_pwm_cooler.dec()); } #endif // SLOW_PWM_HEATERS // // Update lcd buttons 488 times per second // static bool do_buttons; if ((do_buttons ^= true)) ui.update_buttons(); /** * One sensor is sampled on every other call of the ISR. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average. * * On each Prepare pass, ADC is started for a sensor pin. * On the next pass, the ADC value is read and accumulated. * * This gives each ADC 0.9765ms to charge up. */ #define ACCUMULATE_ADC(obj) do{ \ if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \ else obj.sample(HAL_READ_ADC()); \ }while(0) ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling; switch (adc_sensor_state) { case SensorsReady: { // All sensors have been read. Stay in this state for a few // ISRs to save on calls to temp update/checking code below. constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady; static uint8_t delay_count = 0; if (extra_loops > 0) { if (delay_count == 0) delay_count = extra_loops; // Init this delay if (--delay_count) // While delaying... next_sensor_state = SensorsReady; // retain this state (else, next state will be 0) break; } else { adc_sensor_state = StartSampling; // Fall-through to start sampling next_sensor_state = (ADCSensorState)(int(StartSampling) + 1); } } case StartSampling: // Start of sampling loops. Do updates/checks. if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms. temp_count = 0; readings_ready(); } break; #if HAS_TEMP_ADC_0 case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break; case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break; #endif #if HAS_TEMP_ADC_BED case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break; case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break; #endif #if HAS_TEMP_ADC_CHAMBER case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break; case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break; #endif #if HAS_TEMP_ADC_COOLER case PrepareTemp_COOLER: HAL_START_ADC(TEMP_COOLER_PIN); break; case MeasureTemp_COOLER: ACCUMULATE_ADC(temp_cooler); break; #endif #if HAS_TEMP_ADC_PROBE case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break; case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break; #endif #if HAS_TEMP_ADC_1 case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break; case MeasureTemp_1: ACCUMULATE_ADC(TERN(TEMP_SENSOR_1_AS_REDUNDANT, temp_redundant, temp_hotend[1])); break; #endif #if HAS_TEMP_ADC_2 case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break; case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break; #endif #if HAS_TEMP_ADC_3 case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break; case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break; #endif #if HAS_TEMP_ADC_4 case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break; case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break; #endif #if HAS_TEMP_ADC_5 case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break; case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break; #endif #if HAS_TEMP_ADC_6 case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break; case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break; #endif #if HAS_TEMP_ADC_7 case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break; case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break; case Measure_FILWIDTH: if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state else filwidth.accumulate(HAL_READ_ADC()); break; #endif #if ENABLED(POWER_MONITOR_CURRENT) case Prepare_POWER_MONITOR_CURRENT: HAL_START_ADC(POWER_MONITOR_CURRENT_PIN); break; case Measure_POWER_MONITOR_CURRENT: if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state else power_monitor.add_current_sample(HAL_READ_ADC()); break; #endif #if ENABLED(POWER_MONITOR_VOLTAGE) case Prepare_POWER_MONITOR_VOLTAGE: HAL_START_ADC(POWER_MONITOR_VOLTAGE_PIN); break; case Measure_POWER_MONITOR_VOLTAGE: if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state else power_monitor.add_voltage_sample(HAL_READ_ADC()); break; #endif #if HAS_JOY_ADC_X case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break; case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break; #endif #if HAS_JOY_ADC_Y case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break; case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break; #endif #if HAS_JOY_ADC_Z case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break; case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break; #endif #if HAS_ADC_BUTTONS #ifndef ADC_BUTTON_DEBOUNCE_DELAY #define ADC_BUTTON_DEBOUNCE_DELAY 16 #endif case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break; case Measure_ADC_KEY: if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // redo this state else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) { raw_ADCKey_value = HAL_READ_ADC(); if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) { NOMORE(current_ADCKey_raw, raw_ADCKey_value); ADCKey_count++; } else { //ADC Key release if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false; if (ADCKey_pressed) { ADCKey_count = 0; current_ADCKey_raw = HAL_ADC_RANGE; } } } if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true; break; #endif // HAS_ADC_BUTTONS case StartupDelay: break; } // switch(adc_sensor_state) // Go to the next state adc_sensor_state = next_sensor_state; // // Additional ~1KHz Tasks // #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING) babystep.task(); #endif // Poll endstops state, if required endstops.poll(); // Periodically call the planner timer service routine planner.isr(); } #if HAS_TEMP_SENSOR #include "../gcode/gcode.h" /** * Print a single heater state in the form: * Bed: " B:nnn.nn /nnn.nn" * Chamber: " C:nnn.nn /nnn.nn" * Probe: " P:nnn.nn /nnn.nn" * Cooler: " L:nnn.nn /nnn.nn" * Extruder: " T0:nnn.nn /nnn.nn" * With ADC: " T0:nnn.nn /nnn.nn (nnn.nn)" */ static void print_heater_state(const_celsius_float_t c, const_celsius_float_t t #if ENABLED(SHOW_TEMP_ADC_VALUES) , const float r #endif , const heater_id_t e=INDEX_NONE ) { char k; switch (e) { default: #if HAS_TEMP_HOTEND k = 'T'; break; #endif #if HAS_TEMP_BED case H_BED: k = 'B'; break; #endif #if HAS_TEMP_CHAMBER case H_CHAMBER: k = 'C'; break; #endif #if HAS_TEMP_PROBE case H_PROBE: k = 'P'; break; #endif #if HAS_TEMP_COOLER case H_COOLER: k = 'L'; break; #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) case H_REDUNDANT: k = 'R'; break; #endif } SERIAL_CHAR(' ', k); #if HAS_MULTI_HOTEND if (e >= 0) SERIAL_CHAR('0' + e); #endif #ifdef SERIAL_FLOAT_PRECISION #define SFP _MIN(SERIAL_FLOAT_PRECISION, 2) #else #define SFP 2 #endif SERIAL_CHAR(':'); SERIAL_PRINT(c, SFP); SERIAL_ECHOPGM(" /"); SERIAL_PRINT(t, SFP); #if ENABLED(SHOW_TEMP_ADC_VALUES) // Temperature MAX SPI boards do not have an OVERSAMPLENR defined SERIAL_ECHOPAIR(" (", TERN(NO_THERMO_TEMPS, false, k == 'T') ? r : r * RECIPROCAL(OVERSAMPLENR)); SERIAL_CHAR(')'); #endif delay(2); } void Temperature::print_heater_states(const uint8_t target_extruder #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) , const bool include_r/*=false*/ #endif ) { #if HAS_TEMP_HOTEND print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawHotendTemp(target_extruder) #endif ); #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) if (include_r) print_heater_state(degHotendRedundant(), degTargetHotend(0) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawHotendTempRedundant() #endif , H_REDUNDANT ); #endif #endif #if HAS_HEATED_BED print_heater_state(degBed(), degTargetBed() #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawBedTemp() #endif , H_BED ); #endif #if HAS_TEMP_CHAMBER print_heater_state(degChamber(), TERN0(HAS_HEATED_CHAMBER, degTargetChamber()) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawChamberTemp() #endif , H_CHAMBER ); #endif // HAS_TEMP_CHAMBER #if HAS_TEMP_COOLER print_heater_state(degCooler(), TERN0(HAS_COOLER, degTargetCooler()) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawCoolerTemp() #endif , H_COOLER ); #endif // HAS_TEMP_COOLER #if HAS_TEMP_PROBE print_heater_state(degProbe(), 0 #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawProbeTemp() #endif , H_PROBE ); #endif #if HAS_MULTI_HOTEND HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawHotendTemp(e) #endif , (heater_id_t)e ); #endif SERIAL_ECHOPAIR(" @:", getHeaterPower((heater_id_t)target_extruder)); #if HAS_HEATED_BED SERIAL_ECHOPAIR(" B@:", getHeaterPower(H_BED)); #endif #if HAS_HEATED_CHAMBER SERIAL_ECHOPAIR(" C@:", getHeaterPower(H_CHAMBER)); #endif #if HAS_COOLER SERIAL_ECHOPAIR(" C@:", getHeaterPower(H_COOLER)); #endif #if HAS_MULTI_HOTEND HOTEND_LOOP() { SERIAL_ECHOPAIR(" @", e); SERIAL_CHAR(':'); SERIAL_ECHO(getHeaterPower((heater_id_t)e)); } #endif } #if ENABLED(AUTO_REPORT_TEMPERATURES) AutoReporter Temperature::auto_reporter; void Temperature::AutoReportTemp::report() { print_heater_states(active_extruder); SERIAL_EOL(); } #endif #if HAS_HOTEND && HAS_STATUS_MESSAGE void Temperature::set_heating_message(const uint8_t e) { const bool heating = isHeatingHotend(e); ui.status_printf_P(0, #if HAS_MULTI_HOTEND PSTR("E%c " S_FMT), '1' + e #else PSTR("E " S_FMT) #endif , heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING) ); } #endif #if HAS_TEMP_HOTEND #ifndef MIN_COOLING_SLOPE_DEG #define MIN_COOLING_SLOPE_DEG 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME #define MIN_COOLING_SLOPE_TIME 60 #endif bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/ #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel/*=false*/ #endif ) { #if ENABLED(AUTOTEMP) REMEMBER(1, planner.autotemp_enabled, false); #endif #if TEMP_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; bool first_loop = true; // Loop until the temperature has stabilized #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_RESIDENCY_TIME))) #else // Loop until the temperature is very close target #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder)) #endif #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) KEEPALIVE_STATE(NOT_BUSY); #endif #if ENABLED(PRINTER_EVENT_LEDS) const celsius_float_t start_temp = degHotend(target_extruder); printerEventLEDs.onHotendHeatingStart(); #endif bool wants_to_cool = false; celsius_float_t target_temp = -1.0, old_temp = 9999.0; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; wait_for_heatup = true; do { // Target temperature might be changed during the loop if (target_temp != degTargetHotend(target_extruder)) { wants_to_cool = isCoolingHotend(target_extruder); target_temp = degTargetHotend(target_extruder); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; print_heater_states(target_extruder); #if TEMP_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((SEC_TO_MS(TEMP_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const celsius_float_t temp = degHotend(target_extruder); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from violet to red as nozzle heats up if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp); #endif #if TEMP_RESIDENCY_TIME > 0 const celsius_float_t temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_WINDOW) residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_RESIDENCY_TIME) / 3 : 0); } else if (temp_diff > TEMP_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } first_loop = false; #endif // Prevent a wait-forever situation if R is misused i.e. M109 R0 if (wants_to_cool) { // break after MIN_COOLING_SLOPE_TIME seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break; next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME); old_temp = temp; } } #if G26_CLICK_CAN_CANCEL if (click_to_cancel && ui.use_click()) { wait_for_heatup = false; ui.quick_feedback(); } #endif } while (wait_for_heatup && TEMP_CONDITIONS); if (wait_for_heatup) { wait_for_heatup = false; #if ENABLED(DWIN_CREALITY_LCD) HMI_flag.heat_flag = 0; duration_t elapsed = print_job_timer.duration(); // print timer dwin_heat_time = elapsed.value; #else ui.reset_status(); #endif TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onHeatingDone()); return true; } return false; } #if ENABLED(WAIT_FOR_HOTEND) void Temperature::wait_for_hotend_heating(const uint8_t target_extruder) { if (isHeatingHotend(target_extruder)) { SERIAL_ECHOLNPGM("Wait for hotend heating..."); LCD_MESSAGEPGM(MSG_HEATING); wait_for_hotend(target_extruder); ui.reset_status(); } } #endif #endif // HAS_TEMP_HOTEND #if HAS_HEATED_BED #ifndef MIN_COOLING_SLOPE_DEG_BED #define MIN_COOLING_SLOPE_DEG_BED 1.00 #endif #ifndef MIN_COOLING_SLOPE_TIME_BED #define MIN_COOLING_SLOPE_TIME_BED 60 #endif bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/ #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel/*=false*/ #endif ) { #if TEMP_BED_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; bool first_loop = true; // Loop until the temperature has stabilized #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_BED_RESIDENCY_TIME))) #else // Loop until the temperature is very close target #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed()) #endif #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) KEEPALIVE_STATE(NOT_BUSY); #endif #if ENABLED(PRINTER_EVENT_LEDS) const celsius_float_t start_temp = degBed(); printerEventLEDs.onBedHeatingStart(); #endif bool wants_to_cool = false; celsius_float_t target_temp = -1, old_temp = 9999; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; wait_for_heatup = true; do { // Target temperature might be changed during the loop if (target_temp != degTargetBed()) { wants_to_cool = isCoolingBed(); target_temp = degTargetBed(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heater_states(active_extruder); #if TEMP_BED_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const celsius_float_t temp = degBed(); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from blue to violet as bed heats up if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp); #endif #if TEMP_BED_RESIDENCY_TIME > 0 const celsius_float_t temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) / 3 : 0); } else if (temp_diff > TEMP_BED_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // TEMP_BED_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M190 R0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_BED seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break; next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_BED); old_temp = temp; } } #if G26_CLICK_CAN_CANCEL if (click_to_cancel && ui.use_click()) { wait_for_heatup = false; ui.quick_feedback(); } #endif #if TEMP_BED_RESIDENCY_TIME > 0 first_loop = false; #endif } while (wait_for_heatup && TEMP_BED_CONDITIONS); if (wait_for_heatup) { wait_for_heatup = false; ui.reset_status(); return true; } return false; } void Temperature::wait_for_bed_heating() { if (isHeatingBed()) { SERIAL_ECHOLNPGM("Wait for bed heating..."); LCD_MESSAGEPGM(MSG_BED_HEATING); wait_for_bed(); ui.reset_status(); } } #endif // HAS_HEATED_BED #if HAS_TEMP_PROBE #ifndef MIN_DELTA_SLOPE_DEG_PROBE #define MIN_DELTA_SLOPE_DEG_PROBE 1.0 #endif #ifndef MIN_DELTA_SLOPE_TIME_PROBE #define MIN_DELTA_SLOPE_TIME_PROBE 600 #endif bool Temperature::wait_for_probe(const celsius_t target_temp, bool no_wait_for_cooling/*=true*/) { const bool wants_to_cool = isProbeAboveTemp(target_temp), will_wait = !(wants_to_cool && no_wait_for_cooling); if (will_wait) SERIAL_ECHOLNPAIR("Waiting for probe to ", (wants_to_cool ? PSTR("cool down") : PSTR("heat up")), " to ", target_temp, " degrees."); #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) KEEPALIVE_STATE(NOT_BUSY); #endif float old_temp = 9999; millis_t next_temp_ms = 0, next_delta_check_ms = 0; wait_for_heatup = true; while (will_wait && wait_for_heatup) { // Print Temp Reading every 10 seconds while heating up. millis_t now = millis(); if (!next_temp_ms || ELAPSED(now, next_temp_ms)) { next_temp_ms = now + 10000UL; print_heater_states(active_extruder); SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered // Break after MIN_DELTA_SLOPE_TIME_PROBE seconds if the temperature // did not drop at least MIN_DELTA_SLOPE_DEG_PROBE. This avoids waiting // forever as the probe is not actively heated. if (!next_delta_check_ms || ELAPSED(now, next_delta_check_ms)) { const float temp = degProbe(), delta_temp = old_temp > temp ? old_temp - temp : temp - old_temp; if (delta_temp < float(MIN_DELTA_SLOPE_DEG_PROBE)) { SERIAL_ECHOLNPGM("Timed out waiting for probe temperature."); break; } next_delta_check_ms = now + SEC_TO_MS(MIN_DELTA_SLOPE_TIME_PROBE); old_temp = temp; } // Loop until the temperature is very close target if (!(wants_to_cool ? isProbeAboveTemp(target_temp) : isProbeBelowTemp(target_temp))) { SERIAL_ECHOLN(wants_to_cool ? PSTR("Cooldown") : PSTR("Heatup")); SERIAL_ECHOLNPGM(" complete, target probe temperature reached."); break; } } if (wait_for_heatup) { wait_for_heatup = false; ui.reset_status(); return true; } else if (will_wait) SERIAL_ECHOLNPGM("Canceled wait for probe temperature."); return false; } #endif // HAS_TEMP_PROBE #if HAS_HEATED_CHAMBER #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER #define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER #define MIN_COOLING_SLOPE_TIME_CHAMBER 120 #endif bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) { #if TEMP_CHAMBER_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; bool first_loop = true; // Loop until the temperature has stabilized #define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME))) #else // Loop until the temperature is very close target #define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber()) #endif #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) KEEPALIVE_STATE(NOT_BUSY); #endif bool wants_to_cool = false; float target_temp = -1, old_temp = 9999; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; wait_for_heatup = true; do { // Target temperature might be changed during the loop if (target_temp != degTargetChamber()) { wants_to_cool = isCoolingChamber(); target_temp = degTargetChamber(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heater_states(active_extruder); #if TEMP_CHAMBER_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const float temp = degChamber(); #if TEMP_CHAMBER_RESIDENCY_TIME > 0 const float temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_CHAMBER_WINDOW) residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) / 3 : 0); } else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } first_loop = false; #endif // TEMP_CHAMBER_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M191 R0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break; next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER); old_temp = temp; } } } while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS); if (wait_for_heatup) { wait_for_heatup = false; ui.reset_status(); return true; } return false; } #endif // HAS_HEATED_CHAMBER #if HAS_COOLER #ifndef MIN_COOLING_SLOPE_DEG_COOLER #define MIN_COOLING_SLOPE_DEG_COOLER 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_COOLER #define MIN_COOLING_SLOPE_TIME_COOLER 120 #endif bool Temperature::wait_for_cooler(const bool no_wait_for_cooling/*=true*/) { #if TEMP_COOLER_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; bool first_loop = true; // Loop until the temperature has stabilized #define TEMP_COOLER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME))) #else // Loop until the temperature is very close target #define TEMP_COOLER_CONDITIONS (wants_to_cool ? isLaserHeating() : isLaserCooling()) #endif #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) KEEPALIVE_STATE(NOT_BUSY); #endif bool wants_to_cool = false; float target_temp = -1, previous_temp = 9999; millis_t now, next_temp_ms = 0, next_cooling_check_ms = 0; wait_for_heatup = true; do { // Target temperature might be changed during the loop if (target_temp != degTargetCooler()) { wants_to_cool = isLaserHeating(); target_temp = degTargetCooler(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heater_states(active_extruder); #if TEMP_COOLER_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const celsius_float_t current_temp = degCooler(); #if TEMP_COOLER_RESIDENCY_TIME > 0 const celsius_float_t temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_COOLER_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_COOLER_WINDOW) residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME) / 3 : 0); } else if (temp_diff > TEMP_COOLER_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } first_loop = false; #endif // TEMP_COOLER_RESIDENCY_TIME > 0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER if (!next_cooling_check_ms || ELAPSED(now, next_cooling_check_ms)) { if (previous_temp - current_temp < float(MIN_COOLING_SLOPE_DEG_COOLER)) break; next_cooling_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_COOLER); previous_temp = current_temp; } } } while (wait_for_heatup && TEMP_COOLER_CONDITIONS); // Prevent a wait-forever situation if R is misused i.e. M191 R0 if (wait_for_heatup) { wait_for_heatup = false; ui.reset_status(); return true; } return false; } #endif // HAS_COOLER #endif // HAS_TEMP_SENSOR