/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../../inc/MarlinConfig.h"
#include "../gcode.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../../feature/tmc_util.h"
#endif
#include "../../module/probe.h"
#if ENABLED(BLTOUCH)
#include "../../feature/bltouch.h"
#endif
#include "../../lcd/marlinui.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../lcd/extui/ui_api.h"
#elif ENABLED(DWIN_CREALITY_LCD)
#include "../../lcd/e3v2/creality/dwin.h"
#elif ENABLED(DWIN_LCD_PROUI)
#include "../../lcd/e3v2/proui/dwin.h"
#endif
#if HAS_L64XX // set L6470 absolute position registers to counts
#include "../../libs/L64XX/L64XX_Marlin.h"
#endif
#if ENABLED(LASER_MOVE_G28_OFF)
#include "../../feature/spindle_laser.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
// Pretend the current position is 0,0
current_position.set(0.0, 0.0);
sync_plan_position();
const int x_axis_home_dir = TOOL_X_HOME_DIR(active_extruder);
// Use a higher diagonal feedrate so axes move at homing speed
const float minfr = _MIN(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)),
fr_mm_s = HYPOT(minfr, minfr);
#if ENABLED(SENSORLESS_HOMING)
sensorless_t stealth_states {
LINEAR_AXIS_LIST(tmc_enable_stallguard(stepperX), tmc_enable_stallguard(stepperY), false, false, false, false)
, false
#if AXIS_HAS_STALLGUARD(X2)
|| tmc_enable_stallguard(stepperX2)
#endif
, false
#if AXIS_HAS_STALLGUARD(Y2)
|| tmc_enable_stallguard(stepperY2)
#endif
};
#endif
do_blocking_move_to_xy(1.5 * max_length(X_AXIS) * x_axis_home_dir, 1.5 * max_length(Y_AXIS) * Y_HOME_DIR, fr_mm_s);
endstops.validate_homing_move();
current_position.set(0.0, 0.0);
#if ENABLED(SENSORLESS_HOMING) && DISABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
tmc_disable_stallguard(stepperX, stealth_states.x);
tmc_disable_stallguard(stepperY, stealth_states.y);
#if AXIS_HAS_STALLGUARD(X2)
tmc_disable_stallguard(stepperX2, stealth_states.x2);
#endif
#if AXIS_HAS_STALLGUARD(Y2)
tmc_disable_stallguard(stepperY2, stealth_states.y2);
#endif
#endif
}
#endif // QUICK_HOME
#if ENABLED(Z_SAFE_HOMING)
inline void home_z_safely() {
DEBUG_SECTION(log_G28, "home_z_safely", DEBUGGING(LEVELING));
// Disallow Z homing if X or Y homing is needed
if (homing_needed_error(_BV(X_AXIS) | _BV(Y_AXIS))) return;
sync_plan_position();
/**
* Move the Z probe (or just the nozzle) to the safe homing point
* (Z is already at the right height)
*/
constexpr xy_float_t safe_homing_xy = { Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT };
#if HAS_HOME_OFFSET
xy_float_t okay_homing_xy = safe_homing_xy;
okay_homing_xy -= home_offset;
#else
constexpr xy_float_t okay_homing_xy = safe_homing_xy;
#endif
destination.set(okay_homing_xy, current_position.z);
TERN_(HOMING_Z_WITH_PROBE, destination -= probe.offset_xy);
if (position_is_reachable(destination)) {
if (DEBUGGING(LEVELING)) DEBUG_POS("home_z_safely", destination);
// Free the active extruder for movement
TERN_(DUAL_X_CARRIAGE, idex_set_parked(false));
TERN_(SENSORLESS_HOMING, safe_delay(500)); // Short delay needed to settle
do_blocking_move_to_xy(destination);
homeaxis(Z_AXIS);
}
else {
LCD_MESSAGE(MSG_ZPROBE_OUT);
SERIAL_ECHO_MSG(STR_ZPROBE_OUT_SER);
}
}
#endif // Z_SAFE_HOMING
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
motion_state_t begin_slow_homing() {
motion_state_t motion_state{0};
motion_state.acceleration.set(planner.settings.max_acceleration_mm_per_s2[X_AXIS],
planner.settings.max_acceleration_mm_per_s2[Y_AXIS]
OPTARG(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
);
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = 100;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = 100;
TERN_(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS] = 100);
#if HAS_CLASSIC_JERK
motion_state.jerk_state = planner.max_jerk;
planner.max_jerk.set(0, 0 OPTARG(DELTA, 0));
#endif
planner.reset_acceleration_rates();
return motion_state;
}
void end_slow_homing(const motion_state_t &motion_state) {
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = motion_state.acceleration.x;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = motion_state.acceleration.y;
TERN_(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS] = motion_state.acceleration.z);
TERN_(HAS_CLASSIC_JERK, planner.max_jerk = motion_state.jerk_state);
planner.reset_acceleration_rates();
}
#endif // IMPROVE_HOMING_RELIABILITY
/**
* G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* L Force leveling state ON (if possible) or OFF after homing (Requires RESTORE_LEVELING_AFTER_G28 or ENABLE_LEVELING_AFTER_G28)
* O Home only if the position is not known and trusted
* R Raise by n mm/inches before homing
*
* Cartesian/SCARA parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*/
void GcodeSuite::G28() {
DEBUG_SECTION(log_G28, "G28", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) log_machine_info();
TERN_(LASER_MOVE_G28_OFF, cutter.set_inline_enabled(false)); // turn off laser
#if ENABLED(DUAL_X_CARRIAGE)
bool IDEX_saved_duplication_state = extruder_duplication_enabled;
DualXMode IDEX_saved_mode = dual_x_carriage_mode;
#endif
#if ENABLED(MARLIN_DEV_MODE)
if (parser.seen_test('S')) {
LOOP_LINEAR_AXES(a) set_axis_is_at_home((AxisEnum)a);
sync_plan_position();
SERIAL_ECHOLNPGM("Simulated Homing");
report_current_position();
return;
}
#endif
// Home (O)nly if position is unknown
if (!axes_should_home() && parser.seen_test('O')) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> homing not needed, skip");
return;
}
#if ENABLED(FULL_REPORT_TO_HOST_FEATURE)
const M_StateEnum old_grblstate = M_State_grbl;
set_and_report_grblstate(M_HOMING);
#endif
TERN_(HAS_DWIN_E3V2_BASIC, DWIN_HomingStart());
TERN_(EXTENSIBLE_UI, ExtUI::onHomingStart());
planner.synchronize(); // Wait for planner moves to finish!
SET_SOFT_ENDSTOP_LOOSE(false); // Reset a leftover 'loose' motion state
// Disable the leveling matrix before homing
#if CAN_SET_LEVELING_AFTER_G28
const bool leveling_restore_state = parser.boolval('L', TERN1(RESTORE_LEVELING_AFTER_G28, planner.leveling_active));
#endif
// Cancel any prior G29 session
TERN_(PROBE_MANUALLY, g29_in_progress = false);
// Disable leveling before homing
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
// Reset to the XY plane
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
// Count this command as movement / activity
reset_stepper_timeout();
#define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT)
#if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(X2) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Y2) || (ENABLED(DELTA) && HAS_CURRENT_HOME(Z)) || HAS_CURRENT_HOME(I) || HAS_CURRENT_HOME(J) || HAS_CURRENT_HOME(K)
#define HAS_HOMING_CURRENT 1
#endif
#if HAS_HOMING_CURRENT
auto debug_current = [](FSTR_P const s, const int16_t a, const int16_t b) {
DEBUG_ECHOF(s); DEBUG_ECHOLNPGM(" current: ", a, " -> ", b);
};
#if HAS_CURRENT_HOME(X)
const int16_t tmc_save_current_X = stepperX.getMilliamps();
stepperX.rms_current(X_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_X), tmc_save_current_X, X_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(X2)
const int16_t tmc_save_current_X2 = stepperX2.getMilliamps();
stepperX2.rms_current(X2_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_X2), tmc_save_current_X2, X2_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Y)
const int16_t tmc_save_current_Y = stepperY.getMilliamps();
stepperY.rms_current(Y_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_Y), tmc_save_current_Y, Y_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Y2)
const int16_t tmc_save_current_Y2 = stepperY2.getMilliamps();
stepperY2.rms_current(Y2_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_Y2), tmc_save_current_Y2, Y2_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(I)
const int16_t tmc_save_current_I = stepperI.getMilliamps();
stepperI.rms_current(I_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_I), tmc_save_current_I, I_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(J)
const int16_t tmc_save_current_J = stepperJ.getMilliamps();
stepperJ.rms_current(J_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_J), tmc_save_current_J, J_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(K)
const int16_t tmc_save_current_K = stepperK.getMilliamps();
stepperK.rms_current(K_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_K), tmc_save_current_K, K_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Z) && ENABLED(DELTA)
const int16_t tmc_save_current_Z = stepperZ.getMilliamps();
stepperZ.rms_current(Z_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_Z), tmc_save_current_Z, Z_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(I)
const int16_t tmc_save_current_I = stepperI.getMilliamps();
stepperI.rms_current(I_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_I), tmc_save_current_I, I_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(J)
const int16_t tmc_save_current_J = stepperJ.getMilliamps();
stepperJ.rms_current(J_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_J), tmc_save_current_J, J_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(K)
const int16_t tmc_save_current_K = stepperK.getMilliamps();
stepperK.rms_current(K_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_K), tmc_save_current_K, K_CURRENT_HOME);
#endif
#endif
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
motion_state_t saved_motion_state = begin_slow_homing();
#endif
// Always home with tool 0 active
#if HAS_MULTI_HOTEND
#if DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE)
const uint8_t old_tool_index = active_extruder;
#endif
// PARKING_EXTRUDER homing requires different handling of movement / solenoid activation, depending on the side of homing
#if ENABLED(PARKING_EXTRUDER)
const bool pe_final_change_must_unpark = parking_extruder_unpark_after_homing(old_tool_index, X_HOME_DIR + 1 == old_tool_index * 2);
#endif
tool_change(0, true);
#endif
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
remember_feedrate_scaling_off();
endstops.enable(true); // Enable endstops for next homing move
#if ENABLED(DELTA)
constexpr bool doZ = true; // for NANODLP_Z_SYNC if your DLP is on a DELTA
home_delta();
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
#elif ENABLED(AXEL_TPARA)
constexpr bool doZ = true; // for NANODLP_Z_SYNC if your DLP is on a TPARA
home_TPARA();
#else
#define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS))))
const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')),
LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing
needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K)
),
LINEAR_AXIS_LIST( // Home each axis if needed or flagged
homeX = needX || parser.seen_test('X'),
homeY = needY || parser.seen_test('Y'),
homeZZ = homeZ,
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME)
),
home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged
homeX == homeX, && homeY == homeX, && homeZ == homeX,
&& homeI == homeX, && homeJ == homeX, && homeK == homeX
),
LINEAR_AXIS_LIST(
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ,
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK
);
#if HAS_Z_AXIS
UNUSED(needZ); UNUSED(homeZZ);
#else
constexpr bool doZ = false;
#endif
TERN_(HOME_Z_FIRST, if (doZ) homeaxis(Z_AXIS));
const bool seenR = parser.seenval('R');
const float z_homing_height = seenR ? parser.value_linear_units() : Z_HOMING_HEIGHT;
if (z_homing_height && (seenR || LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) {
// Raise Z before homing any other axes and z is not already high enough (never lower z)
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Raise Z (before homing) by ", z_homing_height);
do_z_clearance(z_homing_height);
TERN_(BLTOUCH, bltouch.init());
}
// Diagonal move first if both are homing
TERN_(QUICK_HOME, if (doX && doY) quick_home_xy());
// Home Y (before X)
if (ENABLED(HOME_Y_BEFORE_X) && (doY || TERN0(CODEPENDENT_XY_HOMING, doX)))
homeaxis(Y_AXIS);
// Home X
if (doX || (doY && ENABLED(CODEPENDENT_XY_HOMING) && DISABLED(HOME_Y_BEFORE_X))) {
#if ENABLED(DUAL_X_CARRIAGE)
// Always home the 2nd (right) extruder first
active_extruder = 1;
homeaxis(X_AXIS);
// Remember this extruder's position for later tool change
inactive_extruder_x = current_position.x;
// Home the 1st (left) extruder
active_extruder = 0;
homeaxis(X_AXIS);
// Consider the active extruder to be in its "parked" position
idex_set_parked();
#else
homeaxis(X_AXIS);
#endif
}
// Home Y (after X)
if (DISABLED(HOME_Y_BEFORE_X) && doY)
homeaxis(Y_AXIS);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
// Home Z last if homing towards the bed
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
if (doZ) {
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
stepper.set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
#endif
#if ENABLED(Z_SAFE_HOMING)
if (TERN1(POWER_LOSS_RECOVERY, !parser.seen_test('H'))) home_z_safely(); else homeaxis(Z_AXIS);
#else
homeaxis(Z_AXIS);
#endif
probe.move_z_after_homing();
}
#endif
TERN_(HAS_I_AXIS, if (doI) homeaxis(I_AXIS));
TERN_(HAS_J_AXIS, if (doJ) homeaxis(J_AXIS));
TERN_(HAS_K_AXIS, if (doK) homeaxis(K_AXIS));
sync_plan_position();
#endif
/**
* Preserve DXC mode across a G28 for IDEX printers in DXC_DUPLICATION_MODE.
* This is important because it lets a user use the LCD Panel to set an IDEX Duplication mode, and
* then print a standard GCode file that contains a single print that does a G28 and has no other
* IDEX specific commands in it.
*/
#if ENABLED(DUAL_X_CARRIAGE)
if (idex_is_duplicating()) {
TERN_(IMPROVE_HOMING_RELIABILITY, saved_motion_state = begin_slow_homing());
// Always home the 2nd (right) extruder first
active_extruder = 1;
homeaxis(X_AXIS);
// Remember this extruder's position for later tool change
inactive_extruder_x = current_position.x;
// Home the 1st (left) extruder
active_extruder = 0;
homeaxis(X_AXIS);
// Consider the active extruder to be parked
idex_set_parked();
dual_x_carriage_mode = IDEX_saved_mode;
set_duplication_enabled(IDEX_saved_duplication_state);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
}
#endif // DUAL_X_CARRIAGE
endstops.not_homing();
// Clear endstop state for polled stallGuard endstops
TERN_(SPI_ENDSTOPS, endstops.clear_endstop_state());
// Move to a height where we can use the full xy-area
TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
TERN_(CAN_SET_LEVELING_AFTER_G28, if (leveling_restore_state) set_bed_leveling_enabled());
restore_feedrate_and_scaling();
// Restore the active tool after homing
#if HAS_MULTI_HOTEND && (DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE))
tool_change(old_tool_index, TERN(PARKING_EXTRUDER, !pe_final_change_must_unpark, DISABLED(DUAL_X_CARRIAGE))); // Do move if one of these
#endif
#if HAS_HOMING_CURRENT
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Restore driver current...");
#if HAS_CURRENT_HOME(X)
stepperX.rms_current(tmc_save_current_X);
#endif
#if HAS_CURRENT_HOME(X2)
stepperX2.rms_current(tmc_save_current_X2);
#endif
#if HAS_CURRENT_HOME(Y)
stepperY.rms_current(tmc_save_current_Y);
#endif
#if HAS_CURRENT_HOME(Y2)
stepperY2.rms_current(tmc_save_current_Y2);
#endif
#if HAS_CURRENT_HOME(Z) && ENABLED(DELTA)
stepperZ.rms_current(tmc_save_current_Z);
#endif
#if HAS_CURRENT_HOME(I)
stepperI.rms_current(tmc_save_current_I);
#endif
#if HAS_CURRENT_HOME(J)
stepperJ.rms_current(tmc_save_current_J);
#endif
#if HAS_CURRENT_HOME(K)
stepperK.rms_current(tmc_save_current_K);
#endif
#endif // HAS_HOMING_CURRENT
ui.refresh();
TERN_(HAS_DWIN_E3V2_BASIC, DWIN_HomingDone());
TERN_(EXTENSIBLE_UI, ExtUI::onHomingDone());
report_current_position();
if (ENABLED(NANODLP_Z_SYNC) && (doZ || ENABLED(NANODLP_ALL_AXIS)))
SERIAL_ECHOLNPGM(STR_Z_MOVE_COMP);
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(old_grblstate));
#if HAS_L64XX
// Set L6470 absolute position registers to counts
// constexpr *might* move this to PROGMEM.
// If not, this will need a PROGMEM directive and an accessor.
#define _EN_ITEM(N) , E_AXIS
static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = {
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS),
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS
REPEAT(E_STEPPERS, _EN_ITEM)
};
#undef _EN_ITEM
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
const uint8_t cv = L64XX::chain[j];
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L64XX_axis_xref[cv]));
}
#endif
}