/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * motion.h * * High-level motion commands to feed the planner * Some of these methods may migrate to the planner class. */ #include "../inc/MarlinConfig.h" #if HAS_BED_PROBE #include "probe.h" #endif #if IS_SCARA #include "scara.h" #endif // Axis homed and known-position states extern uint8_t axis_homed, axis_known_position; constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS); FORCE_INLINE bool no_axes_homed() { return !axis_homed; } FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; } FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; } FORCE_INLINE void set_all_unhomed() { axis_homed = 0; } FORCE_INLINE void set_all_unknown() { axis_known_position = 0; } FORCE_INLINE bool homing_needed() { return !( #if ENABLED(HOME_AFTER_DEACTIVATE) all_axes_known() #else all_axes_homed() #endif ); } // Error margin to work around float imprecision constexpr float slop = 0.0001; extern bool relative_mode; extern xyze_pos_t current_position, // High-level current tool position destination; // Destination for a move // G60/G61 Position Save and Return #if SAVED_POSITIONS extern uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3]; extern xyz_pos_t stored_position[SAVED_POSITIONS]; #endif // Scratch space for a cartesian result extern xyz_pos_t cartes; // Until kinematics.cpp is created, declare this here #if IS_KINEMATIC extern abc_pos_t delta; #endif #if HAS_ABL_NOT_UBL extern float xy_probe_feedrate_mm_s; #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif #if ENABLED(Z_SAFE_HOMING) constexpr xy_float_t safe_homing_xy = { Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT }; #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ extern const feedRate_t homing_feedrate_mm_s[XYZ]; FORCE_INLINE feedRate_t homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); } feedRate_t get_homing_bump_feedrate(const AxisEnum axis); extern feedRate_t feedrate_mm_s; /** * Feedrate scaling */ extern int16_t feedrate_percentage; // The active extruder (tool). Set with T command. #if EXTRUDERS > 1 extern uint8_t active_extruder; #else constexpr uint8_t active_extruder = 0; #endif #if ENABLED(LCD_SHOW_E_TOTAL) extern float e_move_accumulator; #endif FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float(p); } FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte(p); } #define XYZ_DEFS(T, NAME, OPT) \ extern const XYZval NAME##_P; \ FORCE_INLINE T NAME(AxisEnum axis) { return pgm_read_any(&NAME##_P[axis]); } XYZ_DEFS(float, base_min_pos, MIN_POS); XYZ_DEFS(float, base_max_pos, MAX_POS); XYZ_DEFS(float, base_home_pos, HOME_POS); XYZ_DEFS(float, max_length, MAX_LENGTH); XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM); XYZ_DEFS(signed char, home_dir, HOME_DIR); #if HAS_WORKSPACE_OFFSET void update_workspace_offset(const AxisEnum axis); #else #define update_workspace_offset(x) NOOP #endif #if HAS_HOTEND_OFFSET extern xyz_pos_t hotend_offset[HOTENDS]; void reset_hotend_offsets(); #elif HOTENDS constexpr xyz_pos_t hotend_offset[HOTENDS] = { { 0 } }; #else constexpr xyz_pos_t hotend_offset[1] = { { 0 } }; #endif typedef struct { xyz_pos_t min, max; } axis_limits_t; #if HAS_SOFTWARE_ENDSTOPS extern bool soft_endstops_enabled; extern axis_limits_t soft_endstop; void apply_motion_limits(xyz_pos_t &target); void update_software_endstops(const AxisEnum axis #if HAS_HOTEND_OFFSET , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0 #endif ); #else constexpr bool soft_endstops_enabled = false; //constexpr axis_limits_t soft_endstop = { // { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }, // { X_MAX_POS, Y_MAX_POS, Z_MAX_POS } }; #define apply_motion_limits(V) NOOP #define update_software_endstops(...) NOOP #endif void report_current_position(); void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position(); void sync_plan_position_e(); /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const feedRate_t &fr_mm_s=feedrate_mm_s); void prepare_move_to_destination(); void _internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f #if IS_KINEMATIC , const bool is_fast=false #endif ); inline void prepare_internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f) { _internal_move_to_destination(fr_mm_s); } #if IS_KINEMATIC void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s=MMS_SCALED(feedrate_mm_s)); inline void prepare_internal_fast_move_to_destination(const feedRate_t &fr_mm_s=0.0f) { _internal_move_to_destination(fr_mm_s, true); } #endif /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); FORCE_INLINE void do_blocking_move_to_xy(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); } FORCE_INLINE void do_blocking_move_to_xy(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); } void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f); FORCE_INLINE void do_blocking_move_to_xy_z(const xyz_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); } FORCE_INLINE void do_blocking_move_to_xy_z(const xyze_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); } void remember_feedrate_and_scaling(); void remember_feedrate_scaling_off(); void restore_feedrate_and_scaling(); // // Homing // uint8_t axes_need_homing(uint8_t axis_bits=0x07); bool axis_unhomed_error(uint8_t axis_bits=0x07); #if ENABLED(NO_MOTION_BEFORE_HOMING) #define MOTION_CONDITIONS (IsRunning() && !axis_unhomed_error()) #else #define MOTION_CONDITIONS IsRunning() #endif void set_axis_is_at_home(const AxisEnum axis); void set_axis_is_not_at_home(const AxisEnum axis); void homeaxis(const AxisEnum axis); /** * Workspace offsets */ #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT #if HAS_HOME_OFFSET extern xyz_pos_t home_offset; #endif #if HAS_POSITION_SHIFT extern xyz_pos_t position_shift; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern xyz_pos_t workspace_offset; #define _WS workspace_offset #elif HAS_HOME_OFFSET #define _WS home_offset #else #define _WS position_shift #endif #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + _WS[AXIS]) #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - _WS[AXIS]) FORCE_INLINE void toLogical(xy_pos_t &raw) { raw += _WS; } FORCE_INLINE void toLogical(xyz_pos_t &raw) { raw += _WS; } FORCE_INLINE void toLogical(xyze_pos_t &raw) { raw += _WS; } FORCE_INLINE void toNative(xy_pos_t &raw) { raw -= _WS; } FORCE_INLINE void toNative(xyz_pos_t &raw) { raw -= _WS; } FORCE_INLINE void toNative(xyze_pos_t &raw) { raw -= _WS; } #else #define NATIVE_TO_LOGICAL(POS, AXIS) (POS) #define LOGICAL_TO_NATIVE(POS, AXIS) (POS) FORCE_INLINE void toLogical(xy_pos_t&) {} FORCE_INLINE void toLogical(xyz_pos_t&) {} FORCE_INLINE void toLogical(xyze_pos_t&) {} FORCE_INLINE void toNative(xy_pos_t&) {} FORCE_INLINE void toNative(xyz_pos_t&) {} FORCE_INLINE void toNative(xyze_pos_t&) {} #endif #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS) #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS) #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS) #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS) /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if HAS_SCARA_OFFSET extern abc_pos_t scara_home_offset; // A and B angular offsets, Z mm offset #endif // Return true if the given point is within the printable area inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + slop); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #endif } inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) { return position_is_reachable(pos.x, pos.y, inset); } #if HAS_BED_PROBE #if HAS_PROBE_XY_OFFSET // Return true if the both nozzle and the probe can reach the given point. // Note: This won't work on SCARA since the probe offset rotates with the arm. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - probe_offset.x, ry - probe_offset.y) && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE)); } #else FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry, MIN_PROBE_EDGE); } #endif #endif // HAS_BED_PROBE #else // CARTESIAN // Return true if the given position is within the machine bounds. inline bool position_is_reachable(const float &rx, const float &ry) { if (!WITHIN(ry, Y_MIN_POS - slop, Y_MAX_POS + slop)) return false; #if ENABLED(DUAL_X_CARRIAGE) if (active_extruder) return WITHIN(rx, X2_MIN_POS - slop, X2_MAX_POS + slop); else return WITHIN(rx, X1_MIN_POS - slop, X1_MAX_POS + slop); #else return WITHIN(rx, X_MIN_POS - slop, X_MAX_POS + slop); #endif } inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); } #if HAS_BED_PROBE /** * Return whether the given position is within the bed, and whether the nozzle * can reach the position required to put the probe at the given position. * * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the * nozzle must be be able to reach +10,-10. */ inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - probe_offset_xy.x, ry - probe_offset_xy.y) && WITHIN(rx, probe_min_x() - slop, probe_max_x() + slop) && WITHIN(ry, probe_min_y() - slop, probe_max_y() + slop); } #endif // HAS_BED_PROBE #endif // CARTESIAN #if !HAS_BED_PROBE FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); } #endif FORCE_INLINE bool position_is_reachable_by_probe(const xy_pos_t &pos) { return position_is_reachable_by_probe(pos.x, pos.y); } /** * Duplication mode */ #if HAS_DUPLICATION_MODE extern bool extruder_duplication_enabled, // Used in Dual X mode 2 mirrored_duplication_mode; // Used in Dual X mode 3 #if ENABLED(MULTI_NOZZLE_DUPLICATION) extern uint8_t duplication_e_mask; #endif #endif /** * Dual X Carriage */ #if ENABLED(DUAL_X_CARRIAGE) enum DualXMode : char { DXC_FULL_CONTROL_MODE, DXC_AUTO_PARK_MODE, DXC_DUPLICATION_MODE, DXC_MIRRORED_MODE }; extern DualXMode dual_x_carriage_mode; extern float inactive_extruder_x_pos, // Used in mode 0 & 1 duplicate_extruder_x_offset; // Used in mode 2 & 3 extern xyz_pos_t raised_parked_position; // Used in mode 1 extern bool active_extruder_parked; // Used in mode 1, 2 & 3 extern millis_t delayed_move_time; // Used in mode 1 extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3 FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; } float x_home_pos(const int extruder); FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; } #elif ENABLED(MULTI_NOZZLE_DUPLICATION) enum DualXMode : char { DXC_DUPLICATION_MODE = 2 }; #endif #if HAS_M206_COMMAND void set_home_offset(const AxisEnum axis, const float v); #endif