/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * temperature.h - temperature controller */ #include "thermistor/thermistors.h" #include "../inc/MarlinConfig.h" #if ENABLED(AUTO_POWER_CONTROL) #include "../feature/power.h" #endif #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif #if HOTENDS <= 1 #define HOTEND_INDEX 0 #define E_UNUSED() UNUSED(e) #else #define HOTEND_INDEX e #define E_UNUSED() #endif // PID storage typedef struct { float Kp, Ki, Kd; } PID_t; typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t; #if ENABLED(PID_EXTRUSION_SCALING) typedef PIDC_t hotend_pid_t; #if LPQ_MAX_LEN > 255 typedef uint16_t lpq_ptr_t; #else typedef uint8_t lpq_ptr_t; #endif #else typedef PID_t hotend_pid_t; #endif #define DUMMY_PID_VALUE 3000.0f #if ENABLED(PIDTEMP) #define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp #define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki #define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd #if ENABLED(PID_EXTRUSION_SCALING) #define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc #else #define _PID_Kc(H) 1 #endif #else #define _PID_Kp(H) DUMMY_PID_VALUE #define _PID_Ki(H) DUMMY_PID_VALUE #define _PID_Kd(H) DUMMY_PID_VALUE #define _PID_Kc(H) 1 #endif #define PID_PARAM(F,H) _PID_##F(H) /** * States for ADC reading in the ISR */ enum ADCSensorState : char { StartSampling, #if HAS_TEMP_ADC_0 PrepareTemp_0, MeasureTemp_0, #endif #if HAS_HEATED_BED PrepareTemp_BED, MeasureTemp_BED, #endif #if HAS_TEMP_CHAMBER PrepareTemp_CHAMBER, MeasureTemp_CHAMBER, #endif #if HAS_TEMP_ADC_1 PrepareTemp_1, MeasureTemp_1, #endif #if HAS_TEMP_ADC_2 PrepareTemp_2, MeasureTemp_2, #endif #if HAS_TEMP_ADC_3 PrepareTemp_3, MeasureTemp_3, #endif #if HAS_TEMP_ADC_4 PrepareTemp_4, MeasureTemp_4, #endif #if HAS_TEMP_ADC_5 PrepareTemp_5, MeasureTemp_5, #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) Prepare_FILWIDTH, Measure_FILWIDTH, #endif #if HAS_ADC_BUTTONS Prepare_ADC_KEY, Measure_ADC_KEY, #endif SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle }; // Minimum number of Temperature::ISR loops between sensor readings. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to // get all oversampled sensor readings #define MIN_ADC_ISR_LOOPS 10 #define ACTUAL_ADC_SAMPLES MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady)) #if HAS_PID_HEATING #define PID_K2 (1-float(PID_K1)) #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY) // Apply the scale factors to the PID values #define scalePID_i(i) ( float(i) * PID_dT ) #define unscalePID_i(i) ( float(i) / PID_dT ) #define scalePID_d(d) ( float(d) / PID_dT ) #define unscalePID_d(d) ( float(d) * PID_dT ) #endif #define G26_CLICK_CAN_CANCEL (HAS_LCD_MENU && ENABLED(G26_MESH_VALIDATION)) enum TempIndex : uint8_t { #if HOTENDS > 0 TEMP_E0, #if HOTENDS > 1 TEMP_E1, #if HOTENDS > 2 TEMP_E2, #if HOTENDS > 3 TEMP_E3, #if HOTENDS > 4 TEMP_E4, #if HOTENDS > 5 TEMP_E5, #endif #endif #endif #endif #endif #endif #if HAS_HEATED_BED TEMP_BED, #endif #if HAS_HEATED_CHAMBER TEMP_CHAMBER, #endif tempCOUNT }; // A temperature sensor typedef struct TempInfo { uint16_t acc; int16_t raw; float current; } temp_info_t; // A PWM heater with temperature sensor typedef struct HeaterInfo : public TempInfo { int16_t target; uint8_t soft_pwm_amount; } heater_info_t; // A heater with PID stabilization template struct PIDHeaterInfo : public HeaterInfo { T pid; // Initialized by settings.load() }; #if ENABLED(PIDTEMP) typedef struct PIDHeaterInfo hotend_info_t; #else typedef heater_info_t hotend_info_t; #endif #if HAS_HEATED_BED #if ENABLED(PIDTEMPBED) typedef struct PIDHeaterInfo bed_info_t; #else typedef heater_info_t bed_info_t; #endif #endif #if HAS_TEMP_CHAMBER #if HAS_HEATED_CHAMBER #if ENABLED(PIDTEMPCHAMBER) typedef struct PIDHeaterInfo chamber_info_t; #else typedef heater_info_t chamber_info_t; #endif #else typedef temp_info_t chamber_info_t; #endif #endif // Heater idle handling typedef struct { millis_t timeout_ms; bool timed_out; inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; } inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; } inline void reset() { timeout_ms = 0; timed_out = false; } inline void expire() { start(0); } } heater_idle_t; // Heater watch handling typedef struct { uint16_t target; millis_t next_ms; inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); } inline bool elapsed() { return elapsed(millis()); } } heater_watch_t; // Temperature sensor read value ranges typedef struct { int16_t raw_min, raw_max; } raw_range_t; typedef struct { int16_t mintemp, maxtemp; } celsius_range_t; typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t; class Temperature { public: static volatile bool in_temp_isr; static hotend_info_t temp_hotend[HOTENDS]; #if HAS_HEATED_BED static bed_info_t temp_bed; #endif #if HAS_TEMP_CHAMBER static chamber_info_t temp_chamber; #endif #if ENABLED(AUTO_POWER_E_FANS) static uint8_t autofan_speed[HOTENDS]; #endif #if ENABLED(FAN_SOFT_PWM) static uint8_t soft_pwm_amount_fan[FAN_COUNT], soft_pwm_count_fan[FAN_COUNT]; #endif /** * set_pwm_duty (8-bit AVRs only) * Sets the PWM duty cycle of the provided pin to the provided value * Optionally allows inverting the duty cycle [default = false] * Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255] */ #if ENABLED(FAST_PWM_FAN) static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false); #endif #if ENABLED(BABYSTEPPING) static volatile int16_t babystepsTodo[3]; #endif #if ENABLED(PREVENT_COLD_EXTRUSION) static bool allow_cold_extrude; static int16_t extrude_min_temp; FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; } FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { E_UNUSED(); return tooCold(degHotend(HOTEND_INDEX)); } FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { E_UNUSED(); return tooCold(degTargetHotend(HOTEND_INDEX)); } #else FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; } FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; } #endif FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); } FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); } #if HEATER_IDLE_HANDLER static heater_idle_t hotend_idle[HOTENDS]; #if HAS_HEATED_BED static heater_idle_t bed_idle; #endif #if HAS_HEATED_CHAMBER static heater_idle_t chamber_idle; #endif #endif private: #if EARLY_WATCHDOG static bool inited; // If temperature controller is running #endif static volatile bool temp_meas_ready; #if WATCH_HOTENDS static heater_watch_t watch_hotend[HOTENDS]; #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) static uint16_t redundant_temperature_raw; static float redundant_temperature; #endif #if ENABLED(PID_EXTRUSION_SCALING) static int32_t last_e_position, lpq[LPQ_MAX_LEN]; static lpq_ptr_t lpq_ptr; #endif static temp_range_t temp_range[HOTENDS]; #if HAS_HEATED_BED #if WATCH_BED static heater_watch_t watch_bed; #endif #if DISABLED(PIDTEMPBED) static millis_t next_bed_check_ms; #endif #ifdef BED_MINTEMP static int16_t mintemp_raw_BED; #endif #ifdef BED_MAXTEMP static int16_t maxtemp_raw_BED; #endif #endif #if HAS_HEATED_CHAMBER #if WATCH_CHAMBER static heater_watch_t watch_chamber; #endif #if DISABLED(PIDTEMPCHAMBER) static millis_t next_chamber_check_ms; #endif #ifdef CHAMBER_MINTEMP static int16_t mintemp_raw_CHAMBER; #endif #ifdef CHAMBER_MAXTEMP static int16_t maxtemp_raw_CHAMBER; #endif #endif #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED static uint8_t consecutive_low_temperature_error[HOTENDS]; #endif #ifdef MILLISECONDS_PREHEAT_TIME static millis_t preheat_end_time[HOTENDS]; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static int8_t meas_shift_index; // Index of a delayed sample in buffer #endif #if HAS_AUTO_FAN static millis_t next_auto_fan_check_ms; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only #endif #if ENABLED(PROBING_HEATERS_OFF) static bool paused; #endif public: #if HAS_ADC_BUTTONS static uint32_t current_ADCKey_raw; static uint8_t ADCKey_count; #endif #if ENABLED(PID_EXTRUSION_SCALING) static int16_t lpq_len; #endif /** * Instance Methods */ Temperature(); void init(); /** * Static (class) methods */ static float analog_to_celsius_hotend(const int raw, const uint8_t e); #if HAS_HEATED_BED static float analog_to_celsius_bed(const int raw); #endif #if HAS_TEMP_CHAMBER static float analog_to_celsius_chamber(const int raw); #endif #if FAN_COUNT > 0 static uint8_t fan_speed[FAN_COUNT]; #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT) static void set_fan_speed(const uint8_t target, const uint16_t speed); #if ENABLED(PROBING_FANS_OFF) static bool fans_paused; static uint8_t paused_fan_speed[FAN_COUNT]; #endif static constexpr inline uint8_t fanPercent(const uint8_t speed) { return (int(speed) * 100 + 127) / 255; } #if ENABLED(ADAPTIVE_FAN_SLOWING) static uint8_t fan_speed_scaler[FAN_COUNT]; #else static constexpr uint8_t fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128); #endif static inline uint8_t lcd_fanSpeedActual(const uint8_t target) { return (fan_speed[target] * uint16_t(fan_speed_scaler[target])) >> 7; } #if ENABLED(EXTRA_FAN_SPEED) static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT]; static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp); #endif #if HAS_LCD_MENU static uint8_t lcd_tmpfan_speed[ #if ENABLED(SINGLENOZZLE) MAX(EXTRUDERS, FAN_COUNT) #else FAN_COUNT #endif ]; static inline void lcd_setFanSpeed(const uint8_t target) { set_fan_speed(target, lcd_tmpfan_speed[target]); } #if HAS_FAN0 FORCE_INLINE static void lcd_setFanSpeed0() { lcd_setFanSpeed(0); } #endif #if HAS_FAN1 || (ENABLED(SINGLENOZZLE) && EXTRUDERS > 1) FORCE_INLINE static void lcd_setFanSpeed1() { lcd_setFanSpeed(1); } #endif #if HAS_FAN2 || (ENABLED(SINGLENOZZLE) && EXTRUDERS > 2) FORCE_INLINE static void lcd_setFanSpeed2() { lcd_setFanSpeed(2); } #endif #endif // HAS_LCD_MENU #if ENABLED(PROBING_FANS_OFF) void set_fans_paused(const bool p); #endif #endif // FAN_COUNT > 0 static inline void zero_fan_speeds() { #if FAN_COUNT > 0 FANS_LOOP(i) set_fan_speed(i, 0); #endif } /** * Called from the Temperature ISR */ static void readings_ready(); static void isr(); /** * Call periodically to manage heaters */ static void manage_heater() _O2; // Added _O2 to work around a compiler error /** * Preheating hotends */ #ifdef MILLISECONDS_PREHEAT_TIME static bool is_preheating(const uint8_t e) { E_UNUSED(); return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]); } static void start_preheat_time(const uint8_t e) { E_UNUSED(); preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME; } static void reset_preheat_time(const uint8_t e) { E_UNUSED(); preheat_end_time[HOTEND_INDEX] = 0; } #else #define is_preheating(n) (false) #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static float analog_to_mm_fil_width(); // Convert raw Filament Width to millimeters static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio #endif //high level conversion routines, for use outside of temperature.cpp //inline so that there is no performance decrease. //deg=degreeCelsius FORCE_INLINE static float degHotend(const uint8_t e) { E_UNUSED(); return temp_hotend[HOTEND_INDEX].current; } #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) { E_UNUSED(); return temp_hotend[HOTEND_INDEX].raw; } #endif FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) { E_UNUSED(); return temp_hotend[HOTEND_INDEX].target; } #if WATCH_HOTENDS static void start_watching_heater(const uint8_t e=0); #else static inline void start_watching_heater(const uint8_t e=0) { UNUSED(e); } #endif #if HAS_LCD_MENU static inline void start_watching_E0() { start_watching_heater(0); } static inline void start_watching_E1() { start_watching_heater(1); } static inline void start_watching_E2() { start_watching_heater(2); } static inline void start_watching_E3() { start_watching_heater(3); } static inline void start_watching_E4() { start_watching_heater(4); } static inline void start_watching_E5() { start_watching_heater(5); } #endif static void setTargetHotend(const int16_t celsius, const uint8_t e) { E_UNUSED(); #ifdef MILLISECONDS_PREHEAT_TIME if (celsius == 0) reset_preheat_time(HOTEND_INDEX); else if (temp_hotend[HOTEND_INDEX].target == 0) start_preheat_time(HOTEND_INDEX); #endif #if ENABLED(AUTO_POWER_CONTROL) powerManager.power_on(); #endif temp_hotend[HOTEND_INDEX].target = MIN(celsius, temp_range[HOTEND_INDEX].maxtemp - 15); start_watching_heater(HOTEND_INDEX); } #if WATCH_CHAMBER static void start_watching_chamber(); #else static inline void start_watching_chamber() {} #endif #if HAS_TEMP_CHAMBER static void setTargetChamber(const int16_t celsius) { #if HAS_HEATED_CHAMBER temp_chamber.target = #ifdef CHAMBER_MAXTEMP min(celsius, CHAMBER_MAXTEMP) #else celsius #endif ; start_watching_chamber(); #endif // HAS_HEATED_CHAMBER } #endif // HAS_TEMP_CHAMBER FORCE_INLINE static bool isHeatingHotend(const uint8_t e) { E_UNUSED(); return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].current; } FORCE_INLINE static bool isCoolingHotend(const uint8_t e) { E_UNUSED(); return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].current; } #if HAS_TEMP_HOTEND static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel=false #endif ); #endif #if HAS_HEATED_BED #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; } #endif FORCE_INLINE static float degBed() { return temp_bed.current; } FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; } FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.current; } FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.current; } #if WATCH_BED static void start_watching_bed(); #else static inline void start_watching_bed() {} #endif static void setTargetBed(const int16_t celsius) { #if ENABLED(AUTO_POWER_CONTROL) powerManager.power_on(); #endif temp_bed.target = #ifdef BED_MAXTEMP MIN(celsius, BED_MAXTEMP - 10) #else celsius #endif ; start_watching_bed(); } static bool wait_for_bed(const bool no_wait_for_cooling=true #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel=false #endif ); #endif // HAS_HEATED_BED #if HAS_TEMP_CHAMBER #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; } #endif FORCE_INLINE static float degChamber() { return temp_chamber.current; } #if HAS_HEATED_CHAMBER FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.current; } FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.current; } FORCE_INLINE static int16_t degTargetChamber() {return temp_chamber.target; } #endif #endif // HAS_TEMP_CHAMBER FORCE_INLINE static bool still_heating(const uint8_t e) { return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS; } /** * The software PWM power for a heater */ static int getHeaterPower(const int heater); /** * Switch off all heaters, set all target temperatures to 0 */ static void disable_all_heaters(); /** * Perform auto-tuning for hotend or bed in response to M303 */ #if HAS_PID_HEATING static void PID_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result=false); #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) static bool adaptive_fan_slowing; #elif ENABLED(ADAPTIVE_FAN_SLOWING) constexpr static bool adaptive_fan_slowing = true; #endif /** * Update the temp manager when PID values change */ #if ENABLED(PIDTEMP) FORCE_INLINE static void updatePID() { #if ENABLED(PID_EXTRUSION_SCALING) last_e_position = 0; #endif } #endif #endif #if ENABLED(BABYSTEPPING) static void babystep_axis(const AxisEnum axis, const int16_t distance); #endif #if ENABLED(PROBING_HEATERS_OFF) static void pause(const bool p); FORCE_INLINE static bool is_paused() { return paused; } #endif #if HEATER_IDLE_HANDLER static void reset_heater_idle_timer(const uint8_t e) { E_UNUSED(); hotend_idle[HOTEND_INDEX].reset(); start_watching_heater(HOTEND_INDEX); } #if HAS_HEATED_BED static void reset_bed_idle_timer() { bed_idle.reset(); start_watching_bed(); } #endif #endif // HEATER_IDLE_HANDLER #if HAS_TEMP_SENSOR static void print_heater_states(const uint8_t target_extruder); #if ENABLED(AUTO_REPORT_TEMPERATURES) static uint8_t auto_report_temp_interval; static millis_t next_temp_report_ms; static void auto_report_temperatures(void); static inline void set_auto_report_interval(uint8_t v) { NOMORE(v, 60); auto_report_temp_interval = v; next_temp_report_ms = millis() + 1000UL * v; } #endif #endif #if EITHER(ULTRA_LCD, EXTENSIBLE_UI) static void set_heating_message(const uint8_t e); #endif private: /** * (8-bit AVRs only) * * get_pwm_timer * Grabs timer information and registers of the provided pin * returns Timer struct containing this information * Used by set_pwm_frequency, set_pwm_duty * * set_pwm_frequency * Sets the frequency of the timer corresponding to the provided pin * as close as possible to the provided desired frequency. Internally * calculates the required waveform generation mode, prescaler and * resolution values required and sets the timer registers accordingly. * NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B) * NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST FAN PWM Settings) */ #if ENABLED(FAST_PWM_FAN) typedef struct Timer { volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer volatile uint16_t* ICRn; // max 1 ICR register per timer uint8_t n; // the timer number [0->5] uint8_t q; // the timer output [0->2] (A->C) } Timer; static Timer get_pwm_timer(const pin_t pin); static void set_pwm_frequency(const pin_t pin, int f_desired); #endif static void set_current_temp_raw(); static void updateTemperaturesFromRawValues(); #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) #if HAS_MAX6675 #if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) #define COUNT_6675 2 #else #define COUNT_6675 1 #endif #if COUNT_6675 > 1 #define READ_MAX6675(N) read_max6675(N) #else #define READ_MAX6675(N) read_max6675() #endif static int read_max6675( #if COUNT_6675 > 1 const uint8_t hindex=0 #endif ); #endif static void checkExtruderAutoFans(); static float get_pid_output(const int8_t e); #if ENABLED(PIDTEMPBED) static float get_pid_output_bed(); #endif #if HAS_HEATED_CHAMBER static float get_pid_output_chamber(); #endif static void _temp_error(const int8_t e, PGM_P const serial_msg, PGM_P const lcd_msg); static void min_temp_error(const int8_t e); static void max_temp_error(const int8_t e); #if HAS_TEMP_CHAMBER static void chamber_temp_error(const bool max); #endif #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED || ENABLED(THERMAL_PROTECTION_CHAMBER) enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway }; typedef struct { millis_t timer = 0; TRState state = TRInactive; } tr_state_machine_t; #if ENABLED(THERMAL_PROTECTION_HOTENDS) static tr_state_machine_t tr_state_machine[HOTENDS]; #endif #if HAS_THERMALLY_PROTECTED_BED static tr_state_machine_t tr_state_machine_bed; #endif #if ENABLED(THERMAL_PROTECTION_CHAMBER) static tr_state_machine_t tr_state_machine_chamber; #endif static void thermal_runaway_protection(tr_state_machine_t &state, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc); #endif // THERMAL_PROTECTION }; extern Temperature thermalManager;